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Abstract

Advanced Driver Assistance Systems (ADAS) already make a major con-
tribution to driving safety. To further increase this contribution, it is,
however, vital that future intelligent vehicles perceive, predict, and as-
sess their environment more comprehensively. In this context, the present
dissertation approaches the questions i) how to represent the driving envi-
ronment adequately within an environment model, ii) how to obtain such
a representation, and iii) how to predict the future traffic scene evolution
for proper criticality assessment. Bayesian inference provides the common
theoretical framework of all designed methods.

Based on the shortcomings of existing environment representations, a
novel parametric representation of general driving environments is first
introduced in this work. It consists of a combination of dynamic object
maps for moving objects and so-called Parametric Free Space (PFS) maps
for static environment structures. PFS maps model the environment by a
closed curve around the vehicle, which encloses relevant drivable free space.
The representation compactly describes all essential information contained
in common occupancy grid maps, suppresses irrelevant details, and con-
sistently separates between static and dynamic environment objects.

A novel method for grid mapping in dynamic road environments pro-
vides the basis to realize this representation. Therein, dynamic cell hy-
pothesis are detected, clustered, and subsequently tracked and classified
with an adaptive Bayesian multiple model filter for jump Markov nonlin-
ear systems — the so-called Interacting Multiple Model Unscented Kalman
Probabilistic Data Association Filter (IMM-UK-PDAF). The intermedi-
ate result is a dynamic object map and an optimized grid of the static
driving environment. From the optimized grid, relevant free space is then
extracted by methods of image analysis, and robustly converted to a PFS
map in a final B-Spline contour tracking step. Ewvaluations and experi-
ments, which were performed with an experimental vehicle equipped with
radars and a stereo camera in real driving environments, confirm the ad-
vantages of the real-time capable approach.

The so-obtained representation additionally forms the basis of a novel
method for long-term trajectory prediction and criticality assessment.
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Abstract XIX

Therein, a three-layered Bayesian network is used to infer current driving
maneuvers of traffic participants initially. A trash maneuver class allows
the detection of irrational driving behavior and the seamless application
from highly-structured to non-structured environments. Subsequently,
maneuver-based prediction models in form of stochastic processes are
presented and employed to predict the vehicle configurations under
consideration of uncertainties in the maneuver executions. Finally, the
criticality time metric Time-To-Critical-Collision-Probability (TTCCP) is
introduced as a generalization of the time metric Time-To-Collision (TTC)
for arbitrary, uncertain, multi-object driving environments and longer
prediction horizons. The TTCCP considers all uncertain, maneuver-based
predictions and is estimated via Monte Carlo simulations. Simulations
confirm its potential to suppress false warnings, to generate timely true
warnings, and to generate warnings in critical almost-collision situations
effectively.

All methods are part of the driver assistance system PRORETA 3, which
has been co-developed in the context of this thesis. It constitutes a novel,
integrated approach to collision avoidance and vehicle automation and
thereby makes a valuable contribution to realize the Vision Zero — the
vision of a future without traffic deaths.
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Kurzfassung

Fahrerassistenzsysteme leisten bereits heute einen bedeutenden Beitrag
zur Sicherheit im Straflenverkehr. Um diesen Beitrag weiter zu erhdhen,
missen zukiinftige intelligente Fahrzeuge ihre Umgebung jedoch noch ein-
gehender wahrnehmen, prédizieren und bewerten. In diesem Kontext be-
handelt die vorliegende Dissertation die Fragen, i) wie die Fahrumgebung
geeignet in einem Umfeldmodell repréasentiert werden kann, ii) wie eine sol-
che Reprisentation realisierbar ist und iii) wie die zukiinftige Entwicklung
der Verkehrssituation sowie deren Kritikalitdt abgeschétzt werden kann.
Bayessche Inferenzverfahren bilden das gemeinsame theoretische Geriist
aller hierzu entworfenen Methoden.

Ausgehend von den Limitierungen bestehender Umgebungsreprésenta-
tionen wird in dieser Arbeit zunéchst eine neue parametrische Repra-
sentation allgemeiner Fahrumgebungen eingefiihrt. Sie besteht aus einer
Kombination aus dynamischen Objektkarten fiir sich bewegende Objek-
te und sogenannten parametrischen Freiraumkarten fiir statische Umge-
bungsstrukturen. Letztere modellieren die Umgebung mittels einer ge-
schlossenen Kurve, die das Fahrzeug umgibt und die relevante befahrbare
Freirdume einschlielt. Die Représentation stellt alle wesentlichen Informa-
tionen, die auch in den verbreiteten Belegungsgitterkarten enthalten sind,
kompakt dar, unterdriickt irrelevante Details und unterscheidet konsistent
zwischen dynamischen und statischen Objekten.

Eine neue Methode zur Erstellung von Belegungsgitterkarten in
dynamischen Fahrumgebungen bildet die Basis zur Realisierung dieser
Repréasentation. Hierbei werden dynamische Zellhypothesen detektiert,
gruppiert und objektbasiert mit einem adaptiven Bayesschen Mehrmo-
dellfilter fiir nichtlineare Markov-Sprungprozesse — dem sogenannten
Interacting Multiple Model Unscented Kalman Probabilistic Data Asso-
ciation Filter (IMM-UK-PDAF) — zeitlich verfolgt und klassifiziert. Das
Zwischenresultat ist eine dynamische Objektkarte sowie eine optimierte
Belegungsgitterkarte der statischen Umgebung. Aus der optimierten
Gitterkarte werden daraufhin relevante Freirdume mit Methoden der
Bildverarbeitung extrahiert und im Rahmen eines nachgeschalteten
B-Spline-Konturverfolgungsschritts robust in eine parametrische Frei-
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Kurzfassung XXI

raumkarte tberfilhrt. Evaluationen und Experimente, die in realen
Fahrumgebungen mit einem mit Radarsensoren und Stereokamera ausge-
riisteten Versuchsfahrzeug ausgefiihrt wurden, bestétigen die Vorteile des
echtzeitfahigen Ansatzes.

Die so erzeugte Umgebungsrepriasentation dient dariiber hinaus als
Basis fiir ein neues Langzeit-Trajektorienpréadiktions- und Kritikalitédtsbe-
wertungsverfahren. Den Ausgangspunkt hierfiir bildet ein dreischichtiges
Bayessches Netz, das genutzt wird, um auf die aktuellen Fahrmanéver
der Verkehrsteilnehmer zu schlieffen. Eine Restmanoéverklasse erlaubt
zusatzlich die Erkennung irrationaler Fahrerhandlungen sowie die naht-
lose Anwendbarkeit von hochstrukturierten bis hin zu unstrukturierten
Fahrumgebungen. Weiterhin werden manéverbasierte Pradiktionsmodelle
in Form stochastischer Prozesse vorgestellt und zur Vorhersage der
Fahrzeugkonfigurationen unter Beriicksichtigung von Unsicherheiten in
der Manoverausfithrung genutzt. Abschliefend wird das Kritikalitidtszeit-
mafl Time-To-Critical-Collision-Probability (TTCCP) als Erweiterung
des Zeitmafles Time-To-Collision (TTC) fur beliebige unsichere Fahr-
umgebungen mit mehreren Objekten eingefiithrt, das auch fiir ldngere
Pradiktionshorizonte geeignet ist. Die TTCCP bezieht alle unsicheren,
mandverbasierten Vorhersagen mit ein und wird mittels einer Monte-
Carlo-Simulation geschitzt. Simulationen bestétigen das Potential des
Ansatzes Fehlwarnungen zu unterdriicken, korrekte Warnungen frithzeitig
zu erzeugen sowie auch in kritischen Beinahezusammenstoflsituationen
effektiv zu warnen.

Anwendung finden die Methoden im Assistenzsystem PRORETA 3, das
im Rahmen dieser Arbeit mitentwickelt wurde. Dieses stellt einen inte-
gralen Ansatz zur Kollisionsvermeidung und Fahrzeugautomatisierung dar
und leistet damit seinerseits einen wertvollen Beitrag zur Realisierung der
Vision Zero — der Vision einer Zukunft ohne Verkehrstote.
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