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Np Number of outer boundary cells for B-spline tracking
Nr Number of oriented rectangles in PFS map
Nv Number of validated measurements
Nz Number of measurements in tracking
N Set of non-zero natural numbers
N

0 Set of natural numbers including zero
OS(F) Opened set of F with structuring element S
PD Detection probability
PG Gate probability
PyR

Variance in Ornstein-Uhlenbeck process
P Error covariance matrix
P � Mixed initial covariance matrix in IMM Filter
Qn Noise intensity
Q Process noise covariance matrix
Qn Noise intensity matrix
R Set of real numbers
R Measurement noise covariance matrix
S Spline span
SM Neighborhood size of median filter
Sp Structuring element with origin placed at p
S(x) Set of occupied points of an object with

configuration x = (x, y, ψ)T

S(xPFS) Set of occupied points of a PFS map with
configuration xPFS

S Innovation covariance matrix
T Sampling time
Tc Time constant in Ornstein-Uhlenbeck process
TP Prediction time steps
Tr Reference maneuver time in LC maneuver
U(s) Matrix of concatenated B-spline basis function vectors

with curve parameter s
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XIV Abbreviations and Symbols

V Volume of the validation region; Vehicle
VU(q) Volume of the q-dimensional unit hypersphere
V Validation region
X Matrix of sigma points in UKF state prediction
X ∗ Matrix of sigma points in UKF state prediction
Z Measurement set
Zv Validated measurement set
Z Matrix of sigma points in UKF measurement prediction

Latin Lowercase Letters

a Acceleration in driving direction
amax Maximum acceleration
amin Minimum acceleration
ac,max Maximum centripetal acceleration in TU maneuver
af,max Maximum acceleration in FV maneuver
af,min Minimum acceleration in FV maneuver
aR,lat Lateral acceleration perpendicular to road course
aR,lon Longitudinal acceleration along road course
aR,lon,r Longitudinal reference acceleration along road course
b Abbreviation in PDA
b(s) Vector of B-spline basis functions
c Cell length
cm Roundness metric
C Vehicle corner point
d B-spline order
Δd Safety distance in TB maneuver
dfo Distance between newly free and occupied rectangle
dr Reference safety distance in TB maneuver
dR,fro Distance to vehicle in front along road course
dR,TU Distance to turn in TU maneuver
dth Distance threshold in merging step
e Abbreviation in PDA
f Number of vehicles except ego vehicle
i Information vector
i Running index
j Running index
k Time step; Knot position
l Object length in tracking
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Symbols XV

ln Ray length along normals of free space curve
lr Reference maneuver length in LC maneuver
l Line segment
m Running index
mi Grid cell i
mth Threshold on free probability for grid segmentation
m Conventional occupancy grid map
mopt Optimized occupancy grid map
n State vector dimension
n(s) Normal vector of B-spline curve with curve parameter s
p Input vector dimension
ph Perimeter of free space hole
p(mi) Occupancy probability of i-th grid cell
po Percentage of occupied cells in merging step
pth Threshold on occupied cell percentage in merging step
q Measurement vector dimension
qth Threshold on temporal difference grid map
q De Boor point
qx De Boor point x-coordinate
qy De Boor point y-coordinate
r Number of prediction models
rc Turn radius in TU maneuver
rm Rectangularity metric
rDB Neighborhood radius in DBSCAN
rSE Radius of disc-shaped structuring element
r(s) B-Spline curve with curve parameter s
s Laplace variable; Curve parameter
u Input scalar
u Input vector
v Velocity in driving direction
vrel Relative velocity to object in front
vR,lat Lateral velocity perpendicular to road course
vR,lon Longitudinal velocity along road course
vR,lon,max Maximum velocity in TU maneuver
v Measurement noise vector; Innovation vector
w Process noise scalar; Object width in tracking
wc Continuous-time process noise scalar
wL Lane width
wV Vehicle width
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XVI Abbreviations and Symbols

w
(m)
i , w

(c)
i Weights of i-th sigma point in UKF

w Process noise vector
wc Continuous-time process noise vector
x x-coordinate of object center in map-fixed system

(Tracking) or global system (Prediction)
xI Intersection point road coordinate between road

tangents in TU maneuver
xR x-coordinate of vehicle center in road-fixed system
xR,s Maneuver start coordinate in LC maneuver
x State vector
x� Mixed initial state vector in IMM Filter
xc State vector of circles in PFS map
xP B-Spline control vector in PFS map
xPFS State vector of PFS map
xr State vector of oriented rectangles in PFS map
y y-coordinate of object center in map-fixed system

(Tracking) or global system (Prediction)
yR y-coordinate of vehicle center in road-fixed system
z Measurement vector

Greek Letters

α Angle in TU maneuver
αU Sigma point scaling parameter in UKF
β Measurement-to-target association probability
βU Sigma point scaling parameter in UKF
γG Gate threshold
γU Sigma point scaling parameter in UKF
γ Noise gain vector
θ Association event in PDA
κ Kulpa’s perimeter correction factor
κU Sigma point scaling parameter in UKF
λ Model likelihood
λU Sigma point scaling parameter in UKF
μ Mode probability
μi|j Mixing probability
μth Mode probability threshold
μ Mode probability vector
Π Model transition probability matrix
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Symbols XVII

σΔa Standard deviation of acceleration increments in
discrete-time CTRA model

σΔaR,lon
Standard deviation of acceleration increments in
discrete-time CA model

σΔω Standard deviation of yaw rate increments in discrete-
time CTRA model

σψR
Standard deviation of yaw angle

σyR
Limiting standard deviation in Ornstein-Uhlenbeck
process

σyR,s
Standard deviation of lateral maneuver origin in LC
maneuver

τ Time gap in FV maneuver
τr Reference time gap in FV maneuver
φf Angle of newly free rectangle
φo Angle of newly occupied rectangle
φth Threshold on angle difference in merging step
ψ Yaw angle with respect to global coordinate system
ψR Yaw angle with respect to road course
ω Yaw rate
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XVIII

Abstract
Advanced Driver Assistance Systems (ADAS) already make a major con-
tribution to driving safety. To further increase this contribution, it is,
however, vital that future intelligent vehicles perceive, predict, and as-
sess their environment more comprehensively. In this context, the present
dissertation approaches the questions i) how to represent the driving envi-
ronment adequately within an environment model, ii) how to obtain such
a representation, and iii) how to predict the future traffic scene evolution
for proper criticality assessment. Bayesian inference provides the common
theoretical framework of all designed methods.

Based on the shortcomings of existing environment representations, a
novel parametric representation of general driving environments is first
introduced in this work. It consists of a combination of dynamic object
maps for moving objects and so-called Parametric Free Space (PFS) maps
for static environment structures. PFS maps model the environment by a
closed curve around the vehicle, which encloses relevant drivable free space.
The representation compactly describes all essential information contained
in common occupancy grid maps, suppresses irrelevant details, and con-
sistently separates between static and dynamic environment objects.

A novel method for grid mapping in dynamic road environments pro-
vides the basis to realize this representation. Therein, dynamic cell hy-
pothesis are detected, clustered, and subsequently tracked and classified
with an adaptive Bayesian multiple model filter for jump Markov nonlin-
ear systems – the so-called Interacting Multiple Model Unscented Kalman
Probabilistic Data Association Filter (IMM-UK-PDAF). The intermedi-
ate result is a dynamic object map and an optimized grid of the static
driving environment. From the optimized grid, relevant free space is then
extracted by methods of image analysis, and robustly converted to a PFS
map in a final B-Spline contour tracking step. Evaluations and experi-
ments, which were performed with an experimental vehicle equipped with
radars and a stereo camera in real driving environments, confirm the ad-
vantages of the real-time capable approach.

The so-obtained representation additionally forms the basis of a novel
method for long-term trajectory prediction and criticality assessment.
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Abstract XIX

Therein, a three-layered Bayesian network is used to infer current driving
maneuvers of traffic participants initially. A trash maneuver class allows
the detection of irrational driving behavior and the seamless application
from highly-structured to non-structured environments. Subsequently,
maneuver-based prediction models in form of stochastic processes are
presented and employed to predict the vehicle configurations under
consideration of uncertainties in the maneuver executions. Finally, the
criticality time metric Time-To-Critical-Collision-Probability (TTCCP) is
introduced as a generalization of the time metric Time-To-Collision (TTC)
for arbitrary, uncertain, multi-object driving environments and longer
prediction horizons. The TTCCP considers all uncertain, maneuver-based
predictions and is estimated via Monte Carlo simulations. Simulations
confirm its potential to suppress false warnings, to generate timely true
warnings, and to generate warnings in critical almost-collision situations
effectively.

All methods are part of the driver assistance system PRORETA 3, which
has been co-developed in the context of this thesis. It constitutes a novel,
integrated approach to collision avoidance and vehicle automation and
thereby makes a valuable contribution to realize the Vision Zero – the
vision of a future without traffic deaths.
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Kurzfassung
Fahrerassistenzsysteme leisten bereits heute einen bedeutenden Beitrag
zur Sicherheit im Straßenverkehr. Um diesen Beitrag weiter zu erhöhen,
müssen zukünftige intelligente Fahrzeuge ihre Umgebung jedoch noch ein-
gehender wahrnehmen, prädizieren und bewerten. In diesem Kontext be-
handelt die vorliegende Dissertation die Fragen, i) wie die Fahrumgebung
geeignet in einem Umfeldmodell repräsentiert werden kann, ii) wie eine sol-
che Repräsentation realisierbar ist und iii) wie die zukünftige Entwicklung
der Verkehrssituation sowie deren Kritikalität abgeschätzt werden kann.
Bayessche Inferenzverfahren bilden das gemeinsame theoretische Gerüst
aller hierzu entworfenen Methoden.

Ausgehend von den Limitierungen bestehender Umgebungsrepräsenta-
tionen wird in dieser Arbeit zunächst eine neue parametrische Reprä-
sentation allgemeiner Fahrumgebungen eingeführt. Sie besteht aus einer
Kombination aus dynamischen Objektkarten für sich bewegende Objek-
te und sogenannten parametrischen Freiraumkarten für statische Umge-
bungsstrukturen. Letztere modellieren die Umgebung mittels einer ge-
schlossenen Kurve, die das Fahrzeug umgibt und die relevante befahrbare
Freiräume einschließt. Die Repräsentation stellt alle wesentlichen Informa-
tionen, die auch in den verbreiteten Belegungsgitterkarten enthalten sind,
kompakt dar, unterdrückt irrelevante Details und unterscheidet konsistent
zwischen dynamischen und statischen Objekten.

Eine neue Methode zur Erstellung von Belegungsgitterkarten in
dynamischen Fahrumgebungen bildet die Basis zur Realisierung dieser
Repräsentation. Hierbei werden dynamische Zellhypothesen detektiert,
gruppiert und objektbasiert mit einem adaptiven Bayesschen Mehrmo-
dellfilter für nichtlineare Markov-Sprungprozesse – dem sogenannten
Interacting Multiple Model Unscented Kalman Probabilistic Data Asso-
ciation Filter (IMM-UK-PDAF) – zeitlich verfolgt und klassifiziert. Das
Zwischenresultat ist eine dynamische Objektkarte sowie eine optimierte
Belegungsgitterkarte der statischen Umgebung. Aus der optimierten
Gitterkarte werden daraufhin relevante Freiräume mit Methoden der
Bildverarbeitung extrahiert und im Rahmen eines nachgeschalteten
B-Spline-Konturverfolgungsschritts robust in eine parametrische Frei-
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Kurzfassung XXI

raumkarte überführt. Evaluationen und Experimente, die in realen
Fahrumgebungen mit einem mit Radarsensoren und Stereokamera ausge-
rüsteten Versuchsfahrzeug ausgeführt wurden, bestätigen die Vorteile des
echtzeitfähigen Ansatzes.

Die so erzeugte Umgebungsrepräsentation dient darüber hinaus als
Basis für ein neues Langzeit-Trajektorienprädiktions- und Kritikalitätsbe-
wertungsverfahren. Den Ausgangspunkt hierfür bildet ein dreischichtiges
Bayessches Netz, das genutzt wird, um auf die aktuellen Fahrmanöver
der Verkehrsteilnehmer zu schließen. Eine Restmanöverklasse erlaubt
zusätzlich die Erkennung irrationaler Fahrerhandlungen sowie die naht-
lose Anwendbarkeit von hochstrukturierten bis hin zu unstrukturierten
Fahrumgebungen. Weiterhin werden manöverbasierte Prädiktionsmodelle
in Form stochastischer Prozesse vorgestellt und zur Vorhersage der
Fahrzeugkonfigurationen unter Berücksichtigung von Unsicherheiten in
der Manöverausführung genutzt. Abschließend wird das Kritikalitätszeit-
maß Time-To-Critical-Collision-Probability (TTCCP) als Erweiterung
des Zeitmaßes Time-To-Collision (TTC) für beliebige unsichere Fahr-
umgebungen mit mehreren Objekten eingeführt, das auch für längere
Prädiktionshorizonte geeignet ist. Die TTCCP bezieht alle unsicheren,
manöverbasierten Vorhersagen mit ein und wird mittels einer Monte-
Carlo-Simulation geschätzt. Simulationen bestätigen das Potential des
Ansatzes Fehlwarnungen zu unterdrücken, korrekte Warnungen frühzeitig
zu erzeugen sowie auch in kritischen Beinahezusammenstoßsituationen
effektiv zu warnen.

Anwendung finden die Methoden im Assistenzsystem PRORETA 3, das
im Rahmen dieser Arbeit mitentwickelt wurde. Dieses stellt einen inte-
gralen Ansatz zur Kollisionsvermeidung und Fahrzeugautomatisierung dar
und leistet damit seinerseits einen wertvollen Beitrag zur Realisierung der
Vision Zero – der Vision einer Zukunft ohne Verkehrstote.
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