Energiewende in Lateinamerika aus globaler Perspektive

Kristina Dietz

1 Einleitung

Im folgenden Kapitel diskutiere ich, wie sich die Energiewende in Lateinamerika gestaltet, welche Interessen sich durchsetzen und welche Energiewendepfade sich herausbilden. Ich folge einer globalen, interdependenten Analyseperspektive. Das bedeutet, über den vielfach kritisierten Ansatz des "methodologischen Nationalismus" (Wimmer/Glick Schiller 2002) sozialwissenschaftlicher Analysen hinauszugehen und Energiewendepolitiken in ihren globalen Interdependenzen zu analysieren, dabei aber die Bedeutung des nationalstaatlichen Kontexts nicht zu ignorieren.

Der Beitrag ist wie folgt aufgebaut. Im nächsten Abschnitt diskutiere ich Lateinamerikas Energiesysteme und Energiewendepolitiken im Kontext der Geopolitik der Energiewende. Anschließend stelle ich den konzeptionellen Rahmen vor, den ich nutze, um die Energiewende in Lateinamerika aus globaler Perspektive zu fassen. Im vierten Teil zeige ich anhand der kolumbianischen Wasserstoffpolitik, dass sich in der Energiewende unterschiedliche Transformationspfade herausbilden. Im Fazit fasse ich wichtige Beobachtungen zusammen und argumentiere, dass die Energiewende in Lateinamerika ein umkämpfter, von einer Vielzahl globaler und nationaler Interessen strukturierter Prozess ist, dessen Ausgang (noch) offen ist.

2 Die Geopolitik der Energiewende und ihre Bedeutung für Lateinamerika

Die während der Coronapandemie erlebte Störung von Lieferketten hat in Europa und den USA zu einem geopolitischen Umdenken geführt (Maihold 2022). Mit Strategien wie *re-shoring* oder *friend-shoring* sollen Lieferketten verkürzt und in sogenannte befreundete oder vertrauenswürdige Länder (rück-)verlagert werden. Diese geopolitische Neuordnung ist auch eine Reaktion auf den russischen Krieg gegen die Ukraine und gleichzeitig ein zentrales Kennzeichen der Energiewende. Angetrieben wird die Neuordnung durch den wachsenden geopolitischen Wettbewerb zwischen den

USA und China. In diesem Wettbewerb bemühen sich die europäischen Staaten, nicht zu den Verlierern einer grünen, klimaneutralen Wirtschaft zu werden und sich zugleich den Zugang zu strategischen Rohstoffen für die Energiewende zu sichern (Riofrancos 2023). So hat die EU-Kommission mit dem im März 2024 vom Europäischen Rat verabschiedeten Gesetz über kritische Rohstoffe (Critical Raw Materials Act) (EU 2024)1 ein Regelwerk verabschiedet, um den Zugang zu diesen zu garantieren. Ein weiteres Element europäischer Geopolitik ist eine neuartige Energiewendediplomatie, mit bilateralen Partnerschaftsabkommen als zentrale Strategie. In den letzten Jahren hat insbesondere die deutsche Bundesregierung eine Reihe solcher Partnerschaften in den Bereichen Energie, Klima, Wasserstoff und zuletzt sozial-ökologischer Transformation (Könnecke 2024) mit lateinamerikanischen Staaten geschlossen, etwa Brasilien, Chile und Mexiko.² Weitere sind in Vorbereitung, zum Beispiel mit Kolumbien³. Darüber hinaus setzt die Bundesregierung auf den Aufbau internationaler Netzwerke und Initiativen sowie die Förderung von Public Private Partnerships (PPP). In beiden Strategien ist die Deutsche Gesellschaft für internationale Zusammenarbeit (GIZ) ein zentraler Akteur. Ein Beispiel ist die von der GIZ zusammen mit der Weltbank, der Wirtschaftskommission für Lateinamerika und die Karibik (Comisión Económica para América Latina y el Caribe, CEPAL) und der EU im Jahr 2020 gegründete Plattform H2LAC4. H2LAC zielt auf die Förderung der Produktion, Nutzung und den Export von grünem Wasserstoff und seiner Derivate (z.B. grüner Ammoniak) in Lateinamerika und der Karibik. Lateinamerika spielt für Europa im Bereich grünen Wasserstoffs eine zunehmend wichtige Rolle. Die EU plant bis 2030 20 Millionen Tonnen Wasserstoff zu nutzen, 50 Prozent sollen aus dem globalen Süden importiert werden (European Commission 2022). Deutschlands Wasserstoffstrategie ist noch stärker importorientiert. Die Bundesregierung rechnet mit einem Importanteil von 50 bis 70 Prozent, um den prognostizierten Wasserstoffbedarf bis 2030 zu decken (BMWK 2023). Ein Land, mit dem die Bundesregierung in Lateinamerika besonders intensive diplomatische Beziehung im Bereich Wasserstoff aufgebaut hat, ist

¹ https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-inter est/critical-raw-materials_en#critical-raw-materials-act, letzter Aufruf 27.08.2024

² https://www.bmwk.de/Redaktion/DE/Artikel/Energie/internationale-energiepolitik-2. html, letzter Aufruf 27.08.2024

³ s. https://www.bundesregierung.de/breg-de/aktuelles/scholz-trifft-petro-2196512, letzter Aufruf 28.08.2024.

⁴ https://h2lac.org/, letzter Aufruf 28.08.2024.

Kolumbien. Im März 2024 gründeten die beiden kolumbianischen Ministerien für Handel, Industrie und Tourismus sowie das Ministerium für Energie und Bergbau zusammen mit dem Bundesministerium für Wirtschaft und Klimaschutz (BMWK) in Bogotá die High Level Group on Green Hydrogen (Ministerio de Minas y Energía 2024). Teilnehmer:innen aus der deutschen Privatwirtschaft waren der Bundesverband der Deutschen Industrie (BDI), UNIPER, die Deutsche Bahn, Allianz, Notus Energy, RWE und ThyssenKrupp (Ministerio de Minas y Energía 2024). Nicht alle dieser Unternehmen sind Importeure grünen Wasserstoffs. Einige betrachten den grünen Wasserstoff-Sektor in Kolumbien als eine Gelegenheit, die für den Aufbau des Sektors erforderliche (Elektrolyse-)Technologie und Infrastruktur zu liefern.

Die Beispiele zeigen, dass Lateinamerika in der Geopolitik der Energiewende für Europa aus drei Gründen an Bedeutung gewinnt: erstens, aufgrund seines Reichtums an strategischen Rohstoffen; zweitens, aufgrund seiner hohen Wind- und Sonnenpotentiale, die eine Voraussetzung für den Aufbau einer grünen Wasserstoffindustrie sind; drittens, als Absatzmarkt für grüne Technologien. Beispiele für strategische Rohstoffe aus Lateinamerika sind Lithium und Kupfer. Lithium ist ein Metall, das zur Herstellung leichter, so genannter Lithium-Ionen Batterien in der Elektroautomobilität benötigt wird. Gemäß US Geological Survey (USGS) (2022) lagern über 50 Prozent des weltweit verfügbaren Lithiums in Solen unter den andinen Salzseen der Grenzregion von Argentinien, Bolivien und Chile, dem so genannten Lithiumdreieck (siehe Schlosser in diesem Band). Kupfer ist ebenfalls für den Ausbau der Elektromobilität von Bedeutung. Chile ist gegenwärtig der größte Kupferproduzent, gefolgt von Peru. Beide Länder verfügen über die weltweit höchsten Reserven an diesem Metall (USGS 2024, siehe Heuser und Lastra Bravo/Matthes in diesem Band). Schließlich verfügt Lateinamerika über enorme Wind- und Sonnenenergiepotenziale, ideal für den Aufbau einer grünen Wasserstoffindustrie mit dem Ziel des Exports nach Europa (Hank et al. 2023).

Aber Lateinamerika wird im Kontext der Energiewende nicht nur zum grünen Rohstofflieferanten, sondern auch zu einem riesigen Absatzmarkt für grüne Technologien. Um die grünen Technologiemärkte der Region wird bereits heute gestritten, oft unter chinesischer Führerschaft (The Economist 2024; siehe Rodríguez in diesem Band). Hohe chinesische Investitionen zeigen sich in den Bereichen Elektromobilität, Photovoltaik, Wind und dem Ausbau der Energienetze. In vielen Hauptstädten der Region,

etwa in Santiago de Chile (Chile), Montevideo (Uruguay) oder Bogotá (Kolumbien) bestimmen E-Busse aus China den öffentlichen Nahverkehr. Über 70 Prozent aller 2023 importierten E-Autos in der Region kommen aus China, das Gleiche gilt für über 90 Prozent der Lithium-Ionen Batterien sowie 99 Prozent der importierten Solarpaneele und über 60 Prozent der Windturbinen (edd.). In Chile hat das chinesische Staatsunternehmen State Grid zwei der größten Energieversorger des Landes übernommen und bedient damit über 50 Prozent des nationalen Strommarktes und in Lima (Peru) wird der Strom zukünftig komplett von chinesischen Unternehmen zur Verfügung gestellt (ebd.). Im sich herausbildenden Wasserstoffmarkt konkurrieren europäische mit chinesischen Unternehmen darum, wer den Markt für die hierfür notwendige Technologie dominiert. Weltweit werden die meisten Elektrolyseure in China produziert - aktuell vor allem für den nationalen Markt (Ansari et al. 2022). Perspektivisch sollen diese auch nach Lateinamerika, zum Beispiel nach Uruguay exportiert werden. Chinesische Investitionen in Lateinamerika verschieben sich seit einigen Jahren in Richtung der "gesamten erneuerbaren Energien-Lieferkette" (Bull 2024: 54; Übers. K.D.), von Lithium zu Energienetzen, Solarparks, Staudämmen und der Produktion von Elektroautos. 2021 hat Daimler ein Autowerk in Brasilien an den chinesischen Automobilkonzern Great Wall Motor (GWM) verkauft. GWM will in dem Werk E-Autos und Batterien für den lateinamerikanischen Markt produzieren.⁵ Die Beispiele verweisen auf eine Verschiebung um den Gegenstand des geopolitischen Wettbewerbs. Waren im fossilen Zeitalter vor allem geopolitische Strategien zur Sicherung des Zugangs zu Öl, Gas und Kohle zentral, also den fossilen Schmierstoffen des kapitalistischen Wachstums, so geht es in der heutigen Geopolitik der Energiewende vor allem um die Kontrolle der grünen Technologien und Märkte.

Allerdings liegen aus Sicht jener gesellschaftlichen Gruppen in der Region, die über keinen gesicherten Zugang zu Energie verfügen, die Herausforderung der Energiewende nicht primär in der Reduktion von CO₂-Emissionen, sondern im Zugang zu Energie selbst. Lateinamerika ist für nur sieben Prozent der globalen CO₂-Emissionen verantwortlich, 55 Prozent stammen aus dem Energiesektor (CEPAL 2022). Der Anteil fossiler Energien (vor allem Öl und Gas) am Gesamtenergiemix liegt mit etwa zwei Drittel (CEPAL

⁵ https://www.reuters.com/article/great-wall-motor-daimler-brasil-idLTAL6N2PP0 5W/, letzter Aufruf 12.09.2024.

2022; IEA 2023) deutlich unter dem globalen Durchschnitt. Dabei gibt es jedoch Unterschiede. In einigen Ländern (Costa Rica, Kolumbien, Brasilien) basiert die Stromversorgung zu 80 Prozent und mehr auf erneuerbaren Energien. In anderen Ländern wie Mexiko und Argentinien wird Strom zu 50-70 Prozent aus fossilen Energien gewonnen.⁶ Obgleich 95 Prozent aller Haushalte in der Region über einen Zugang zu Strom verfügen, bestehen zwischen den Subregionen und Ländern sowie innerhalb dieser Unterschiede (CEPAL 2022). Innergesellschaftlich beeinflussen Determinanten sozialer Ungleichheit wie Ethnizität, race, Klasse, Geschlecht und Stadt-Land Differenzen den Zugang zu Energie. Von Energiearmut ist besonders die ländliche, indigene Bevölkerung betroffen. Gründe für die mangelnde Versorgung des ländlichen Raums mit Strom sind die fehlende infrastrukturelle Erschließung, sowie die im Zuge der Strukturanpassungsmaßnahmen seit den 1980er Jahren eingesetzten Liberalisierungen der Strommärkte und Privatisierungen der Stromerzeugung und -verteilung. Eine Folge hiervon sind Marktkonzentrationen. Neben einigen chinesischen und lateinamerikanischen Unternehmen verfügt das italienische Unternehmen ENEL in Zentralamerika und einer Reihe von Ländern Südamerikas (zum Beispiel Chile, Kolumbien, Argentinien, Brasilien) über eine de facto Monopolstellung in den Bereichen Stromerzeugung, -verteilung und Netzbetrieb.⁷ Mit seiner Marktmacht beeinflusst ENEL auch die nationalen Energiepolitiken, vor allem wenn es um eine eher kostenintensive Erschließung peripherer ländlicher Regionen geht.

Aber nur in den wenigsten der seit 2015 verabschiedeten Energiewendestrategien und -gesetze steht Zugangsgerechtigkeit oben auf der Agenda.⁸ Gemeinsam ist den Programmen vielmehr das Ziel der Dekarbonisierung qua erneuerbarer Energien, Elektromobilität, Effizienzsteigerungen und Förderung von Wasserstoff aus erneuerbaren (grün) oder fossilen (blau) Energieträgern mit Carbon Capture and Storage (CCS) Technologien. Manche Passagen der Programme lesen sich wie eine Kopie des europäischen Green Deals (s. die Einleitung in diesem Buch). Das ist nicht verwunderlich, denn die Formulierung der lateinamerikanischen Energiewendegesetze und -programme wurde meist von staatlichen und privaten Akteuren aus Europa oder Nordamerika unterstützt. Ein Beispiel ist die

⁶ https://www.irena.org/Data/Energy-Profiles, letzter Aufruf 29.08.2024.

⁷ https://www.enel.com/company/about-us/where-we-are, letzter Aufruf 28.08.2024.

⁸ z.B. Kolumbien (Congreso de la República, 2021), Chile (Ministerio de Energía, 2021), Argentinien (Ministerio de Economía, 2023).

kolumbianische Wasserstoffstrategie, die von Beratungsunternehmen aus Spanien und Mexiko ausgearbeitet und von der Interamerikanischen Entwicklungsbank (IADB) und der britischen Regierung finanziert wurde und heute mit der Unterstützung der GIZ weiterentwickelt wird (Combariza Diaz 2024; Ministerio de Minas y Energía 2021). Ein weiterer gemeinsamer Nenner der Programme und Gesetze ist die Formulierung von Steueranreizen zur Anlockung ausländische Investitionen (Combariza 2024.

3 Energiewende und Energiewendepfade - ein Analyserahmen

In der sozialwissenschaftlichen Forschung zu den Folgen der Energiewende aus globaler, interdependenter Perspektive stehen sich zwei Argumentationslinien gegenüber. Wissenschaftler:innen aus den Forschungsfeldern der postkolonialen Entwicklungsforschung, der politischen Ökologie und der globalen politischen Ökonomie argumentieren, dass sich die Energiewende aufgrund der fortgesetzten Rohstoffausbeutung im globalen Süden als so genannter grüner oder Energiekolonialismus manifestiert (Lang et al. 2023). Indem sich Regierungen und Unternehmen des globalen Nordens strategische Rohstoffe, Land, Wasser, Wind, Sonne und Arbeit in Lateinamerika aneigneten und deren Nutzung und Weiterverarbeitung kontrollierten, würden die sozialen und ökologischen Kosten der Energiewende in so genannte Opferzonen des globalen Südens ausgelagert, die Gewinne hingegen konzentrierten sich weiterhin in Europa, China oder Nordamerika. Eine ähnliche Kritik formulieren Autor:innen, die die Rohstoffausbeutung zum Zweck der Energiewende als grünen Extraktivismus konzeptualisieren (Voskoboynik/Andreucci 2022). Grün steht hier nicht für eine umweltschonende und sozial gerechte Nutzung von Natur, sondern für eine Kritik an einer exportorientierten Rohstoffausbeutung, die diskursiv mit ökologischer Modernisierung, Nachhaltigkeit und Klimaschutz legitimiert wird. Dabei reproduziere der grüne Extraktivismus globale Ungleichheitsund Ausbeutungsverhältnisse (Ulloa 2023). Die Kritik des Energiekolonialismus und des grünen Extraktivismus unterstreicht, dass sich die historischen politisch-ökonomischen Muster ungleicher Entwicklung zwischen Ländern des globalen Nordens und Südens in der Energiewende reproduzieren und festschreiben.

Demgegenüber argumentieren Forscher:innen aus den Feldern der Nachhaltigkeitsforschung und der Internationalen Beziehungen, dass die Energiewende das Potenzial besitzen könnte, die globalen Ungleichheitsverhältnisse zu verändern und zu einem game changer für Länder des Globalen Südens zu werden (Scita et al. 2020: 30). Internationale Organisationen unterstreichen die entwicklungsökonomischen Potenziale der Energiewende. Diese lägen im Aufbau einer grünen Industrieproduktion, neuer Exportmöglichkeiten mit höherer Wertschöpfung, einer Zunahme der regionalen Handelsbeziehungen, in der Dezentralisierung der globalen Energieproduktion, der Schaffung neuer Arbeitsplätze und einer Erhöhung der nationalen Energiesicherheit, sowie der Reduzierung von Energiearmut (De Blasio/Eicke 2023; IRENA 2022; Scholten et al. 2020). All dies könnte die globalen Interdependenzen und Ungleichheitsverhältnisse verändern.

Bisher ist noch unklar, in welche der beiden Richtungen die Energiewende in Lateinamerika verläuft. Kritische Studien zu Konflikten um die Ausweitung von Lithium- oder Kupferbergbau sowie die Ausweisung von Mega-Windparks zeigen jedoch, dass das Fortschreiten der so genannten grünen Grenze (frontier) (siehe Dorn in diesem Band) mit weitreichenden sozial-ökologischen Verwerfungen verbunden ist. Hierzu zählen die Verdrängung vorheriger Nutzungen und Nutzer:innen, ökologische Zerstörungen, Missachtung kultureller Praktiken, Verletzung politischer, kultureller und territorialer Rechte (Dorn 2021; Schwartz 2021; Ulloa 2023, siehe auch Heuser und Schlosser in diesem Band). Diese Konflikte stärken das Argument des Energiekolonialismus und des grünen Extraktivismus.

Aus der Literatur lassen sich aktuell vier mögliche Transformationspfade identifizieren: grüner Extraktivismus, grüne Entwicklung, Fossilismus und sozio-ökologische Alternativen (Kalt et al. 2023). Grüner Extraktivismus bezieht sich auf eine exportorientierte Energiewende, die durch die Aneignung und Gewinnung erneuerbarer Energien, Rohstoffe, Land, Wasser und Arbeit für den Export durch transnationale Akteure gekennzeichnet ist. Bei diesem Weg findet die Wertschöpfung hauptsächlich außerhalb der Produktionsländer statt. Dekarbonisierungseffekte in den Ländern der Region, etwa durch den Aus- oder Aufbau einer erneuerbaren Infrastruktur erfolgen zum Preis der Ausbeutung der Rohstoffe und Arbeit. Hierzu passt der von Maristella Svampa und Pablo Bertinat geprägte Begriff der transición energética corporativa, der korporativen Energiewende (Svampa/Bertinat 2022). Der grüne entwicklungsorientierte Pfad ist durch die Absicht gekennzeichnet, die Wertschöpfung in den Produktionsländern zu erhöhen, indem die Energiewende für den Aufbau heimischer grüner Industrien, die Schaffung grüner Arbeitsplätze und eine verstärkte Wertschöpfung im Land genutzt wird. Anders als im grünen Extraktivismus nimmt der Staat in diesem green developmentalism (Gabor/Sylla 2023: 2) eine aktive Rolle, etwa im Rahmen grüner Industriepolitik ein (siehe auch den Beitrag von Burchardt in diesem Band). Im fossilistischen Pfad gelingt es privaten und staatlichen Akteuren des Gas- und Ölsektors ihre Interessen durchzusetzen, etwa indem sie den Klimawandel leugnen und den bekannten Weg des Fossilismus fortsetzen oder indem sie argumentieren, dass sie mit CO₂-Speichertechnologien klimaneutral Energie produzieren können. Sozial-ökologische Alternativen unterscheiden sich in ihren Merkmalen je nach Kontext, Akteuren und sozialen Protesten. Im Allgemeinen sind sie durch Dezentralisierung, öffentliche Kontrolle, kollektives Eigentum, Demokratisierung und soziale Umverteilung gekennzeichnet. Svampa und Bertinat (2022) sprechen diesbezüglich von einer transición energética popular.

4 Energiewende - Quo vadis? Wasserstoff in Kolumbien

Wie sich die Energiewende in Lateinamerika gestaltet und welche Transformationspfade eingeschlagen werden, ist kontextabhängig und Gegenstand innergesellschaftlicher Auseinandersetzungen. Am Beispiel des kolumbianischen Wasserstoffsektors zeige ich, dass sich unterschiedliche Transformationspfade herausbilden, die miteinander konkurrieren, sich aber auch wechselseitig ergänzen. In allen diesen Pfaden spielen die Interessen nationaler und internationaler, staatlicher und privater Akteure gleichermaßen eine Rolle.

4.1 Grüner Extraktivismus

Die politische Förderung von Wasserstoff begann in Kolumbien im Jahr 2021 inmitten der COVID-19-Pandemie. 2020, im ersten Jahr der Pandemie, sank das Pro-Kopf-Bruttoinlandsprodukt in Kolumbien um 8,6 Prozent, Arbeitslosigkeit und Armut nahmen zu, während Exporte und Exporteinnahmen einbrachen (CEPAL 2021). Besonders stark betroffen waren der Öl- und Kohlesektor, ein Rückgrat der kolumbianischen Wirtschaft (Oei/Mendelevitch 2019). Als Reaktion verabschiedete die Regierung des damaligen konservativen Präsidenten Iván Duque (2018-2022) im Juli 2021 das Gesetz 2099 zur Energiewende (Congreso de la República 2021) mit dem Ziel, bestehende gesetzliche Regelungen zur Förderung erneuerbarer Energien zu aktualisieren und die nationale Wirtschaft mittels Investitionen in

den Energiesektor zu reaktivieren. Letzteres sollte vor allem mit der Förderung von blauem und grünem Wasserstoff gelingen. Hierfür bietet das Gesetz steuerliche Erleichterungen als Anreize für Investitionen (Combariza 2024: 11). Im September 2021 veröffentlichte die Regierung einen Fahrplan zum Auf- und Ausbau der Wasserstoffindustrie im Land. Erklärtes Ziel ist es, Kolumbien zum regionalen Marktführer in den Bereichen Produktion, Vertrieb und Export von Wasserstoff zu entwickeln, vor allem im Norden des Landes, in einer der ärmsten Regionen, der Provinz La Guajira (Ministerio de Minas y Energía 2021). Aufgrund der vorteilhaften klimatischen Potenziale von viel Wind und Sonne als Quellen für erneuerbaren Strom, soll hier ein Zentrum für die Produktion und den Export von grünem Wasserstoff entstehen.

Wichtige internationale Akteure, die den Aufbau eines solchen Zentrums finanziell und mit technischem Wissen unterstützen, sind die deutsche GIZ sowie die Fraunhofer Gesellschaft. Beide sehen in Kolumbien einen wichtigen Partner für den Import grünen Wasserstoffs und grünen Ammoniaks nach Deutschland (GIZ 2023). Hier bildet sich deutlich ein grün-extraktivistischer Transformationspfad heraus. Das Ziel internationaler Investitionen ist der Export grünen Wasserstoffs nach Europa, um dort eine grüne Industrieproduktion zu ermöglichen.

4.2 Grüne Entwicklung

Auch die aktuelle Regierung des linksgerichteten Präsidenten Gustavo Petro (seit August 2022) verfolgt diesen Pfad weiter, allerdings ergänzt um das Ziel einer sozial und ökologisch gerechten Energiewende in Kolumbien. Was eine gerechte Energiewende bedeutet, ist bis heute Gegenstand politischer Debatten und gesellschaftlicher Auseinandersetzungen. Die Regierung versteht hierunter eine Energiewende, die nicht nur den Interessen des globalen Nordens dienen soll. In diesem Zusammenhang zeichnet sich in Kolumbien die Herausbildung eines grünen Entwicklungspfades ab, der sich in der 2023 verabschiedeten Reindustrialisierungspolitik der Regierung Petro widerspiegelt (CONPES 2023). Mit dieser Politik beabsichtigt die Regierung erstens, Wasserstoff für die Dekarbonisierung der heimischen petrochemischen Industrie zu nutzen und im Verkehrssektor einzusetzen. Zweitens sollen mit der Produktion von grünem Wasserstoff und Wasserstoffderivaten, unter anderem mittels des Aufbaus einer grünen Düngemit-

telindustrie, neue Arbeitsplätze entstehen und die nationale Wirtschaft gefördert werden (ebd.). Der grüne Entwicklungspfad wird von verschiedenen nationalen Unternehmen unterstützt, von denen einige im Unternehmerverband ANDI-Naturgas (Cámara de hidrógeno ANDI-Naturgas) organisiert sind. Ihr erklärtes Ziel ist die Förderung einer Wertschöpfungskette für Wasserstoff und Wasserstoffderivate als "Motor für die Dekarbonisierung und nachhaltige Entwicklung in Kolumbien"9. Die Kammer umfasst 48 Unternehmen, hauptsächlich aus dem fossilen Sektor und der Düngemittelindustrie sowie Beratungsfirmen, darunter 16 transnationale Unternehmen. Aus Deutschland sind unter anderem Siemens energy, Bosch und BASF vertreten.

4.3 Ökologische Modernisierung der fossilen Energiewirtschaft

Neben dem Aufbau einer grünen, exportorientierten Wasserstoffproduktion im Norden des Landes unterstützt die GIZ den Aufbau von Pilotprojekten für die Produktion und Nutzung grünen Wasserstoffs über PPP. In Kolumbien sind an diesen PPP-Initiativen vor allem die etablierten Unternehmen aus dem fossilen Sektor beteiligt, zum Beispiel Promigas oder der staatliche Ölkonzern Ecopetrol. Eines der ersten Pilotprojekte für grünen Wasserstoff wird von Ecopetrol in der eigenen Raffinerie in Cartagena durchgeführt, den Zuschlag für den Bau und Betrieb der Elektrolyse-Anlage erhielt Siemens Energy zusammen mit anderen europäischen Unternehmen. Für Ecopetrol ist grüner Wasserstoff ein Mittel für eine mehrstufige Diversifizierungsstrategie seiner fossilen Einnahmequellen. Ziel des Unternehmens ist es, bis 2040 jährlich 1 Mio. Tonnen sogenannten emissionsarmen Wasserstoff für den Export zu produzieren¹⁰.

Zusammenfassend ist der kolumbianische Wasserstoffsektor durch drei unterschiedliche Energiewendepfade gekennzeichnet: erstens, die Entwicklung und Ausweitung der Exportpotenziale für Wasserstoff und seine Derivate (grüner Extraktivismus); zweitens, die Nutzung von Wasserstoff zur Dekarbonisierung der heimischen Industrien und damit verbunden die Förderung und Stärkung einer grünen Industrie (grüne Entwicklung); drittens, die ökologische Modernisierung der fossilen Energiewirtschaft

⁹ https://www.andi.com.co/Home/Camara/1044-camara-de-hidrogeno-andi-naturgas, letzter Aufruf 27.05.2024.

¹⁰ https://www.ecopetrol.com.co/wps/portal/Home/estrategia2040/, letzter Aufruf 02.09.2024.

(fossilistischer Pfad). Ein entscheidender Faktor für die Gestaltung der Energiewende im Bereich Wasserstoff in Kolumbien ist die Frage, welche Interessen sich bei der Aushandlung künftiger politischer Strategien durchsetzen werden.

Initiativen, die einen alternativen Energiewendepfad im Bereich Wasserstoff verfolgen, existieren, abgesehen von einigen dezentralen Forschungsprojekten zu Wasserstoff, aktuell nicht. Alternative Strategien der Energiewende sind in den letzten Jahren vor allem im Bereich dezentrale Wasserkraft entstanden. In diesem Bereich gibt es eine lange Tradition so genannter energías comunitarias, kollektiver lokaler Energieorganisationen, bei denen lokale Gruppen gemeinschaftlich und dezentral Staudämme und kleinere Wasserkraftwerke aufbauen und gemeinschaftlich betreiben (Censat Agua Viva et al. 2023). Umweltschutz- und Menschenrechtsorganisationen fordern seit Jahren die Stärkung und Ausweitung solcher Basisorganisationen mit dem Ziel, Klimaschutz und den Abbau sozialer Ungleichheiten im Bereich Energie miteinander zu verbinden. Auch in Konflikten um die dominanten Energiewendepfade wie grüner Extraktivismus, grüne Entwicklung und ökologisch modernisierter Fossilismus, zeichnen sich erste Elemente einer alternativen Energiewendestrategie ab, die auf den Prinzipien gerechte Verteilung, Partizipation, Zugang und Anerkennung der Menschen- und Naturrechte basieren. Vertreter:innen der indigenen Gemeinschaft der Wayuu in der Provinz Guajira im Norden des Landes fordern in ihrem Protest gegen Windparks demokratische Mitsprache, Gewinnbeteiligung, Zugang zum produzierten Strom und zu Wasser (siehe Dorn in diesem Band). Als Antwort hierauf hat die Regierung unter Präsident Petro die Einrichtung so genannter Windpartnerschaften vorgeschlagen. Hierüber sollen indigene Gemeinschaften Partner:innen der investierenden Unternehmen und an den Gewinnen beteiligt werden. Wie sich dies vor dem Hintergrund asymmetrischer Machtbeziehungen zwischen den Unternehmen und indigenen Gemeinschaften gestalten könnte, ohne zu einem grünen und sozialen Feigenblatt zu werden, ist offen. Darüber hinaus hat die Regierung dezentrale, erneuerbare Energiegemeinschaften bzw. -genossenschaften, so genannte comunidades energéticas, im Nationalen Entwicklungsplan verankert (Gobierno de Colombia 2022). Gemäß Zahlen der Regierung liegen mehr als 18.000 Anträge zur Einrichtung solcher Gemeinschaften vor (September 2024)¹¹. Bis Ende September 2024 waren hiervon 100 eingerichtet (Interview mit dem Leiter der zuständigen Abteilung im Energieministerium, Bogotá, 26.09.2024).

5 Fazit

Ziel des Beitrags war es zu zeigen, dass sich die Energiewende in Lateinamerika nur aus einer Perspektive globaler Interdependenzen heraus analysieren und verstehen lässt. Hierbei reicht es nicht aus, die lateinamerikanischen Staaten lediglich als Lieferanten strategischer Rohstoffe für den globalen Norden und die lateinamerikanischen Gesellschaften als Opfer eines grünen Kolonialismus zu konzeptualisieren. Denn staatliche und nichtstaatliche Akteure verfolgen mit und in der Energiewende eigene Interessen und gestalten hierüber den Verlauf der Energiewende mit. Auch dann, wenn Interessen machtvoller Akteure des globalen Nordens diesen Verlauf im Kontext der Geopolitik der Energiewende stark beeinflussen. Am Beispiel des kolumbianischen Wasserstoffsektors habe ich gezeigt, dass sich aktuell drei Energiewendepfade herausbilden, die komplementär zueinander existieren. Im Gegensatz zu anderen lateinamerikanischen Ländern, wie Argentinien (Dorn 2024), engagieren sich in Kolumbien eine Reihe nationaler Unternehmen aktiv am Aufbau einer Wasserstoffindustrie. Die meisten von ihnen sind etablierte Unternehmen aus dem fossilen Sektor, die versuchen, ihre Unternehmensstrategien in Zeiten der Energiewende grüner zu gestalten. Dies könnte Industrialisierungseffekte entfalten, die zumindest punktuell Einfluss auf globale Wertschöpfungsketten und Dependenzverhältnisse nehmen. Alternative, partizipative Erfahrungen und Ansätze von unten werden vor allem in Konflikten um die Energiewende sichtbar. Im Kontext bestehender Kräftekonstellationen und globaler Abhängigkeitsverhältnisse können sich diese bisher allerdings nur in Nischen durchsetzen.

Wie sich die Energiewende in Lateinamerika gestaltet, wer die Gewinner:innen und wer die Verlierer:innen sind, welche Regionen für grüne Ziele geopfert werden und inwiefern es überhaupt zu einem Ausstieg aus den fossilen Energien kommt, ist ein offener, umkämpfter Prozess. Lateinamerikanische Staaten und Unternehmen sind ebenso wie die EU und

¹¹ https://www.minenergia.gov.co/es/comunidades-energeticas/, letzter Aufruf 12.09.2024.

andere Akteure, mit je eigenen Interessen in einen globalen Dekarbonisierungskonsens (Bringel/Svampa 2023) eingebunden. Der EU geht es in der Geopolitik der Energiewende vor allem um Energiesicherheit sowie die Sicherung des Zugangs zu Rohstoffen, Wind- und Sonnenpotentialen und ferner um die Kontrolle grüner Märkte im Wettbewerb mit China. Dahingegen geht es den lateinamerikanischen Staaten vor allem um die Sicherung ausländischer grüner Investitionen und die Positionierung in der neuen globalen grünen Arbeitsteilung.

6 Literatur

- Ansari, Dawud; Grinschgl, Julian; Pepe, Jacopo Maria (2022): Electrolysers for the hydrogen revolution: challenges, dependencies, and solutions. SWP Comment, https://doi.org/10.18449/2022C57.
- BMWK (2023): Fortschreibung der Nationalen Wasserstoffstrategie. Berlin. [https://www.bmwk.de/Redaktion/DE/Wasserstoff/Downloads/Fortschreibung.pdf?__blob=publicationFile&v=4] <02.10.2024>.
- Bringel, Breno; Svampa, Maristella (2023): Del 'Consenso de los Commodities' al 'Consenso de la Descarbonización', in: Nueva Sociedad, Julio-Agosto 2023, 306, 51-70.
- Bull, Benedicte (2024): China and the New Geopolitics of Climate Multilateralism in Latin America, in: Iberoamericana Nordic Journal of Latin American and Caribbean Studies. https://doi.org/10.16993/iberoamericana.633.
- Censat Agua Viva et al. (2023): Promoción y fortalecimiento de las Energías Comunitarias en Colombia. [https://censat.org/wp-content/uploads/2023/03/Promocion-y-fortalecimiento-de-las-Energias-Comunitarias-en-Colombia.pdf] <02.10.2024>.
- CEPAL (2021): Estudio Económico de América Latina y el caribe: Dinámica laboral y políticas de empleo para una recuperación sostenible e inclusiva más allá de la crisis del Covid-19. Santiago de Chile: Comisión Económica para América Latina y el Caribe.
- CEPAL (2022): La energía en América Latina y el Caribe: acceso, renovabilidad y eficiencia. Santiago de Chile: Comisión Económica para América Latina y el Caribe.
- Combariza Diaz, Nadia Catalina (2024): Alternative pathways for green hydrogen economy: the case of Colombia, in: Contemporary Social Science, 1-25. https://doi.org/10.1080/21582041.2024.2349547.
- Ley 2099 de 2021 Por medio de la cual se dictan disposiciones para la transición energética, la dinamización del mercado energético, la reactivación económica del país y se dictan otras disposiciones, (2021). Bogotá.
- CONPES (2023): CONPES 4129, Política de Reindustrialización. Bogotá.

- De Blasio, Nicola; Eicke, Laima (2023): Green Hydrogen Industrial Value Chains: Geopolitical and Market Implications. Policy Brief, Belfer Center for Science and International Affairs, Harvard Kennedy School, [https://www.belfercenter.org/publication/green-hydrogen-industrial-value-chains-geopolitical-and-market-implications] <02.10.2024>.
- Dorn, Felix M (2021): Der Lithium-Rush. Sozial-ökologische Konflikte um einen strategischen Rohstoff in Argentinien, München: oekom.
- Dorn, Felix M (2024): Towards a multi-color hydrogen production network? Competing imaginaries of development in northern Patagonia, Argentina, in: Energy Research & Social Science, 110, 103457. https://doi.org/https://doi.org/10.1016/j.erss.2024.103457
- Dunlap, Alexander; Verweijen, Judith; Tornel, Carlos (2024): The political ecologies of "green" extractivism(s): An introduction, in: Journal of Political Ecology, 31, 436–463. https://doi.org/https://doi.org/10.2458/jpe.6131
- EU (2024): Regulation 2024/1252 of the European parliament and the council of 11 April 2024, establishing a framework for ensuring a secure and sustainable supply of critical raw materials, [https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202401252] <02.10.2024>.
- European Commission (2022): Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. REPowerEU Plan, [https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A230%3AFIN], <02.10.2024>.
- Gabor, Daniela; Sylla, Ndongo Samba (2023): Derisking Developmentalism: A Tale of Green Hydrogen, in: Development and Change, https://doi.org/https://doi.org/10.11 11/dech.12779.
- GIZ (2023): Identificación Hubs H2 Verde en Colombia. Bogotá.
- Gobierno de Colombia (2022): Colombia, potencia mundial de la vida. Bases del Plan Nacional de Desarrollo 2022-2026. Bogotá.
- Hank, Christoph; Holst, Marius; Thelen, Connor; Kost, Christoph; Längle, Sven; Schaadt, Achim; Smolinka, Tom (2023): Site-specific, comparative analysis for suitable Power-to-X pathways and products in developing and emerging countries. Fraunhofer Institute for Solar Energy Systems ISE.
- IEA (2023): Latin America Energy Outlook, [https://www.iea.org/reports/latin-americ a-energy-outlook-2023] <02.10.2024>.
- IRENA (2022): Geopolitics of the Energy Transformation: The Hydrogen Factor. Abu Dhabi: International Renewable Energy Agency.
- Kalt, Tobias; Simon, Jenny; Tunn, Johanna; Hennig, Jesko (2023): Between green extractivism and energy justice: competing strategies in South Africa's hydrogen transition in the context of climate crisis, in: Review of African Political Economy, 1-20. https://doi.org/10.1080/03056244.2023.2260206.
- Könnecke, Julia (2024): Die deutsch-brasilianische Partnerschaft für sozial-ökologische Transformation. SWP-Aktuell, 34, [https://www.swp-berlin.org/publications/produc ts/aktuell/2024A34_Deutsch-brasilianische_Partnerschaft.pdf] <02.10.2024>.

- Bundes-Klimaschutzgesetz, (2021): in, [https://www.gesetze-im-internet.de/ksg/BJNR2 51310019.html] <02.10.2024>.
- Lang, Miriam; Bringel, Breno; Manahan, Mary Ann (Hg.) (2023): Más allá del colonialismo verde. Justicia global y geopolítica de las transiciones ecosociales, Buenos Aires: CLACSO.
- Maihold, Günther (2022): Die neue Geopolitik der Lieferketten. SWP-Aktuell, 45, [https://www.swp-berlin.org/publications/products/aktuell/2022A45_geopolitik_lief erketten.pdf] <02.10.2024>.
- Ministerio de Economía (2023): Plan Nacional de Transición Energética A 2030. Buenos Aires: Ministerio de Economía, Subsecretaria de Planeación Energético, [https://www.energiaestrategica.com/wp-content/uploads/2023/07/Plan-Transicion -Energetica-ARG-2030.pdf] <02.10.2024>.
- Ministerio de Energía (2021): Estrategia de Transición Justa en el sector Energía. Santiago de Chile: Ministerio de Energía, Gobierno de Chile, [https://energia.gob.cl/sites/default/files/documentos/estrategia_transicion_justa_2021.pdf] <02.10.2024>
- Ministerio de Minas y Energía (2021): Hoja de ruta del hidrógeno en Colombia. Bogotá.
- Ministerio de Minas y Energía (2024): Colombia y Alemania crean el Comité Directivo del Grupo de Alto Nivel de Hidrógeno Verde para impulsar energías limpias. , [https://www.minenergia.gov.co/documents/10439/2._Diagn%C3%B3stico_base_pa ra_la_TEJ.pdf[<02.10.2024>.
- Oei, Pao-Yu; Mendelevitch, Roman (2019): Prospects for steam coal exporters in the era of climate policies: a case study of Colombia, in: Climate Policy, 19, 73-91. https://doi.org/10.1080/14693062.2018.1449094.
- Overland, Indra (2019): The geopolitics of renewable energy: Debunking four emerging myths, in: Energy Research & Social Science, 49, 36-40. https://doi.org/https://doi.org/10.1016/j.erss.2018.10.018.
- Riofrancos, Thea (2023): The Security–Sustainability Nexus: Lithium Onshoring in the Global North, in: Global Environmental Politics, 23, 20-41. https://doi.org/10.1162/glep_a_00668.
- Scholten, Daniel; Bazilian, Morgan; Overland, Indra; Westphal, Kirsten (2020): The geopolitics of renewables: New board, new game, in: Energy Policy, 138, 111059. https://doi.org/10.1016/j.enpol.2019.111059.
- Schwartz, Steven (2021): Wind extraction? Gifts, reciprocity, and renewability in Colombia's energy frontier, in: Economic Anthropology, 8, 116-132. https://doi.org/https://doi.org/10.1002/sea2.12192.
- Scita, Rossana; Raimondi, Pier Paolo; Noussan, Michel (2020): Green Hydrogen: The Holy Grail of Decarbonisation? An Analysis of the Technical and Geopolitical Implications of the Future Hydrogen Economy. Rochester, NY.
- Svampa, Maristella; Bertinat, Pablo (Hg.) (2022): La transición energética en la Argentina, Buenos Aires: siglo XXI.
- The Economist (2024): Chinese green technologies are pouring into Latin America, in: The Economist vom 10.04.2024, [https://www.economist.com/the-americas/2024/04/10/chinese-green-technologies-are-pouring-into-latin-america]<02.10.2024>.

Kristina Dietz

- Ulloa, Astrid (2023): Aesthetics of green dispossession: From coal to wind extraction in La Guajira, Colombia, in: Journal of Political Ecology, 30, https://doi.org/https://doi.org/10.2458/jpe.5475.
- USGS (2022): Mineral Commodity Summaries: Lithium, [https://pubs.usgs.gov/periodicals/mcs2022/mcs2022-lithium.pdf]<29.11.2022>.
- USGS (2024): Mineral Commodity Summaries: Copper, [https://pubs.usgs.gov/periodicals/mcs2024/mcs2024-copper.pdf]<02.10.2024>.
- Voskoboynik, Daniel Macmillen; Andreucci, Diego (2022): Greening extractivism: Environmental discourses and resource governance in the 'Lithium Triangle', in: Environment and Planning E: Nature and Space, 5, 787-809. https://doi.org/10.1177/2 5148486211006345.
- Wimmer, Andreas; Glick Schiller, Nina (2002): Methodological nationalism and beyond: nation-state building, migration and the social sciences, in: Global Networks, 2, 301-334.