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1 Introduction

The demand for deployment of electrical drives in automobiles has risen extensively
throughout the last couple of years. This growing demand can be attributed to several
reasons (see Figure 1.1).

Regulations concerning CO,-emissions dictate an average maximum output of 130 gkm~?

Increasing demand
for comfort

Legislation: Statutory Growing number of -
.. . - . Higher degree
provisions concerning electrical drives [« F ot o
o . of automation
C Oy emissions used in cars

Increasing demand
for safety

Figure 1.1: Reasons for growing number of electrical drives employed in cars

for the whole car fleet of a car manufacturer sold in 2015 (EU Regulation 443, 2009). A
proposal was made by the European Union suggesting a further reduction of the COo-
output to 95gkm™" as of 2020 (EU Proposal, 2012), which is to be adopted in 2013
(Briinglinghaus and Winterhagen, 2011). COs-emissions are directly proportional to the
fuel consumption, which necessitates a reduction of the fuel consumption to meet the
statutory provisions. Besides using lightweight material for reduction of the car weight and
downsizing the combustion engine, replacement of mechanically or hydraulically driven
common auxiliaries with electrical drives shows a high potential for increasing the overall
efficiency. Krebber-Hortmann et al. (2013) put forward the possibilities of further fuel
reduction by using an electric camshaft phaser. Further examples include electrical fuel
and water pumps, the steering and transmission actuators. Rau (2006) gives an overview
of possible fields of application for electrical common auxiliaries and Schmidt (2003) has
investigated measures which allow for an efficient management of all auxiliary devices.
Other reasons leading to an increase of small electrical drives employed in cars is the rising
demand for comfort and safety. Nowadays, even small sized cars offer the possibility to
purchase electric window lifters or seat actuators. Furthermore, due to EU Regulation
661 (2009), as of 2011, an Electronic Stability Control (ESC) system, which is relying on
several small electrical actuators, is mandatory for all newly developed passenger cars in
the European Union.

Besides comfort and safety aspects, the customers also demand a higher degree of automa-
tion. Examples for this include electric seat actuators with memory functions, dynamic
headlight leveling and dynamic bend lighting.
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2 1 Introduction

In Figure 1.2, an overview of electrical drives employed in modern cars is given. The
overview does not lay any claim to completeness, but rather serves to convey an impres-
sion about the large number of electrical drives used in the automotive area.

Continuous run

Windscreen motors
wiper <

Transmission ABS / ESP
actuator

Air conditioning
Heating

Camshaft
phaser

Dynamic
headlight
leveling

Fuel pump
Coolant pump

Windo
Dynamic ki fterw Engine cooling
bend fan
lighting

Figure 1.2: Overview of selected electric drives employed in cars

Due to this high penetration of small electrical drives, a reliable fault detection and di-
agnosis has gained a growing importance. Safety-critical applications are particularly in
focus here, as failure of these devices can lead to hazardous situations. But also the appli-
cations that are not directly safety-related, such as auxiliary drives, demand a continuous
health monitoring.

Malfunction or failure of the engine cooling fan or the coolant pump, e.g., can cause dam-
age to the combustion engine due to overheating. Recognition of a failure in one of the
auxiliary drives might prevent damage to the combustion engine. However, in most cases
the car is not operational anymore and has to be towed. Early identification of prospective
faults through a continuous health monitoring is thus necessary for a timely reaction.

Figure 1.3 depicts the association between the topic of fault detection and diagnosis and
other fields of activity. As can be seen in the figure, the continuous online determination

. . L Electric
Vehicle net —>| Power electronics —> Transmission —> motor |1 Process

Y v v v Y

‘ Continuous determination of internal states and parameters ‘

Y v

’ Adaptive control ‘ ’ Fault detection and diagnosis ‘

v v

’ Fault strategy / Failure prevention ‘

Figure 1.3: Association between topic of fault detection and diagnosis and other fields of
activity
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of internal states and parameters serves as a basis for both fault detection and diagnosis
as well as for adaptive control. Due to component tolerances, wear and temperature
dependencies, parameters of electrical drives change during runtime and over lifetime.
Incorporating the knowledge about these changes in the control algorithm enables
finetuning of the control according to the current conditions. Adaptive control and fault
detection and diagnosis in turn are the foundation for implementation of efficient fault
strategies and measures for an improvement of control and failure prevention.

1.1 State of the Art

The literature dealing with the topic of fault detection and diagnosis concerning electrical
drives has gained considerable attention. Basic research in this area has been conducted
by Héfling (1996) and Fiissel (2002), who investigate different methods for fault detection
and diagnosis using parameter estimation, parity equations and tree-structured neuro-
fuzzy systems. Application of theses methods to the fault detection and diagnosis of
motor vehicle actuators is examined by Pfeufer (1999) and Straky (2003). With focus on
implementing the methods on a microcontroller, Moseler (2001) explores fault detection
for an electromechanic actuator. Fault diagnosis of an asynchronous electrical machine is
thoroughly investigated by Wolfram (2002), and Vetter (1988) examines the supervision
of the heating behaviour of asynchronous machines.

Da et al. (2011), Henao et al. (2014) and Basak et al. (2006) give a brief overview of
condition monitoring and fault diagnosis for certain types of electrical machines. They
cover a wide range of possible faults, including electrical faults like stator interturn faults,
faults concerning the permanent magnets and mechanical faults, such as eccentricity and
bearing related faults.

Zhou et al. (2007) focus on bearing faults and describe several techniques relying on a
frequency analysis of the stator current for bearing fault detection. Saadaoui and Jelassi
(2011), Blodt et al. (2008) and Xie et al. (2012) give more details about the various stator
current based techniques given in Zhou et al. (2007). The first two both rely on a spectral
analysis of the stator current for diagnosing a bearing damage, whereas Xie et al. (2012)
base their health assessment of a cooling fan bearing on a continuous wavelet transform
and an autocorrelation function indicator.

Ebrahimi et al. (2010) present a method for detection of static and dynamic eccentricity
faults under different load conditions. They evaluate frequencies of side-band components
of the stator current, extract eccentricity signatures and use a support vector machine to
predict the type and the degree of eccentricity. The same principle is applied by Ebrahimi
et al. (2009). However, besides static and dynamic eccentricities, with their approach it
is also possible to detect mixed-eccentricities.

A review of methods for detection of stator interturn faults is given in Gandhi et al.
(2011). Techniques covered include signal analysis, model- as well as knowledge-based
approaches. As for other areas of fault detection of electrical drives, analysis of the motor
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4 1 Introduction

current signature also plays a dominant role for detection of interturn faults and is thus
the main focus of this paper. Kriiger (2003) makes use of a model-based approach to
detect a broken winding, a short circuit between two windings and between the winding
and the housing.

Extensive application of both model- and signal-based approaches to different systems,
such as an electrical throttle valve actuator or an electrical motor actuating the aircraft
cabin pressure valve, is given in Isermann (2011).

1.2 Thesis Structure and New Contribution

Despite several publications for the fault detection and diagnosis of electrical drives, fault
detection and diagnosis focusing on engine cooling fans is very scarce. The importance
of these devices, however, has grown drastically in the last couple of years due to the
demand for increasing capacity of thermal management systems. The engine cooling fan
is a key component of such a system (see Chapter 3), as it delivers the required airflow
for dissipating the heat contained in the coolant fluid to the surrounding air. Failure or
malfunction of the cooling fan thus results in an overheating of the coolant fluids and the
components being cooled by the fluids, such as the combustion engine.

The thesis at hand examines possibilities for fault detection and diagnosis for engine
cooling fans. It focuses on the development of algorithms, which are application indepen-
dent but are still able to reliably detect and diagnose faults and upcoming failures. The
adaption of existing algorithms to new applications is very costly and requires extensive
measurements and tuning on the test-bench. Eliminating the need for adaption is thus a
key for reduction of the overall cost of a new application.

The market for small electrical drives employed in cars is highly competitive and cost-
driven. The microcontrollers utilized in these drives therefore only offer a limited comput-
ing power and amount of memory. This, however, renders most of the methods described
in the literature unsuitable for implementation, as they assume usage of a state-of-the-art
controller, which offers far more resources than the one usually employed for small elec-
trical drives. Even with increasing computing power and adoption of new controllers for
small electrical drives, most of the methods covered in the current literature have to be
adapted for implementation.

The new contribution of this work thus lies in the development of application indepen-
dent algorithms, being able to detect and diagnose faults and impending failure for engine
cooling fans, by taking into account the limited possibilities concerning signal injection
and computing power. Another key issue is the consideration of thermal effects, adding
the ability to the proposed methods for reliable operation under all operating conditions.

Figure 1.4 gives an overview of the topics covered in this work and outlines the most
important parameters. As the contribution of this work is on the application independent
development of algorithms suitable for fault detection and diagnosis, the focus is on the
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Figure 1.4: Overview of covered topics

machine independent determination of parameters and internal states. Only a few faults
were thus selected for this work. The criteria for selection was based on faults not already
covered in existing literature. Furthermore, faults were selected, which, according to com-
pany experts, constitute main reasons for the failure of engine cooling fans in the field.
The faults selected for investigation are displayed in Table 1.1. Along with the listed
faults, three stages, which allow for fault detection and diagnosis, are introduced. First
stage is the End-of-Line (EoL) of the supplier that produces the electrical drive, second
stage is the EoL of the car manufacturer, where the whole cooling fan system consisting
of the electrical motor and the fan is assembled in the engine compartment and the third
stage constitutes normal operation of the engine cooling fan system in the car. Through-
out this work it is investigated, if a suitable and reliable detection and diagnosis of the
listed faults is possible at the corresponding stages and, which methods and parameters
are required for detection and diagnosis. The completed table, which lists the possibilities
for detecting and diagnosing the faults along with the required methods and parameters,
can be found in Section 5.6.

21673.216.36, am 20.01.2026, 12:57:57. Inhalt,
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186262080

6 1 Introduction

Table 1.1: Investigated faults in this work. The required methods and parameters for
detection and diagnosis of the selected faults are investigated throughout this work.

Parameters required for detection and

diagnosis
EoL
Subsystem Fault EoL supplier o car In the car
manufacturer
Aged Capacitor
Electrical
ectrical - winding fault
&
Electro- L. R
. Demagnetization &
magnetic »"
8
Overheat 0\5@0 @‘0'
- &
Winding N
Thermal &
Overheat g%&? &
Tagne &
Magnet &
Blockage
Mechanical Dirt on fan blade

Defect bearing

The thesis at hand is structured as follows: The second chapter gives an overview of the
methodology used for fault detection and diagnosis. Besides the topic of parameter estima-
tion, which is covered in more detail, information is also given about parity equations and
state observers. The chapter finishes by giving an overview of existing diagnosis methods
and their specific advantages and disadvantages.

Chapter three outlines the structure of thermal management systems utilized in mod-
ern cars and gives an overview of the engine cooling fan prototype. It further gives a
mathematical model for the electrical motor and the attached process, i.e. the airflow
through the engine compartment. The simulation model and the test-bench, both used
for evaluating the developed algorithms, are also described.

Chapter four outlines algorithms for online parameter gathering and constitutes the main
part of this work. Methods for determination of the winding resistance, the flux linkage
over angle and the equivalent series resistance are presented. Together with the thermal
network for determination of the magnet temperature, which is also thoroughly covered
in the fourth chapter, they serve as a basis for machine independent parametrization of
the fault detection and diagnosis algorithms.
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1.2 Thesis Structure and New Contribution 7

Chapter five exploits the algorithms and methods described in the preceding chapters to
detect and diagnose the desired faults. It is structured according to the different subsys-
tems, for which faults have been investigated.

The last chapter gives a summary of the whole work and a prospectus about future work
useful to be undertaken.
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2 Methods of Fault Detection and
Diagnosis

This chapter gives an explanation of the terms detection and diagnosis along with a brief
overview of the methods utilized for fault detection and diagnosis. As the field of fault
detection and diagnosis has been the topic of many research activities, only the most
important aspects will be presented here. For deeper coverage of this topic reference is
made to the corresponding literature.

2.1 Fault Detection

Fault detection includes the generation of process features from measured signals and
comparison of these features with reference values of the fault-free case (Wolfram, 2002).
A symptom is the deviation of the generated features from the normal condition. A
symptom with a value unequal to zero usually indicates a fault in the process.

A compilation of methods utilized for symptom generation based on Isermann (2006),
Isermann (2011) and Pfeufer (1999) is illustrated in Figure 2.1.

In general, a distinction is made between direct and model-based methods. With the
first one, symptoms are directly generated by evaluation of measured signals, whereas
generation of symptoms with the latter one is based on process models. The direct methods

I Fault-detection methods |
I

\
Direct methods Model-based
methods

Trend Limit Process Signal
checkin, checking e

model model
based based
T
Y v v
State Parity Parameter
observer equations estimation

Figure 2.1: Overview of methods for symptom generation.

can be easily understood and applied and are therefore frequently used. However, they
only react to large signal changes which make them unsuitable for detection of incipient
faults (Wolfram, 2002). In comparison, the model-based approach allows for a deeper and
broader surveillance of the process.
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2.1 Fault Detection 9

Model-based methods are based on a mathematical model of the system. The model
can either describe a signal waveform or be based on the process itself, i.e. it models
the relationship between input and output quantities. This model can provide additional
information about the process, such as the reconstruction of process parameters or internal
states. In the following, the main approaches based on process models used throughout
this work are covered in more detail.

2.1.1 Parity Equations

Parity equations can be designed with transfer functions as well as in state-space nota-
tion. Based on a process model describing the behavior for the fault-free case, residuals are
generated by comparison of measured process values with the model output (Isermann,
2011). Two different structures for residual generation with parity equations can be con-
sidered, as illustrated with transfer functions in Figure 2.2. The process is designated with

F, and the process model with Fy,,. The corresponding equation for the output error can

fu ’ﬂl fy f!i nl lfy
—_> oTy—pb R e [ s S
¥ o
B ()P A (s) [ ¢—
Te

Figure 2.2: Residual generation with parity equations by using the output error (left) and
the equation error (right). f, and f, are additive faults, n is noise.

be derived as

1u(5) = (5) = Fuls)uls) = sy(s) = 5 (). 1
and the equation error to
1(5) = An(S)3p(5) = Bu(s)us). 22
A comparison of (2.2) and (2.1) yields
re(s) = Am(s)ro(s) . (2.3)

The residual generated with the equation error thus includes derivatives of the signal of
higher order. This can lead to an amplification of high frequent noise (Isermann, 2011).
In contrast, when using the output error, additive faults will be detected with a delay due
to the low-pass filtering effect of Ai In most cases however, this can be tolerated, which,
besides being less prone to measurement noise, makes the output error structure being
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the preferred choice for residual generation with parity equations (Wolfram, 2002). See
Hofling (1996) for information about designing parity equations for state space models.

Parity equations are well suited for the detection of additive faults. Furthermore, their
computational cost is very low and they do not require constant process excitation, making
them ideally suited for online supervision of processes. Parity equations pose a disadvan-
tage insofar, as they only allow for one residual being generated for each measurement
signal, limiting information available for diagnosis.

2.1.2 State Observer

State observers are utilized for reconstruction of unmeasurable state variables by just
using input and output signals (Follinger et al., 2008; Isermann, 2006). It can both be
used for Single-Input-Single-Output (SISO) and Multi-Input-Multi-Output (MIMO) sys-
tems, assuming they are observable. The general structure of the observer is illustrated
in Figure 2.3. Based on Figure 2.3, the equations for the state observer can be derived as

u_ylp z 2yl o

A

Figure 2.3: Process and state observer

x(t) = Ax(t) + Bu(t) + Le(t) (2.4)
e(t) =y(t) = y(t). (2.5
Inserting (2.5) into (2.4) yields
x(t) = (A — LC) % + Bu(t) + Ly(t) (2.6)
with the dynamic matrix
G=A-LC. (2.7)
The matrix L is chosen such that the estimation error
x(t) = %(t) — x(t) (2.8)
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approaches zero for t — oo. This is the case, if the eigenvalues of the dynamic matrix
G are positioned left in the s-plane (Féllinger et al., 2008). Several algorithms exist for
proper design of the observer feedback matrix, e.g. pole placement or the usage of an
optimality criterion (Féllinger et al., 2008; Lunze, 2008).

2.1.3 Parameter Estimation

Parameter estimation is an important technique for the field of fault detection and diag-
nosis as well as for any kind of adaptive control. It aims at identifying unknown process
parameters by just measuring input and output signals. Compared to parity equations,
parameter estimation is well suited for identification of multiplicative faults. Futhermore,
depending on the number of parameters, it usually allows for the generation of more symp-
toms. Parameter estimation requires constant process excitation, making it best suited
for End-of-Line (EoL) applications, as a predefined excitation signal can be applied to the
process. For such a case, even small deviations from the normal behavior can be detected
(Wolfram, 2002).

The underlying algorithm applied in this thesis is based on the Least Squares (LS) method.
As the algorithm is well-researched and an in-depth discussion is given in many textbooks,
only the most important aspects shall be presented here. The following subsections outline
the fundamental principle behind the method of least squares, derive the recursive version,
which is more suitable for online implementation, and explain an extension to the classic
algorithm that is numerically more stable.

The Method of Least Squares

The method of least squares can be applied to discrete and continuous time processes.
Throughout this work only continuous models are used. See Isermann and Miinchhof
(2011) for an application to discrete models.

To understand the principle of the least squares method, a continuous time-invariant
differential equation is considered

any&")(t) + an,lyﬁ“’l)(t) +...+ alyl(ll)(t) + yu(l) (2.9)
= bt ™ () + b1 u™ V() + A bW (2) + bou(t)

where m < n. It is assumed that the input and output signals can be measured, their
derivatives exist and the initial values at ¢t = 0 are zero. The transfer function of (2.9) is
given as
Fo(s) = Y(s) _botbist. .+ 18D 4 by ™ 4
P U(s) 1+a154...+a,_150-D 4 q,sn
It is assumed that a normally distributed noise n(t) is superimposed on the measurable

(2.10)

output y(t)
y(t) = yu(t) +n(t). (2.11)
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12 2 Methods of Fault Detection and Diagnosis

Substituting (2.11) into (2.9) and introducing an equation error e(t) yields
y(t) = 9" (1) +elt). (2.12)

with the data vector 4(¢) and the parameter vector ® (input and output quantities are
separated by a vertical line for better readability)

WO = [0 -y | e . uI)] (213)
el = [a1 ceo Gy | by ... bm}. (2.14)

Measuring the input and output signals at discrete-time intervals k7, with k£ =
0,1,2,..., N with a sampling rate of Tj, and determining the corresponding derivatives
results in N + 1 equations of the form

y(k) =T (k)® +e(k)  fork=0,1,2,...,N. (2.15)

(2.15) can be written in Matrix notation as

- (2.16)
with
o= [w0) y(@) - y(V)] 2.17
e’ = [e(0) e(1) e(N)] 218
(0 o —yO) [ w(0) e u(0)
oo | SR : (219)
_y(l)(N) . _y(n)(N) u(N) .- u(m)(]\])

The equation error therefore can be written as
e=y—"¥0O. (2.20)

The task is to find the parameters ® which best fit with /N observations of the process
output y, i.e. minimizing the equation error e. The LS method utilizes a quadratic cost
function, i.e. it seeks to minimize the sum of the squared errors

N
V=e1)+@2) +...+(N)=ele=> (c(k)*. (2.21)

k=1
Isermann and Miinchhof (2011) show that a quadratic cost function gives the same result
as the maximum likelihood estimator, and that it shows the lowest variance for the pa-
rameter estimation error for normally distributed noise. The cost function is then given

as

Vo= (y-¥0) (y - ¥O) (2.22)
y'y-0'v'y+0"'v've -y 've.
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The derivative of (2.22) with respect to the parameter © yields

dv

- —297(y — ¥O). (2.23)
With the optimality criterion
O lomet 0. (224)
© can be determined as
6= (V) wy. (2.25)

For a reliable parameter estimation the number of measurements N has to be significantly
larger than the number n of parameters to be estimated. In practice this leads to a large
data matrix W. As the calculation of the covariance matrix P = (\IIT\II)71 requires a
matrix inversion, the normal method of least squares is not suitable for online estimation
due to the high calculation demand.

For online parameter estimation recursive versions of the normal least square algorithm
have been developed. The algorithm presented in the next section determines a new
parameter estimate (:)(k) for each time step based on old measurements and process data
acquired at the current time interval k.

Recursive Least Squares Method

The parameter estimate at time step k is given as

O(k) = P(k)®" (k)y(k), (2.26)
with

P(k) = (97(h)w(k) " (2.27)
y(1)

y(k) = y(:2 (2.28)
y(k)
'i(l)

o = | Y :(2) . (2.29)
U (k)

Accordingly, @(k + 1) at time step k& + 1 is given as

Ok+1) =P+ 1)¥ (k+ Dy(k+1). (2.30)
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(2.30) can be split up and one obtains

501 _ ) (k) y(k)
su+n = P (il ) (L)
= Pk+1) (T (k)yk) + ¢k +Dy(k+1)) .
(2.26) can be rephrased to
T (k)y(k) = P (k)O(k).
Substituting (2.32) in (2.31) yields
Ok+1) = Pk+1)
= P(k+1)
= Q)+ (P(k+1)P ' (k) —I)O(k)
(k+1)

y(k+1).

1)
+ P(k +1)

From (2.27) it can be seen, that

P(k+1) = (( ¢T‘f1§? 1) )T ( ﬁk(? 1) >)1

U (k)W (k) +p(k+ DT (k+ 1))
P (k) + ok + D" (k+1))

—

From (2.34) it follows that

Plk)=P'(k+1) -k + )" (k+1).

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

Substituting (2.35) in (2.33) finally yields the recursive version of the LS problem

O(k+1) = Ok)+ (Pk+1) (P (k+1)—p(k+ 1" (k+1)) — I) O(k)
+ P(k + Dk + Dy(k +1) (2.36)
= Ok)+ (I —P(k+1)ypk+ 1)y " (k+1)—I)O(k)
+ P(k+ 1)¢(k Dy(k+1) (2.37)
O(k+1) = (k) + P+ Dypk+1)- 2.38)
N—— —_—
New parameter Old pmrameter Correction
estimate estimate Vector
y(k+1) - " (k+1)O(k)
—— —
New Predicted Measurement based on

measurement last parameter estimate
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2.1 Fault Detection 15

To avoid the matrix inversion to determine P~'(k + 1), the matrix inversion lemma is
exploited which results in the three equations (Isermann and Miinchhof, 2011)

1
YT+ 1) P(k)p(k+1) +1

O(k) + (k) (y(k +1) =Tk + 1)@(1@) (2.40)
(I —7(k)p" (k +1)) P(k). (241)

(k) = Pk + 1) (k + 1)

P(k)yp(k+1) (2.39)

Ok+1)
P(k+1)

Initial values for P(0) and @(0) have to be set to start off with the recursive LS parameter
estimation. For ©(0) initial values should be assumed based on measurements or derived
from physical coherences. Isermann and Miinchhof (2011) recommend a choice of

P(0) =I, (2.42)

with ¢ in the range of 100...10000 and I the identity matrix. For slowly time-varying
processes a forgetting factor A\, 0 < A < 1, can be introduced, which determines how strong
the current data vector 1(k)T affects the new parameter estimate. Resulting equations
can be found in Isermann and Miinchhof (2011).

Both the normal least squares and the recursive least squares method can lead to sig-
nificant errors in the parameter estimate. On the one hand, this can be attributed to a
possible propagation of measurement errors in the determination of the covariance matrix
P. On the other hand, an oversampling of the process or an insufficient process excitation
can lead to a set of measurement vectors that are strongly linear dependent. In the worst
case, such an ill-conditioned matrix can be singular.

For improvement of the numerical stability, Isermann and Miinchhof (2011) recommend
the Discrete Square Root Filtering (DSFI) method, which avoids calculation of the co-
variance matrix by utilizing a orthogonality transformation for solving the estimation
problem.

Discrete Square Root Filtering Method

Every matrix A can be transformed into the product of an orthogonal matrix T and an
upper triangular matrix S
A=TS, (2.43)

with T" the transformation matrix and S the upper triangular matrix. It can be shown
that the condition number ¢ (see Appendix A) of the triangular matrix S satisfies

3(8) < 6(8TS) =6%(S)=0(A). (2.44)

That means that the condition number of the square root of a given matrix is always
better than the condition number of the matrix itself. If the transformation matrix T is
chosen such, that

TV = {S } (2.45)
0
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and
Ty = b (2.46)
Y= e ? N

the non-recursive version can be derived by inserting (2.45) and (2.46) into (2.25), yielding
vIT'Te® = 9'T'TYy (2.47)

S| b
[ 0][ }e = [s" 0 H (2.48)

0 e
s's6 = STb (2.49)
S6 = b. (2.50)

The unknown parameters can now be calculated by simple back-substitution. A recursive
version of the DSFI-algorithm can be derived by appending the newly acquired measure-
ment vector at time step k + 1 to (2.50) given at time step k (Vetter, 1988):

[1/)%512 1)} Ok+1)= {y(:(f)l) } (2.51)

Applying the householder transformation T" according to (2.45) and (2.46) to (2.51) yields
the final equation for the DSFI-algorithm in its recursive version
S(k+1)O(k+1)=b(k+1). (2.52)
Hence, an update of the parameter vector in each time step can easily be done by ap-
pending the new current measurement vector ¥’ (k + 1) to S(k) and the new output
vector y(k + 1) to b(k). After applying the householder transformation to the new vec-

tors, ©(k + 1) can be calculated by simple back-substitution.

2.2 Fault Diagnosis

Fault diagnosis aims at creating a relationship between detected faults and a predefined
set of symptom patterns. Given enough symptoms, a specific and unique pattern can be
determined for different faults. The pattern itself can either be determined by analytic
observations or through experiments by artificially introducing faults (Pfeufer, 1999).

Figure 2.4 illustrates a compilation of selected methods for assigning a symptom vector
to its corresponding fault vector (compilation based on Isermann, 2011, Pfeufer, 1999,
Wolfram, 2002 and Fiissel, 2002). The methods can be clustered into two major areas,
classification and inference methods. Classification methods, also referred to as pattern
matching methods, utilize an implicit knowledge base, whereas inference methods are
based on explicit knowledge.

Characteristic for classification methods is, that the relationship between the symptom
and the fault vector is learned based on gathered training data. Examples for methods as-
signing the symptom vector to a specific fault include neural networks, statistical methods
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Figure 2.4: Overview of fault-diagnosis methods

and density-based methods. The latter one includes geometric methods, which evaluate
the geometric distance from the symptom to the fault vector. The fault with the lowest
distance measure is then selected. Statistical methods involve statistic data such as mean
and variance. The Bayes-classifier, e.g., provides a conditional probability, that a symp-
tom vector belongs to a specific fault. Pattern matching with neural networks is done by
creating complex, nonlinear mapping rules. Their performance is strongly related to the
number of neurons used and their linkage.

Inference methods are based on explicit knowledge, which can be described by fault-
symptom trees. The fault-symptom connection is described in a qualitative manner, in
the form of ,jif-then“ relationships. Evaluation can be done with binary or approximate
reasoning. The first one utilizes boolean algebra, i.e. the result can either be zero, meaning
the fault is not present, or one, meaning the fault is present. This is a main disadvantage
of binary reasoning, as it can not provide gradual information about the existence of a
fault. This, however, is possible with approximate reasoning. When using probabilistic
reasoning, each symptom is viewed as a statistic variable and is being assigned a cor-
responding probability. Evaluation can then be performed by using the Bayes formulas.
Identification of a suitable probability distribution and determination of the parameters
often poses problems, as Isermann (2006) points out. Fuzzy-logic allows for describing the
symptoms in the form of membership functions. Result of the evaluation is a possibility
grade for the specific fault, residing in the interval between zero and one. Compared to
the probabilistic reasoning, fuzzy-logic is characterized by less design effort.

Advantageous about inference methods is the easy representation of knowledge in the form
of if-then® relationships. Due to this representation, additional faults can be amended to
the existing rule base at any time. By contrast, rule generation for classification methods
is based on implicit knowledge, making it in most cases difficult to interpret the automat-
ically generated rule base. In most cases, an extension with additional faults is also not
possible.
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3 The Engine Cooling Fan System

Up to a few years ago, the main task of the engine cooling system was to protect compo-
nents, like the combustion engine or the transmission, against overheating (Eilemann and
Pantow, 2014). This has changed in the past years due to new and more strict require-
ments regarding fuel consumption and pollutant emissions with the challenge of bringing
these requirements into conformity with an increased demand for air-conditioning comfort
(Robert Bosch GmbH, 2011). One possibility for increasing the overall efficiency is the
transition of the former mechanically driven engine cooling fan to one which is driven by
an electrical drive. The output power delivered by the cooling fan is thus decoupled from
the rotational speed of the combustion engine.

Furthermore, a popular method for reduction of fuel consumption is downsizing of the
combustion engine, which is connected with a trend towards indirect charge air cooling.
A shortening of the motor warm-up phase through a shutter and coolant standstill by
closing shut-off valves is another effective approach for reducing fuel consumption (Ed-
wards et al., 2008). Together with a cooled exhaust gas recirculation, which contributes
to a decrease of the pollutant emission, this demands more cooling capacity, a higher
efficiency and more intelligence by introduction of a thermal management.

Following this trend, engine cooling fans will become one of the main function components
of an engine cooling system. This also entails rising requirements regarding reliability for
engine cooling fans, which necessitates proper methods for fault detection and diagnosis
being implemented in future drives.

A modern cooling system is very complex and can be assembled in a multitude of varieties.
A schematic of a possible configuration is illustrated in Figure 3.1. The cooling module
usually consists of a high temperature coolant radiator, a condensor for air-conditioning
(not shown in Figure 3.1), the engine cooling fan and sealing against the surrounding
environment (Sebastian et al., 2010). Depending on the type of car, the module can also
be equipped with a low temperature coolant radiator. The engine cooling system, the
engine oil and the exhaust gas recirculation are part of the high-temperature coolant
loop, whereas the low temperature loop is composed of the transmission oil and the turbo
charging air (Simonin et al., 2008).

The configuration possibilities for the assembly of the cooling module are depicted in Fig-
ure 3.2. Placing the cooling fan in front of the coolant radiators (upstream configuration)
shows advantages in terms of cooling of the electric motor driving the fan, as it is only sub-
jected to air with ambient temperature. Despite this benefit, the configuration preferred
by most car manufacturer is placing the cooling fan behind the radiator (downstream
configuration). Reasons are the decreased noise radiated to the passenger compartment
(Walter, 2001) and regulations concerning pedestrian safety in case of a crash. The exis-
tence of both a down- and an upstream configuration entails a high multitude of different
application variants, increasing the complexity of the development process of the engine
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Figure 3.1: Possible setup of a cooling system, the heating circuit is not shown. 1: Low
temperature coolant radiator, 2: High temperature coolant radiator, 3: Engine cooling fan,
4: Auxiliary coolant pump, 5: Main coolant pump, 6: Engine oil cooler, 7: Combustion
engine, 8: Charge air cooler, 9: Exhaust gas recirculation cooler, 10: Turbocharger, 11:
Auxiliary coolant pump.

cooling fan.

For subsequent examinations, however, it is always assumed, that the cooling fan is placed
behind the radiator, i.e. the electric motor is exposed to ambient air, which is heated by
the heat transfer from the radiator to the incoming air.

In this work, a recent Bosch engine cooling fan drive is used for evaluation of the developed
algorithms (see Figure 3.3). Characteristics of the motor are shown in Table 3.1. It is a 3-
phase, electronically commutated (EC) motor with ferrite permanent magnets assembled
on the rotor, making it a permanent-magnet synchronous motor (PMSM). Electronically
commutated means that the commutation of the motor current is not performed by a
commutator or slip-ring but instead brushless by electronic power switches. The motor is
built upon the external rotor design principle, i.e. the stator is in the inside and the rotor
on the outside. A technical drawing showing the structure of the motor is illustrated in
Figure 3.4. The material of the used permanent magnets is ferrite.

The drive is speed-contolled, however, due to cost reasons, the drive is not equipped
with an incremental encoder. The rotational speed is determined by introduction of a
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Figure 3.2: Schematic view of downstream (left) and upstream (right) configuration of the

engine cooling fan.

Figure 3.3: Bosch motor used for evaluation of the developed algorithms. (a): rotor and
stator. (b): assembled module. Source: Bosch media database.

blanking interval, i.e. a certain time interval during each electrical period the transistors
connected to a certain phase are set open, leading to a current of zero in that phase.
This allows for detection of the zero-crossing of the induced voltage. By evaluating the
elapsed time between two consecutive zero-crossings of the induced voltage the rotational
speed can be calculated. The electrical rotor angle is derived from the rotational speed by
prediction. Future drives will implement an algorithm developed by Bosch, which allows
for determination of the rotor angle and rotational speed without requiring a blanking
interval. In this work, an incremental encoder or the blanking interval technique was
utilized for acquisition of the rotational speed.

The electronic control unit (ECU) of the engine cooling fan is enclosed in a tightly sealed
housing and directly attached to the stator. It is comprised of a three-phase inverter and
an 8-bit microcontroller. To minimize the cost, the controller is only equipped with a fixed-
point unit. A temperature sensor is mounted on the printed circuit board (PCB). Due to
the limited computing power, the lack of a floating-point unit and the tight integration,
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Bearing Rotor
Stator

PCB

Figure 3.4: Technical drawing showing the structure of the used motor. Except the PCB,
the motor is assembled on the test bench in this configuration. Not shown in the illustra-
tion: fan and shroud. Technical drawing provided by Robert Bosch GmbH.

which makes access to the signals on the PCB difficult, a different ECU and inverter were
used throughout this work.

With the series ECU, only the bridge current 4, (see Figure 3.5) can be measured. It
is assumed here, that future drives will have the possibility to measure all three phase
currents, e.g. with the technique described by Lee et al. (2001), Marcetic and Adzic (2010)
and Microchip (2009). On the test bench, current clamps connected to an oscilloscope were
used for current measurement (see Section 3.2).

Table 3.1: Characteristics of used motor.

Output power 300 W or 400 W
Pole pair number 4
Self-inductivity per phase 116 pH
Absolute value of mutual inductivity per phase 57.7pH
Resistance per phase at 25°C 0.0394 Q2
Rotational range 1000 min~! to 3000 min~!
Load range 0.5Nm to 1.3Nm

The motor has some built-in supervision and health-monitoring capabilities. The motor
is shut down if

e a blockage is detected,

e the vehicle net voltage violates allowed voltage ranges,

e the temperature measured with the sensor mounted on the PCB exceeds a certain
threshold,
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e the measured bridge current exceeds a certain threshold,

e internal electronic faults (such as an AD-conversion error or a fault in the bridge
driver) are detected.

3.1 Mathematical model of the components of an
electrically driven fan

In the following, models are derived for the electrical and the mechanical subsystem along
with a model of the air path way through the engine compartment. The models serve
as a basis for implementation of a simulation model, which was used for testing of the
algorithms before implementation and evaluation on the test bench. The corresponding
equations are derived in Section 3.1.1 to Section 3.1.4, the simulation model and its
validation are presented in Section 3.1.5.

3.1.1 Electrical Subsystem

The electrical subsystem consists of the vehicle electrical system, a B6-bridge and the
3-phase motor (see Figure 3.5). The vehicle electrical system is modeled with one battery,

Vehicle DC- . I\IO?FET
electrical system link B6-bridge 3-phase motor

! .o .
! hat 1 g B . .
! > T > ¢
1 Lyy ide!
; 1B L| 1|
1
| . " Riddn Dy
. v I 11 [Switching ¢4 —p
. + " Cacit gt | e
, Battery — : ' 1! - . >
1 | : : Ty
1 1
I : 1 : :
. X : Il Ty Ty Ts
1
: o Dy D, D
: -
1 L : 1 ! :
1 GND i !

Figure 3.5: Electrical setup of engine cooling fan with battery supply

as described in Robert Bosch GmbH (2011) and by Fabis (2006). The supply cable from
the battery to the Electronics Control Unit (ECU) of the cooling fan is modeled with
a resistance and an inductance. Corresponding values are assumed to be 5m{2 for the
resistance and 5 puH for the inductance.

The DC-link is modeled as a capacitor in series with a resistance (see Figure 3.5). For a
detailed description of the DC-link capacitor and its model see Section 4.3.

21673.216.36, am 20.01.2026, 12:57:57. Inhalt,
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186262080

3.1 Mathematical model of the components of an electrically driven fan 23

The B6-bridge consists of three half-bridges, each composed of two Metal-Oxide-
Semiconductor Field-Effect-Transistors (MOSFETSs) with free-wheeling diodes. The MOS-
FETs are designated by 77 to Ty in Figure 3.5. Connected to each MOSFET is a control
line for transmission of the duty cycle issued by the microcontroller. For reasons of clarity
only one of the control lines is shown in Figure 3.5.

The power losses of the B6-bridge can be split up into switching and conduction losses
caused by the MOSFETs and the diodes. Calculation of these losses is performed according
to Graovac et al. (2006). The conduction losses P, are given as

B¢ = Pem+ Pep = Roson(ivtims: T 16s)isims + po(1})iDms + B0 (iDms)ipms » (3:1)

with B cnm and Pop the conduction losses of the MOSFET and the diode, Rpgon the
drain-source on-state resistance, iy the rms value of the MOSFET on-state current,
T; the junction temperature, ugs the gate-source voltage, upg the zero-current voltage
of the diode in on-state, Rp the diode on-state resistance and ip.,s the rms value of
the diode current. The values for Rpson, Ugs, upg and Rp can be extracted from the
MOSFET data-sheet. The on-state resistance Rpg,, of the MOSFET depends on the on-
state current iyp,s and is strongly temperature dependent. The temperature dependency
has to be adjusted during simulation time according to the current junction temperature
T; of the MOSFET and is given as

o\ (1-298K)
RDSOH(CZ}) = RDSOn,max(25 OC) <1 + s )

o TyinK (3.2)

s oro—1
YDSon 1M K

Rpson,max and the temperature coefficient ypgon can both be extracted from the datasheet.
The switching losses of the MOSFET P, ¢ M and the diode P 4, p are composed of the
switch-on energy loss of the MOSFET, E, v, and the switch-off energy loss of the MOS-
FET, Eyg .\, and the diode, Eqg p, yielding

Pl,sw = Pl,sw,M + Ijl,sw,D = (Eon,M + Eon,D + EOH,M) fsw ) (33)

with fg, the switching frequency. The MOSFET switching losses are a function of the
on-state current and several datasheet parameters, i.e. the gate resistance, gate-drain ca-
pacitance, the plateau voltage and current rise and fall times. To speed-up simulation
time, an infinite slope was assumed for rise and fall of driving signals, voltages and cur-
rents. Calculation of the current rise and fall times depending on the operating condition
can be found in Brown (2004). The switch-off energy loss of the diode can be calculated by
taking the reverse recovery charge into account, which can also be found in the datasheet.
For a typical operating point, the switching and conduction losses of the MOSFETS’
comprise around 15 % of the total motor losses.

3.1.2 Electromagnetic Subsystem

For derivation of the equations of the electromagnetic subsystem consider Figure 3.6. It
illustrates the structure of a motor with a pole pair number p of 4 and gives a definition
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for the two used rotor angles. One rotation of the rotor corresponds to a complete cycle of
the mechanical rotor angle ¢, from 0° to 360°. As can be seen in Figure 3.6, a complete
cycle of the electrical rotor angle ranges over one pole pair. With the angular velocity w
defined as

de
w=— 3.4
=4 (3.4)
the relationship between the mechanical and the electrical angular velocity yields
Wel = PWrot - (3:))

With a pole pair number of p = 4, the electrical rotor frequency is thus four times higher
than the mechanical rotor frequency.
The model of the electromagnetic subsystem is based on the voltage equations for each

Orot___09360°
P

Soel

360°

—

Figure 3.6: Structure of motor with four pole pairs

of the three phases. Taking a phase k, the equation yields

k:a,b,c up = Ryip + % . (3.6)
According to the induction law, the induced voltage in each phase is caused by a change
of the flux linkage W. This change can be attributed to a change of the electrical rotor
position dyg or a change in current di. Assuming a linear system, the total flux linkage
seen by a phase can be described by a superposition of the flux generated by the stator
with the flux generated by the rotor as

U= Ups+ Vs, (3.7)

The induced voltage can then be written as

Ui = _d\IJ]C _ _O\I/k d(pe] _ Z a\I/kdi
dt Opa dt L= iy dt
OVs  OUgr ) dee OU,s OU 1,
_ ( k,S T L.R) APel Z ( 41<,,S T 41<‘R> & (3.8)
0Pl O0Pel dt e di; 01; dt
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The flux W,y is generated by the permanent magnets, so it is not depending on the
current. Due to the cylindrical shape of the motor, the flux Wy g does not depend on the
current rotor angle (Kriiger, 2003). The corresponding derivations can thus be set to zero.

—— =0 3.9
0i; (39)
ov
M _y. (3.10)
agpel
Assuming further, that the permeability of the iron core is constant, the inductivities
Ly = ~ 3.11
k.j 82] ( )
have the same value. Taking (3.8) to (3.11) into account, (3.8) can be rewritten as
O\I/k R dtpel O\I/k S d’L]
= — ’ - kS ) 2 3.12
Uik ( (()9991 ) dt j:azbc 8Zj dt ( )
and (3.6) as
U = Rkik — Ui - (313)

The electrical input power of a three-phase electrical machine is defined as

k=a.b,c

Applying (3.14) to (3.6) yields

OV dpe s di; ) .
Pa= Y (RM kR "“ + Y dl’”;;) ik (3.15)
J

k=a,b,c Jj=ab,c

The electrical power as defined in (3.15) can be split up into mechanical power Pyech,
winding power losses Pyinding and inductive power P4 according to

. aﬁ/de¢91 6\I!kg dl
Py = Ryis —Lip 3.16
1 Z Kt Z Dpa dt Clas Z Z di; dt U (3.16)
k=a,b,c k=a,b,c k=a,b,c j=a,b,c
—_———

Pyinding Priech Pina

Given the definition of mechanical power
Pmcch = Afmotwmt s (317)

with My, the torque delivered by the electrical machine and w,o the angular rotor ve-
locity. Substituting

d(pcl
— e 3.18
g = (3.18)
in (3.16) and utilizing (3.5), the torque delivered by the electric motor can be derived as
O\I/k R .

Moy = — 0 . 3.19
L pk:zu;L (9(709] " ( )
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The flux generated by the permanent magnets is depending on the current magnet tem-
perature. Ferrite magnets have a negative temperature coefficient 4y, of —0.2% K~!. The
alternating field of the permanent magnets leads to a change in magnetization direction
and thus results in hysteresis losses when traveling around the hysteresis loop. In addition,
the field induces voltages in the iron core. The resulting eddy currents generate losses,
too. The iron losses are thus composed of

H,iron = 17L,eddy + Ijl,hys . (320)

According to Pyrhonen et al. (2008), eddy current and hysteresis losses can be approxi-
mated by

Phys = khyswcl (321)

Poady = keaayw3 , (3.22)
with we the electrical angular velocity. Using the relationship P = wM yields

M, pys o 1 (3.23)
Afr,eddy S8 fel . (324)

with M, hys and M, cqqy the braking torque caused by the hysteresis and eddy current
losses due to the rotating permanent magnet rotor, respectively. As both the hysteresis
and the eddy losses are caused by the alternating field of the rotating permanent magnets,
the iron losses are lumped together and have to be adapted to a change in the magnet
temperature according to

F)l,ir(m(Tmag) = (1 - (Tmag - TO)ﬂ/br) Piron(TO) = ﬂ(Trnag)Piron(TO) ) (325)

with T}, the magnet temperature and 7 the reference temperature.

3.1.3 Mechanical Subsystem

The mechanical part of the engine cooling fan is fully described by the equation of motion
as

Jwrot = ]\/[mot - (]wload + N[fr,bcaring + ]\Jr,iron) ) (326)

with M.+ the torque generated by the electrical machine (see (3.19)), M,qq the load
torque induced by the rotating fan due to the air movement (see Section 3.1.4), Mg pearing
the friction torque of the bearing and M, ., the braking torque caused by rotational
iron losses. The friction torque generated by the bearing is assumed to be temperature
independent and can be modeled as (Isermann, 2008)

]\/[fr,bcaring = kbO SgN Wrot + kblwrot + kb3w§0t . (327)

If only a small part of the speed range covered by the bearing is considered, the factor
kps can be set to zero. Rotational iron losses and bearing losses of the engine cooling
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Figure 3.7: Calculated rotational iron losses and measured bearing losses and resulting
braking torque for used motor. (a) Losses, (b) Braking torque

fan motor used throughout this work are depicted in Figure 3.7. For the diagram given,
a motor with no load attached, i.e. in idle condition, was operated on a test-bench. In
steady-state, (3.26) thus becomes

A[mot = ]\Jr,total - Afﬁubcaring + ]\/jr,iron . (328)

For the given configuration, the measured motor torque equals the total braking torque
generated by bearing and rotational iron losses. Additionally, only the bearing torque was
measured by disconnecting the stator from the shaft. The braking torque generated by
rotational iron losses was then calculated with
A/[r,iron = Alr,mtal - Affr,bcaring . (329)
As can be seen from Figure 3.7, above an electrical angular frequency of 100s™!, the total
braking torque caused by bearing and rotational iron losses can be well approximated
with a straight line yielding
Afr,total = kr,hys + (kfr,bearing + kr.eddy)wrot . (330)
Substituting (3.30) in (3.26) yields
Afrnot = Jwrot + Afload + A/[fr,bearing + ]\/[r,iron (331)
= Jwrot + Afload + kbU SEN Wrot + kblwrot + kr,ironwrot (332)

For subsequent considerations, the friction and braking coefficients are lumped together
as

ko = ko (3.33)
k[rl = kbl + kr‘iron (334)
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3.1.4 Air Pathway in the Engine Compartment

The cooling system of a modern car usually consists of a cooler, one or more condensers,
a cooling fan and a water pump circulating the cooling liquid. A common setup used by
many car manufacturers is to assemble the condenser and the cooler into one unit and to
place it at the front of the engine compartment to allow for air circulation when the car
is moving. The cooling fan is usually situated behind the cooler and ensures a sufficient
air flow for cooling, in case the car is not moving fast enough or is not moving at all. The
described setup including the air pathway is depicted in Figure 3.8.

According to Strafer (1990), for the given constellation a Mach-number of

Ambient Amblent
(1) 2 () (4)
Air path Apy
Ap,
|
t
P Pd.1 Pd,a
Pd.2 Tpgs i
Dst,1
0 Dst,2 Dst,3 Pst,4 -
) Air path
carh
alr
Cair,1 Cair,2 [Cair,3 Cair,4
0 >
Air path

Figure 3.8: Setup of cooling system with development of pressure and air velocity in the
air path
Ma <0.3 (3.35)

can be assumed. The air flow can thus be assumed to be incompressible. Given a constant
volume, Bernoulli’s law states, that with p = const. and no external energy supplied, the
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total pressure stays constant, yielding
_ _ P2 _ ,
Py = Dst +Pa = Psy + Gy = const., (3.36)

with py the static pressure, pg the dynamic pressure, c,; the velocity of the air flowing
through and p the air mass density. Applying this law to the setup depicted in Figure 3.8,
one can derive the following equations:

(1) Pl = Pst,1 +Pd1 = Pt + gciinl (3.37)
(2) D2 = Dst,2 + Pd2 = Pst2 + g(?gir,z = Pst1 — Ape (3.38)
(3) Pus = Pst3 + Pas = Psts + §CZi,.,3 =pip (3.39)
(4) Pea = Psta + Paa = Psta + gCirA =pi3+ Apy, (3.40)

with Apy the pressure rise across the fan (delivery head) and Ap. the pressure drop across
the cooler. The total pressure p;; before the cooler equals the total pressure p; 4 behind
the fan, yielding

Ape = Apy . (3.41)

The fan thus compensates for the pressure loss induced by the cooler and other flow
resistances in the engine compartment. With a car velocity greater than zero an additional
dynamic pressure, py car =

L2, is present in the system, and (3.37) now yields

p p
(1) Pt,1 = Pst,1 + Pd,1 +pv,car = Dst,1 + iciir,l + §U§ar . (342)

(3.41) then becomes
Apc — Dv,car = Apf . (343)

The pressure induced by the car velocity thus supports the fan, i.e. the pressure difference,
which the fan has to generate for compensation of the pressure loss caused by the cooler,
is lower, compared to the case when the car velocity ve,, is zero.

Affinity Laws

To account for new applications, it is often required to adapt a known fan geometry to
a new one with different diameter D or different liquid properties to be conveyed, such
as the mass density p. This can easily be achieved with dimensionless numbers leading to
so-called affinity laws. These laws not only allow for easy adaption of known fans to ones
with different geometry or changed liquid properties, but also for simple load calculation
for the current operating point based on reference values. The affinity laws stated here are
used for the software implementation of the engine cooling fan model and for symptom
creation (see Section 5.4). Only the equations necessary throughout this work shall be
given here, for a detailed derivation of the equations based on the continuum and the
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Euler-equation see Schlender and Klingenberg (1996). The equations for torque M and
pressure drop Apy are given by

P n\’ D\?
M=) (=) M 3.44
p ("0> (DO) ’ (344

n\? D\’ p -
Apr = Apey - o) B (3.45)

Please note that quantities marked with the subscript ( are reference quantities
(Mo, 1o, po, Apro, Do) which have to be acquired by measurement.

Measuring the load torque M for a given rotational speed n and mass density p respec-
tively, thus allows for easy calculation of the load for different rotational speeds. This
coherence is used for predicting the load induced by an healthy system at a given rota-
tional speed. For correct rescaling of the reference torque to the current operating point
using (3.44), the air mass density p is required, which depends on the ambient pressure
Pa, the absolute temperature T,a;, and the humidity of the air. Considering air as an ideal
gas, the air density can be calculated as

pa

_ 3.46
Ra,chAir ’ ( )

p =
with R, = 287.085Jkg ' K~! the gas constant for dry air, p, and T,z the current
air pressure and absolute temperature (in K) of the air. Taking the air humidity into
consideration leads to

Pa
==, 3.47
r Ra,mTCAir / ( )

with R
R = 2d (3.48)

s Raa)
- (1-52)
In (3.48) the gas constant of water vapour is designated as R, = 461 Jkg !K™1, ¢ is
the relative humidity and ps is the saturated vapour pressure. According to Schlender and
Klingenberg (1996), ps (in Pa) can be approximated with the Antoine equation in a region
between 0°C to 100°C as
(4-ofis)
Ps = 10 OFTeAir Pu s (349)

with A = 10.1962, B = 1731K, C = —39.724 K, T.a;; the absolute air temperature in
K and p, = 1Pa. The specified temperature range for the engine cooling fan is between
—40°C and 120°C. Although the equation given in (3.49) is only valid for a smaller
temperature range, the error made when extending the range to —40°C and 120°C can
be neglected.

The air temperature behind the cooler is an important quantity, which is not only required
for the above mentioned air density calculation, but it is also indispensable for a reliable
operation of the thermal network covered in Section 4.4. With knowledge of the cooling
system, an average air temperature behind the cooler can be calculated, as it is described
in the next section.
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Calculation of the Air Temperature Behind the Cooler

Accurate calculation of the current load seen by the engine cooling fan according to (3.44)
requires knowledge of the air temperature behind the cooler/condensor system. This tem-
perature is usually not directly measured, but, taking some simplifications into account,
can be calculated and provided to the engine cooling fan drive by the car manufacturer.
Only a brief overview of the calculation method and the required parameters shall be
given here. For a detailed discussion and derivation of the given equations see Baehr
and Stephan (2013). In order to calculate the air exit temperature of one cross-flow heat
exchanger, the following quantities have to be known:

e The air entry temperature ¥,i;in, the entry and output temperature of the coolant
fluid Yof 5, and D oue. It is assumed here that these quantities are measured.

e The ,heat capacity flow* of the air and the coolant fluid

Wair = m’aircp,air (350)

Wet = therCp et » (3.51)
with 71 the mass flow and ¢, the specific heat capacity of the air at constant pressure,
respectively of the coolant fluid. The mass flow 77,;, is a function of the current car
velocity Ve, the air temperature and the rotational speed of the engine cooling fan.
The mass flow i is a function of the rotational speed of the combustion engine
and the coolant fluid temperature. Determination of the air and the coolant fluid
mass flow rate is too complex for online-calculation in the car, but both can be
pre-calculated and approximated by a characteristic map.

Qut |
Vet in
Qair
— —
- .
Yair,in Vair,out

lﬂcf,om

Figure 3.9: Heat flows and temperatures for cross-flow heat exchanger

Assuming a stationary behavior and given these parameters, the heat transferred by a
cross-flow heat exchanger can be calculated with the heat-flow balance (see Figure 3.9)

Qair = ch . (352)
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From (3.52) it follows, that
Wair : (/ﬁair,out - 'ﬂair,in) = ch : ("9cf,in - 79cf.out) } (353)
which yields for the air exit temperature

ch -
ﬂair,out = 19air,in + = . (19cf,in - ﬂcftout) . (304)
air
It has to be noted that the equations given above are only valid for one cross-flow heat
exchanger and (3.54) only gives an averaged air outside temperature iy out.

Software Implementation

Emulating the load characteristic of the engine cooling fan module on the test bench
requires a simple model which is able to calculate the load torque for a specified engine
compartment topology and a given speed, relative air humidity and air pressure. The
block diagram depicting input and output variables of the engine cooling fan process
model, which is suitable for implementation on the test bench hardware, is shown in
Figure 3.10. The model requires the characteristic fan curves in terms of total generated

Rotational speed n

>
>

Air temperature Yca;, Engine cooling fan | 1,454 torque Migad
process model >

Car velocity vcar

Air pressure Pcair >

Relative air humidity & >

Figure 3.10: Engine cooling fan process model with input and output quantities

pressure Apg over volume flow and torque over volume flow for a reference rotational speed.
Furthermore, the air channel characteristic curve (pressure drop through air channel over
volume flow) is needed. Besides the rotational speed of the fan, the air pressure, the
relative air humidity and the air temperature are required for exact calculation of the air
density. Both the characteristic fan curve and the air channel characteristic curve have to
be acquired by measurements in the car or on a test bench respectively. The process for
calculation of the current load torque is as follows:

1. Calculation of the air density based on pressure, temperature and relative humidity
according to (3.46) to (3.49).

2. Rescaling of fan characteristic (generated pressure Aps over volume flow and torque
over volume flow) to demanded rotational speed according to (3.45) and (3.44). Ex-
emplary results for a rescaling procedure from 2000 min~! to 2500 min~"! are depicted
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Figure 3.11: (a) Generated pressure Apy over volume flow for two rotational speeds (mea-
sured at 2000 min~! and calculated at 2500 min~). (b) Torque over volume flow (measured

at 2000min~! and calculated 2500 min~?).

in Figure 3.11. The solid line represents base data retrieved from measurements on

a test bench or in the car.

3. Offset characteristic of air channel characteristic curve based on current car ve-
locity. As was described in Section 3.1.4, a car velocity greater than zero reduces
the total pressure difference, which the fan has to generate for the desired volume

flow. The system line hence is shifted to negative direction along the ordinate (See
Figure 3.12(a)). The solid line again represents base data from measurements.

4. Determine intersection point between rescaled fan line and adapted air channel
pressure drop characteristic (See Figure 3.12(b)).

Pressure Ap. in Pa

200 || === Vcar = 0ms~! 7~
smmm Q) =5 -1 "‘
Vear = DS 7~
o
100
“‘
<
z
“‘
0| s
0 0.5 1 1.5

Volume Flow in m?/s

(a)

Pressure in Pa

200

—200

0.5 1 1.5
Volume Flow in m?/s
(b)

Figure 3.12: (a) Air channel pressure drop over volume flow for two car velocities (mea-
sured at v,y = 0ms™! and calculated at v,y = 5ms™!). (b) Finding current operating
point by intersecting fan and air channel characteristic curve (Vear = 5 ms’l).

5. Determine load torque from Figure 3.11(b) for given rotational speed with result

obtained from step 4.
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3.1.5 Validation of the Simulation Model

The accuracy of the derived simulation model was verified by comparison with measure-
ments undertaken with the series ECU of the engine cooling fan. A simplified schematic of
the model is illustrated in Figure 3.13. The individual blocks are based on the equations
derived in Section 3.1.

;/'elt]if‘lel Ubat DC Ude
electrical .
s <<— Link =
system ibat Tbr
Pel T P
1, windi
Motor control] finding
Wel Pliron
Bé-bridge | 4, ) ﬂ’
TWindin§ Rab.o(Twinding and 6,b,C ) LTSS_ Plbearing
Tonay Temperature 3-phase motor calculation i
T Rpson (T} c
T; dependend um (73) i
Pel parameters |75y (Tmag: ) | sw

Mir iron

Mp: bearing
[ fmbearicsl _

Mmot

Rotational speed n

Car velocity Ucar

e ——————
“Air temperature

Air pressure Da

Relative air humidity &
Zelative air umdity § )

Figure 3.13: Simplified schematic of simulation model

Unfortunately, only few data was available for comparison. Shape of the function over time
and rms-values of the line currents were compared for a rotational speed of 2200 min~!
and a load torque of 1.22 N m. The corresponding results are displayed in Figure 3.14 and

Table 3.2.

The simulated waveform by using (3.6) covers the measurement results quite well. It has
to be noted, however, that minor differences do exist, mainly at the peaks of the current.
These are due to nonlinearities of the magnetic motor iron circuit, which are not considered
in the simulation model. More important than a exact congruence of the waveforms is
the rms value, as mean power losses and resulting temperatures are defined by them. As
Table 3.2 shows, the relative error (defined as ,(measured - calculated) /measured “) of the
rms values for the line currents are smaller than |5 %], which is in consistency with the
accuracy demanded from the simulation model. Measurements of the rms values for the
DC-link currents were available for a rotational speed of 2500 min~" with a load torque of
1.22 N m, results of the comparison can also be found in Table 3.2. Although performing
worse compared to the line current calculations, the values are still within an accuracy
limit of 10 %.
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Figure 3.14: Comparison between simulation and measurement for line currents u (left),v
(middle) and w (right). Solid black line: measurement, dashed grey line: simulation. Op-
erating point 2200 min~'@1.22 N m.

Table 3.2: Comparison between measurement and simulation for selected quantities.

1 operating point 2200 min~'@1.22 Nm, *?): operating point 2500 min~*@1.22 N m.

Quantity | rms value measurement in A | rms value simulation in A | relative error in %
i) 24.52 23.58 3.96
it 25.52 26.68 —4.37
oD 24.30 23.60 2.93
i 30.04 32.38 —7.24
i 12.77 11.79 8.35

3.2 Test Bench

The design of the test bench was driven by a trade-off that had to be made due to dif-
fering requirements of the examined topics. One common requirement is the possibility
to arbitrarily change the operating point parameters, i.e. the rotational speed and the
load torque. In addition, evaluation of the algorithms for online parameter measurement
demands continuous measurement of currents, voltages, the torque delivered by the elec-
tric motor, the current rotor angle and various temperatures. For development of the
thermal network a temperature chamber is desirable to heat up the motor to arbitrary
temperatures. The field of fault detection and diagnosis demands the possibility for artifi-
cially introducing faults into the system, such as a motor blockage or motor eccentricities.
This, however, demands operation of the fully assembled engine cooling fan module, i.e.
including the shroud and the fan.

These differing requirements could not be fulfilled with only one test bench. Operation of
the drive in the temperature chamber is not possible in the fully assembled configuration.
Furthermore, the used infrared thermometer for measurement of the rotor temperature
has a limited temperature range it can be operated in, restricting its usage to a maximum
ambient air temperature of 60 °C. Moreover, arbitrarily setting the current operating point
with the fan attached to the rotor requires a complex mechanical setup and comprehensive
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safety precautions. Hence, the test bench does not offer the possibility to assemble the
shroud or the fan.

The resulting setup of the test bench is illustrated in Figure 3.15, corresponding datasheet
parameters for selected components are listed in Appendix D. The test bench as depicted
in Figure 3.16 is composed of the engine cooling fan motor, an inertia, a torque sensor, an
incremental encoder, a load machine and clutches to connect the different components.
The engine cooling fan motor is assembled without the series ECU, and no possibility
exists to connect the fan or shroud to it. As the design of the test bench does not allow
for the assembly of fan or shroud components, a metal cylinder can be coupled, yielding
the same moment of inertia as the original fan. The torque sensor and the incremental en-
coder allow for measurement of the current torque and the rotational speed, respectively.
The main datalogging and control device is a dSpace 1103 card. It gathers temperature
data from the Keithly datalogger and acquires torque and the rotor angle from the cor-
responding sensors. It also runs the process model in real-time and transmits the desired
load torque to the load machine. This offers the possibility to arbitrarily set the current
load torque. The dSpace 1103 can be controlled by a graphical user interface, which is
accessible on the operator PC. The dSpace 1103 and the operator PC are connected by
Ethernet, which allows for a fast transfer of the acquired measurement data from the
dSpace card to the PC.

RS-232
l Load machine
Operator |_Ethernet, dSpace CAN Converter Motor
PC 1103
Process I
model Rotor  ¢rot __|Incrementall
) ADC| angle encoder
ata- ||
logging I
-— Torque Torque
Mmot sensor
RS-232 Timag
Keithley Thermocouples  |Cooling fan|™=--__ R
datalogger| Twinding: Thearing. Tiron motor |- thermometer
fuww
P
Ethernet Oscilloscope >
P
CAN Prototype
electronics
Figure 3.15: Test bench setup
216.73.216.36, am 20.01.2026, 12:57:57. Inhalt.

tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186262080

3.2 Test Bench 37

security

cover
load
machine
engine cooling FiRE.=
fan motor —
incremental
encoder

torque sensor

Figure 3.16: Picture of the test bench. The engine cooling fan motor is assembled with
the parts as illustrated in Figure 3.4. To account for the missing fan, a inertia can be
assembled (large metal cylinder).

Line currents and voltages are measured with an oscilloscope (type LeCroy WaveRunner
6030A) and transferred to the operator PC via an Ethernet interface. The rotor temper-
ature is measured with an infrared thermometer, which is connected to the operator PC
with an RS-232 interface.

The test bench allows for measurement of all required variables, such as phase currents,
terminal voltages, torque and rotational speed. Unfortunately, an external heat source
can not be applied, limiting evaluations concerning the thermal behavior of the motor,
as the only heat source is the motor itself. Furthermore, as no fan or shroud can be at-
tached, possibilities for artificially introducing faults are also limited. Nevertheless, due
to the process model simulated in real-time on the dSpace 1103 (see Section 3.1.4), pa-
rameters such as air temperature, pressure, relative humidity and car velocity, can easily
be modified.

On the test bench, all relevant quantities can easily be measured. However, due to cost
reasons, the algorithms presented in Section 4 can only utilize a limited number of mea-
sured quantities. Figure 3.17 illustrates an electrical setup with measurement possibili-
ties, which are assumed to be feasible with future microcontrollers. A comparison of the
measurement possibilities of the series product with the measurement possibilities on the
test bench and the assumed future measurement possibilities, which are available for the
developed algorithms, is presented in Table 3.3.
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Figure 3.17: Electrical setup of engine cooling fan with measurement possibilities assumed
to be feasible with future microcontrollers

Table 3.3: Comparison of measurement possibilities of the series product with measure-
ment possibilities on the test bench and future measurement possibilities available for the
developed algorithms.

Quantity

Series product

Test-bench

Assumed for developed
fault detection
algorithms

Line currents

Luv,w

Line voltages

U, v, w

DC link
voltage e

Torque Mot

Rotational
speed n

Rotor angle
Prot

Can not be mesaured

Measured by A/D
converter on
microcontroller

Can not be measured

Can not be measured

Reconstructed by
blanking interval

Reconstructed by
blanking interval

Measured by
oscilloscope

Measured by
oscilloscope

Measured by
oscilloscope

Measured with torque
sensor

Measured with
incremental encoder

Measured with
incremental encoder

Reconstructed from
shunt measurement
Measured by A/D
converter on
microcontroller
Measured by A/D
converter on
microcontroller

Can not be measured

Reconstructed by
observer / blanking
interval

Reconstructed by
observer / blanking
interval

3.3 Conclusion

In this chapter, the engine cooling system, and in particular, the engine cooling fan was

described. Equations were given for modeling the electronical, the electromagnetic and the
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mechanical part of a permanent magnet synchronous machine. Furthermore, the process
model for the engine cooling fan was derived, and a description of the implementation
on the test bench was given. The simulation model was validated by comparison with
measurements from the series engine cooling fan module, and the test bench setup was
described. The elements covered in this chapter are highlighted in Figure 3.18. The next
chapter will deal with the extensive topic of online parameter acquisition.

. . Engine
Vehicle Power Cooling [ &l
) Motor cooling
net electronics fan
system
Parameters: Parameters: Parameters: Parameters:
Resr — Rape e J P
‘.;7;; Fe koo, ke ® Ucar
e Mo, 1o ETD
1 Wair, Wet
-
. LUT
Online Torque Loss e
parameter calculation lcalculation Al
gathering L 7 1 ¢ Calculation
, v it
air density
Thermal | PeAir
network 1, ¢
Ir [0s Affinity
laws
JA[lc-ad
YV Y 2 7 7 ;
. Electro- . !
Electrical . Thermal Mechanical | |
subsystem magnetic subsystem subsystem E
Fault detection subsystem |
and diagnosis Aged capacitor Demagnetization Overheat Winding Blockage i
Winding fault Overheat Magnet Dirt on blade |
Defect bearing !

Figure 3.18: Covered elements in this chapter (marked with bold lines).
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4  Fault Detection and Diagnosis of
the electrical motor: Online
Parameter Acquisition

Knowledge of internal states and parameters of the electrical machine is of high impor-
tance for a model-based fault detection and diagnosis. With determination of nominal
parameters by End-of-Line (EoL) testing, the parameters can be adapted to the individ-
ual fan during operation of the drive.

Applying parameter estimation techniques is not always possible, as this demands injec-
tion of specific test sequences, such as step functions, sinusoidal waves or Pseudo Random
Binary Sequences (PRBS) (see Isermann and Miinchhof (2011)). Utilization of a PRBS
leads to a disturbance of the normal drive operation, which can not be tolerated in most
cases. Furthermore, in the production site short injection pulses are preferred to avoid an
increase of the cycle time, as e.g. shown by Kowalczyk et al. (2013).

The techniques presented in this chapter are therefore based on the indirect measurement
principle, which utilizes physical relationships between known or measurable quantities
and unknown variables. The methods for determination of the winding resistance R, ¢
and the equivalent series resistance Rgsr both inject a pulse of short duration, measure the
resulting currents and voltages and, based on these measurements, determine the unknown
quantities R,p. and Rpgg, respectively. A similar principle applies for acquisition of the
flux linkage over angle, which is determined during a power-off run of the engine cooling
fan by measurement of the line-to-line voltages and the rotational speed.

The thermal network presented in Section 4.4 is based on an observer structure, that
takes the winding and ambient air temperature as an input to derive the current magnet
temperature.

4.1 Winding Resistance

The winding resistance of an electrical machine is an important parameter, which does
not stay constant during operation of the drive. Among others, it changes depending on
the current winding temperature. The temperature change is due to power loss, which
occurs in the windings by the current flowing through them. The relationship between
the current resistance and the corresponding winding temperature is given as (Kallenbach
et al., 2012)

R(Twinding) = R(:Twinding,(])(]- + W(Twinding - winding,(])) ) (41)
with Tyindging the current winding temperature, R(Tinding,0) the reference resistance at a
given temperature and 7 the temperature coefficient of the winding material. For copper,
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it holds v = 0.39 % K.

Knowledge of the initial value and development of the resistance during operation gives
possibilities for online thermal monitoring of the winding temperature according to (4.1)
and for detection of winding faults. Furthermore, it can be used for tuning control of
the drive, as these algorithms mostly depend on accurate machine parameters to achieve
maximum robustness, respectively output power, for each operating point.

This section outlines a method for reliable winding resistance measurement during stand-
still as well as during normal operation of the drive. As will be outlined in Section 4.4,
this measurement serves as a temperature sensor inside the motor and is the basis for
adaptive parametrization of the developed thermal network.

4.1.1 DC Injection Method

Several methods for determination of the winding resistance of electronically commutated
drives are covered in the literature. The techniques described can be clustered into three
groups: determination via parameter estimation or by injection of an AC (Alternating
Current)- respectively DC (Direct Current)-component on the driving motor voltage. As
the available literature is very extensive only an exemplary overview can be given.
Velez-Reyes et al. (1989), Souza Ribeiro et al. (1999), Jacobina et al. (2000) and Gorter
et al. (1995) use both linear and nonlinear models which serve as a basis for estimation of
various motor parameters. Disadvantageous about these models is the presence of more
than one varying parameter in the parameter vector. The resistance and the flux link-
age both depend on temperature. The self and mutual motor inductances can only be
considered as current-invariant for magnetic circuits which do not operate in saturation.
Isermann and Miinchhof (2011) show that the parameter estimator can only track one
time-invariant parameter and thus independent identification of all motor parameters is
not possible. The above-mentioned publications circumvent this problem by using several
operating points including standstill or require additional hardware for measurement.

The approach to inject a high-frequency carrier signal onto the normal operating voltage
and to evaluate the injection frequency component of the phase currents by perfoming a
Fourier transform is covered by Wilson et al. (2005) and Wu and Gao (2006). This method
was also evaluated during the course of this work, but was found to be unsuitable for the
used motor. As no DC components are considered for evaluation, the dq reference frame
(see Schroder (2009) and Binder (2012)) has to be utilized. This, however, requires exact
knowledge of the rotor field and additional computational effort for the transformations
from the stationary three-phase system to the rotor-oriented dq frame. As the typical
microcontroller employed for small low-cost drives like the engine cooling fan is almost
utilized to full capacity during normal motor operation, the additional resources required
for performing a Fourier transform cannot be provided. Furthermore, the results obtained
by the AC injection method were not accurate enough for determination of the winding
temperature which is due to saturation effects resulting in nonlinear inductance values.

21673.216.36, am 20.01.2026, 12:57:57. Inhalt,
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186262080

42 4 Fault Detection and Diagnosis of the electrical motor: Online Parameter Acquisition

>, K] . K] O} S ."“
< 10 & % D ": . - Y
.: E L M N "‘ . ~ .':l .
© = BN UL W AR W
® CEELAEY RN Y A FA A
= = . .- L e . E
G =S 3 T
- LY SRS N SR g
AR E IR L
0 0.02 0.04 0.06
Time in s Time in s
(a) (b)

Figure 4.1: Terminal voltages and phase currents during normal motor operation (simu-
lation). (a) Terminal voltages (b) Phase currents

The DC injection method is similar to the AC injection described above, only that DC
quantities are superimposed on the motor voltages instead of AC quantities. The general
principle of this method is outlined in Stiebler and Plotkin (2005). Implementation of
this method is very simple, as only DC quantities are considered, which does not require
an exact rotor position measurement and hence does not indicate the utilization of the

dq frame. Due to its simplicity and low computational demand, the DC method is the
preferred choice for determination of the winding resistance.

However, as will be shown in this section, in its original form the algorithm has some
limitations, that render it unsuitable for series implementation. In the following, the base
method developed by Stiebler and Plotkin (2005) is presented together with an extension
which overcomes the limitations set by the algorithm originally developed.

Principle of operation

The principle of the DC method is the superposition of a DC voltage Uj,; to one phase
of the motor. The injection takes place either in standstill or during normal operation of
the motor. In the latter case, the DC voltage is superimposed on the driving AC voltage.
The injected DC voltage leads to an asymmetry of the motor currents, causing an offset
on all three phases. The current of the phase that the DC voltage is being injected to
is shifted by Iiesinj, the other two phase-currents by —%[res,iny Simultaneous injection
on all motor terminals would result in no additional DC-offset of the phase currents. For
sinusoidal motor currents, the process of an injection during normal operation is illustrated
in Figure 4.1. The motor terminal voltages and the phase currents for normal operation of
the drive are shown in Figure 4.1(a) and Figure 4.1(b), the voltages and currents during
injection are illustrated in Figure 4.2(a) and Figure 4.2(b).
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Figure 4.2: Terminal voltages and phase currents during injection period (simulation).
The DC offset Uyy; is injected onto terminal u. (a) Terminal voltages. The voltage w, is
shifted by Uiy. (b) Phase currents. i, is shifted by Lesinj, tv.w by —%[res,‘my

Mathematical illustration of the base DC-method is performed by extending (3.13) with
the DC injection voltage, exemplary for phase a, leading to

. a\I}a aqja d(i; + [res.in'
g + Unj = Ra(ia 4 Lresinj) + W’Rwel + Z ( - 'S) (G inj)

0 el jmabe a’L]' dt
] a\p R a\IJ S di; v S dIr °s,inj
= Ltglq ’a[reﬂ inj = e % _J a, es,inj ,
fata 18 ”J+ 09991&}14_,2 <8ZJ )dt+z <8L] dt
J=a,b,c j=a,b.c
(4.2)

with Uy, the injected voltage and I sy the resulting current. As assumed during deduc-
tion of the motor equations, the magnetic circuit is considered to be linear. The AC and
DC voltage sources can then be described as acting independent from each other, i.e. their
responses can be simply added. Assuming further that % = 0 and subtracting (4.2)
from (3.13) gives

Uinj = Ra]rcs,inj . (43)

In steady state, the resulting DC current is thus only depending on the injected DC volt-
age. Furthermore, the winding resistance of one phase can easily be obtained by dividing
the injection voltage by the resulting DC-current
R, — Uinj _ Uchinj ’ (4.4)
]res,inj ]res,inj
with xin; € [0,1] the duty cycle superimposed on the normal motor operation, and Ugc
the voltage of the intermediate circuit (,DC-link“) capacitor.

Applying the aforementioned procedure to the engine cooling fan requires the actual mo-
tor topology to be taken into account. The DC injection voltage is generated with the
B6-bridge by adding yiy; to the duty cycle demanded from the controller for the respec-
tive phase. Consequently, the measurement path has to be extended by the MOSFET
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Figure 4.3: Measurement path for DC-injection: (a) Delta configuration, (b) Equivalent
star configuration

resistances Rpgon and the connecting copper line resistances on the PCB R, (see Fig-
ure 4.3(a)), as the generated voltage is influenced by the voltage drops across the respec-
tive resistances. Despite the engine cooling fan being a motor with the windings in delta
configuration, derivation of (4.4) is performed using the equivalent star configuration as
illustrated in Figure 4.3(b). The resulting star resistance can then easily be transformed
to its delta correspondence. The star-delta transformation is covered thoroughly in Ap-
pendix B.

It is assumed that the stator winding, the MOSFET and the copper line resistances of
all three phases have the same values. The total resistance of each phase can thus be
expressed as

R; = Rpson + Reab + Ry . (4:))

The resulting setup is depicted in Figure 4.4(a). As the DC injection takes only place
on one motor terminal and as the superposition theorem is applied, the impact of the
DC source can be evaluated by setting all AC voltage sources to zero (see Figure 4.4(b)).
Further on, the parallel circuit consisting of the resistances from phases b and ¢ can be
combined to one single resistance (illustrated in Figure 4.4(c)).

When superimposing the DC voltage on line u, the voltage U,,, yields

Uum = XinjUdc . (46)
The voltage U, can then be derived as
RY 2
Uus = 7YUum = 7Uum 4.7
Ry« + Rs 3 (A7)
2
= 5 Xinj Udc .

3

With (4.7) and the DC-current Liesinj, the total resistance in star configuration can then

be expressed as
Us 2 Ude
RY* — = 5 Xinj d . (48)

res,inj res,inj
1, 3
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Figure 4.4: (a) AC and DC voltage sources combined, (b) Setting AC voltage sources to
zero, (¢) Combining resistances from phases b and ¢

Substitution of (4.5) in (4.8) finally yields for one phase resistance

o gXinjUdc _

Ry =
Y 3 ]res,inj

(RDSOH + Rcab) . (49)

The approach described by Stiebler and Plotkin (2005) assumes that the intended DC
voltage, which is superimposed onto the normal control voltages is exactly applied on the
motor terminals. This, however, cannot be achieved due to a voltage drop across the B6-
bridge and nonlinearities inherent in the MOSFETS’ switching process. The voltage drop
is caused by the on-resistance of an enabled MOSFET and the copper line on the PCB
which connects the MOSFETS’ to the corresponding motor terminals. The nonlinearities
are caused by deadtimes that have to be adhered to prevent a short-circuit in the bridge.
In addition the switching process has to be considered, i.e. the time that elapses between
the arrival of the switching signal at the bridge driver and the fully interconnected state
of the MOSFET. Even with knowledge of the current MOSFET temperature, the load
dependent effects cannot be compensated properly.

An exemplary switching process of the used B6-bridge is illustrated in Figure 4.5. During
the deadtime, the resulting mean voltage is distorted by the clamping voltage of the
freewheeling-diode. In addition, the terminal voltage shows oscillations which are due to
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Figure 4.5: Exemplary switching process (measurement). Please note that the high-side
switching signal was offset by 5V for better visibility.

the absence of a damping network. The time delay after the switching process, until the
line voltage starts rising or falling, can also be clearly seen. These effects lead to a terminal
voltage which is different from the targeted one. This in turn results in a wrong resistance
calculation, as the DC-current does not fit with the assumed duty-cycle in (4.4).

This effect is demonstrated in Figure 4.6, which shows the deviation of the measured
DC-current to the one expected from theory for different injection duty cycles. As can
be seen, the higher the duty cycle, the lower the deviation becomes. Considering above
explanations and Figure 4.5, this seems comprehensible. The lower the duty cycle, the
higher the influence of switching delays and the settling-in process on the resulting mean
voltage.

In Plotkin et al. (2008), a deadtime compensation method is proposed for increasing
accuracy of the DC method. The described compensation, however, relies on an operating-
point dependent Look-up-table (LUT). The steps required for acquisition of the LUT table
data are contradictory to the goal of minimizing the application effort set forth by this
work. In addition, the temperature- and load-dependent switching cycles are not taken
into account by the method, which render it unsuitable for series implementation.
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Figure 4.6: Deviation of measured DC-current to current expected from theory for different
injection duty cycles

The method was thus enhanced with a voltage measurement at the motor terminal. Due
to the high switching-frequency of 20 kHz, two filters were implemented. The first filter
is a hardware low-pass filter with a cutoff frequency of 250 Hz. Aim of this filter is to
eliminate most of the frequencies above the fundamental wave frequency (e.g. 167 Hz
for an operating point with a rotational speed of 2500 min~'). Output of this stage is a
smoothed signal of the motor driving voltage. For extraction of the DC offset, a second
filter is required, which is implemented in software. This is a simple average filter which
detects the mean of the input signal. This 2-phase approach allows for short injection
times, as the settling-in process of the hardware low-pass filter is very fast due to the
low cutoff frequency. Utilization of a filter, outputting the DC component of the motor
terminal voltage, would result in a long settling-in process, requiring long injection times as
well. However, the longer the injection time, the longer the normal operation is disturbed
and the more additional power loss is generated. The mean current is extracted with the
same 2-phase filter structure. The proposed configuration is illustrated in Figure 4.7.

Lzu--: : DC_ 19windin;{ .
Pl | injection | Yinj
e > »[ Motor Y Ares »| B6-bridgef™
> control [Xw > -
%Qel
n
n

Figure 4.7: Block diagram of DC-injection method with terminal voltage measurement
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In case the motor terminal voltage U,,, is measured (see Figure 4.4), the phase resistance
in star configuration can easily be calculated and (4.9) becomes

_ 2 Uum

Ry == . 4.10
Y 3 Ires‘inj ( )

4.1.2 Implementation and Results

Both the standstill-measurement and the measurement during operation were imple-
mented as state machines. The two execution sequences are constructed similar with the
sole difference, that the state advancement is time-driven for the standstill measurement
and depends on the number of detected electrical periods for the measurement during
operation. The timing diagram for the standstill measurement is illustrated in Figure 4.8.
Once the measurement procedure is activated, the mean of the line current without any

Measurement I | 71
Injection Ty :
Measurement I’
Evaluation
0 # ty  ts ?
Time

Figure 4.8: Timing diagram for standstill measurement.

injection voltage is determined for a time-period of length 77. This step is performed, as,
depending on the control strategy, the base duty-cycle can be set to 50 %, which can lead
to a non-zero line-current in idle-state due to nonlinearities and component tolerances in
the B6-bridge. The injection takes place for a time-period of length 7. The injection time
should be kept at a minimum so that power loss is minimized, yet be long enough for the
system to settle in. The electric time constant for the engine cooling fan is given as

Tel = % =294 x107%s. (4.11)

The minimum injection time can thus be derived as

Tomin = 370 = 8.842 x 107%s. (4.12)
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Starting from ¢, in Figure 4.8, the mean of the line-current again is determined for a
time-period of length 7. The resulting DC current is then calculated as

]resyinj = j’ —-1I. (413)

T, should be chosen large enough for the rotor field to be in mechanical alignment with
the resulting field from the injected DC current. In practice, an injection for a time period
of 15 in is not sufficient and results in measurement errors due to the movement of the
rotor. An injection time of 40 x 1073s was determined to yield a good performance. For
applications that have a rotor angle measurement available during standstill, the state
machine could also check for the rotor angle and dynamically adapt T, such, that the
measurement is started only, when the rotor is not moving anymore.

The timing diagram for the injection during normal operation is shown in Figure 4.9.
As the mean value is taken for the current, it is important to use data for full electrical
cycles. When deciding, how many electrical cycles should be used for data evaluation, it
has to be taken into account that a partially demagnetized rotor results in p electrical
cycles which are not identical. p is the pole-pair number and is four for the used engine
cooling fan. The number of electrical cycles during measurement of mean values hence
should be chosen as a complete multiple of four.

Measurement I | V1

Injection Ny

Measurement I’

Evaluation

0 ny Ny N3 n
Number of electrical cycles

Figure 4.9: Timing diagram for measurement during operation.

Choosing an appropriate injection magnitude and time strongly depends on the type of
application the method is to be used for. Under high-load conditions, the DC bias, caused
by the injection, produces an additional flux component, which results in unbalanced
magnetic saturation during each electrical cycle. As shown by Zhang et al. (2011), this
unbalanced saturation causes multiple harmonics at even orders. They interact with the
fundamental wave and generate torque ripples, which in turn create additional noise.
However, for the engine cooling fan this torque ripple is considered uncritical, as the
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mechanical damping is very strong due to the high inertia of the fan.
Furthermore, the DC-bias induces additional copper losses in the windings

RVindinanj = Uinj]res,inj . (414)

With a magnitude of 5% of the superimposed injection duty cycle xi,; and a DC-link
voltage of 13V, the resulting DC-current is approximately 27 A (assuming a phase winding
resistance of 37.5 x 1073Q)). This leads to an additional power loss of 13.5 W, decreasing
the maximum efficiency by around 5 %. Due to the long thermal time constant of the motor
(see Section 4.4, approximately between 400s and 500s), an injection interval between
60s and 1205 is sufficient, rendering the increasing power loss negligible.

In order to further improve the robustness of the presented approach, the terminal voltage
measurement was supplemented with a differential amplifier to allow for a differential
voltage measurement. With the measurement of the differential voltage U, between lines
u and v, following equation can be derived from Figure 4.3(b)

Vs = s+ Uss = R nsag + 3 B Ly = 3 B L. (415)
From (4.15) it follows that
Ry = % IU"J ; (4.16)
and transforming to the delta configuration
Ra = 3Ry =2 IU - (417)

Both the implementation as described by Stiebler and Plotkin (2005) and the method
enhanced with a terminal voltage measurement were evaluated at the test bench. The
method originally proposed did neither produce satisfactory results for the standstill nor
the measurement during operation of the drive. Results for an injection during operation
are shown in Figure 4.10. The winding temperature used for comparison was retrieved
with several temperature sensors mounted on the surface of all three motor windings.
The temperature dependent voltage drops across the B6-bridge and the PCB were com-
pensated. As can be seen in Figure 4.10, even with this compensation, the determined
winding temperature is only accurate for operating points with a high load torque. For
lower loads, lower duty-cycles are required, which exacerbate the effects shown in Fig-
ure 4.5 and demonstrated in Figure 4.6.

Results for an injection during operation with the enhanced method with the terminal
voltage measurement are illustrated in Figure 4.11. For the shown operating points, the
mean relative error between the DC injection value and the temperature gathered with a
sensor is 5.9 % and a maximum deviation of 7°C can be observed. The waveforms of the
filtered current and line-to-line voltage during an injection cycle are shown in Figure 4.12.
The offset shift of the current, after the injection started, can clearly be seen between
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Figure 4.10: Comparison of measured winding temperature with temperature retrieved
with DC-injection method without terminal voltage measurement for different operating
points. In the top illustration the dotted line represents the winding temperature deter-
mined with the DC injection and the straight line the mean of the measured winding
temperature.

0.1s and 0.28s. The voltage signal, however, changes only a little. In addition, a small
oscillation can be seen on the voltage signal, which is due to an improper damping of the
test bench.

The voltage and current waveforms for an injection during standstill are depicted in
Figure 4.13, results for a standstill measurement with an injection every 10s are illustrated
in Figure 4.14. Please note, that, due to the injection, the temperature increases slightly
for the measurement period. The standard deviation for the shown measurement is 3.8 °C
and the mean relative error is 11.3 %.

4.1.3 Conclusion

It can be concluded, that the method originally proposed by Stiebler and Plotkin (2005)
does not give satisfactory results for series implementation. As shown in this section,
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Figure 4.11: Comparison of measured winding temperature with temperature retrieved
with DC-injection method with terminal voltage measurement for the same operating
points as shown in Figure 4.10
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Figure 4.12: Line current and line-to-line voltage during an injection at ¢ = 0.1s (measure-

ment)

the measurement accuracy can be increased by utilization of an additional hardware
filter for determination of the injected DC offset. The software filter that calculates the
mean of the signal is not computational intensive, which allows for implementation of the
enhanced method on the microcontrollers typically utilized for small electrical drives. The
described method shows a standard deviation of 3.8 °C for standstill measurement, and,
for the tested operating points, a maximum deviation to the value measured with a sensor

during operation of 7°C.

The resistance is used for calculation of the power loss induced in the winding. It is fur-
thermore utilized for detection of a winding fault (see Section 5.1). Deriving the winding
temperature from the winding resistance constitutes a virtual temperature sensor inside
the motor, which is of benefit to the thermal network presented in Section 4.4. Further-
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Figure 4.13: Line-to-line voltage and line-current for standstill-measurement. Please note
that the base duty-cycle during idle-phase was set to 0.
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Figure 4.14: Results for standstill measurement. Injection was carried out every 10s with
an injection duty-cycle of 5 %.

more, the standstill measurement offers the possibility to acquire a winding temperature
before starting the motor, which was so far only possible with a dedicated temperature
Sensor.

In the next section the determination of the flux linkage over angle is presented, which
is an important quantity for diagnosing a demagnetization event and for calculating the
torque delivered by the electrical motor.

4.2 Flux Linkage over Angle

Similar to the winding resistance, the flux linkage of an electrical machine is an important
variable during motor design and one of the main parameters describing properties of
the machine. The resulting flux linkage can either be calculated by simulation or directly
measured at the test bench. For determination at the test bench the induced voltages on
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the three motor terminals are measured and the flux linkage is calculated according to
oV, Uik
85091 Wel ’

(4.18)

with u; , the measured induced voltage, w. the electrical angular velocity of the rotor and
oWy,
Opel
that no current flows through the motor coils and that w,) stays constant. To achieve these

the corresponding change of the flux linkage. For this measurement, it is necessary

conditions the motor under test is driven by an external machine.

A method which allows for determination of the current flux linkage of a machine used in
the field is highly desirable, as knowledge of the flux linkage in the software allows for

1. torque calculation according to (3.19)

OVir .
]\/fmo =P - U, (419)
‘ k:Xa;,c 89901

2. demagnetization or improper magnetization detection and,

3. adaption of the control algorithm to the machine.

Point one requires a detailed knowledge of the shape and amplitude of the flux linkage over
one electrical cycle. The required information could be gathered with the above described
measurement on a test bench or with an EoL equipment. However, the constraint that the
drive has to be kept at a constant speed for a certain amount of time is contradictory to
short cycle times demanded by production. Measuring the flux linkage for some samples
on the test bench and using this measurement for torque calculation does not account
for changes in the flux linkage due to a demagnetization or tolerances of the magnet
properties. It is therefore required to update the information about the flux linkage at
regular intervals in the field.

Operating a magnet above the maximum rated operating point in a counter-acting field
leads to a demagnetization event. Irreversible loss of magnetization can result from ele-
vated temperatures and strong opposing magnetic fields. A uniform or partial demagneti-
zation of the magnets requires more current in the machine to deliver the desired output
power, which induces more thermal stress in the motor and the connected electronics.
As will be shown in Section 5.2, knowledge about the development of certain harmonics,
which are machine dependent, is sufficient for demagnetization detection using the flux
linkage over angle.

Determination of the shape and amplitude of the flux linkage also allows for adaption of
the control algorithm to a specific machine. As the topic of adaptive control is not covered
in this work, this point will not be discussed in more detail.

In the following, an algorithm is presented which allows for reliable determination of the
induced voltage at an EoL run and in the field. The flux linkage over angle gathered
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with the described method can be used for torque calculation (see Section 5.4) and for
demagnetization detection (see Section 5.2).

4.2.1 Proposed Method

The method proposed here performs a measurement of the induced voltages and recon-
structs the flux linkage over angle according to (4.18). The induced voltage can only be
measured during a no-load operation of the drive. Taking the engine cooling fan, three
scenarios result from this requirement allowing for its determination:

1. Strong deceleration during power-off due to very low rotor inertia (no fan attached)
and active braking by the EoL equipment for reduction of the cycle-time (EoL
parameterization in the plant of the supplier of the electrical motor).

2. Slow deceleration during power-off in the car with high inertia due to the attached
fan.

3. Acceleration/deceleration in the car due to the airstream caused by changing car
velocity (generator operation).

Scenario one thus aims at reconstruction of the flux linkage at the EoL with no fan
attached to the electrical motor (resulting in a very low inertia), while scenario two and
three refer to the normal operation in the car with the whole assembly consisting of
electrical motor and fan attached to it. For subsequent considerations, only point one and
two are considered here, as point three would demand constant operation of the engine
cooling fan ECU to monitor the level of the induced voltage.

Exemplary shapes of the induced voltages for scenarios one and two are depicted in
Figure 4.15. As can be seen, the slow deceleration during power-off caused by the high
fan inertia is the least critical case, as the velocity for the first mechanical period can be
considered as constant. In contrast, the power-off during the EOL test shows a strongly
varying velocity for the first mechanical period of the signal.

Basis for reconstruction of the flux linkage over angle is the measurement of the terminal
voltages .y, uy and uy. During a no-load operation, no current is flowing through the
motor coils. Thus, the observer utilized for reconstruction of the rotor angle and rotor
angular velocity (see Section 3) is not functional. After measurement of the terminal
voltages, the reconstruction procedure consists of the following steps:

1. Reconstruction of (¢ (t) and we(t) for the first mechanical period based on the
zero-crossings of the induced voltage.

2. Based on @g(t), rescaling of the measured voltage to a signal with constant velocity.
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Figure 4.15: Measurement of induced voltage during power-off with inertia of fan (top)
and with sole rotor inertia and active braking by the EoL equipment (bottom).

3. Fitting of the original, equidistant time axis to the signal with constant velocity,
leading to a not equally spaced time axis.

4. Interpolation to the required sampling rate.

5. Performing of a Fast-Fourier-Transform (FFT) to obtain the spectrum of the flux
linkage over angle.

In the following, equations for a power-off operation of the engine cooling fan are derived.
Based on these equations, exemplary shapes of the induced voltage are determined and
utilized for demonstration of the above described steps.

Basis for derivation is (3.26), which describes the mechanical part of the engine cooling
fan by the equation of motion as

Jwrot = Almot - (A/jload + ]‘/[fr,beariug + ]\'/[r,iron) . (420)

Setting Myt to zero and assuming no friction and no rotational iron losses (Mg bearing =
M, ivon = 0) yields

Jwrot = _Ajload . (421)
Approximating the load with a square of w,; and introducing a proportionality constant
Kgan gives
dew,
J d‘;‘ = kg, . (4.22)
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Solving this differential equation by separation of the variables yields

1

Wrot

1
+C =~ Skt (4.23)

By setting ¢t = 0, one can derive a value for the constant C' as

1
Wrot (0) ’

C= (4.24)

with wyet(0) the initial angular velocity before powering off the drive. Solving for wyet
finally yields

J - wiot(0) _
ot (1) = ————7—— . 4.2¢
W, t( ) kfan . W[-ot(o) t + J ( ‘))
With wye = 22, (4.25) becomes
I3
J - p-wea(0)
el(t) = . 4.26
WI() kfan-wcl(o)-t+J-p ( )
Integration of (4.26) yields
Jp
a(t) = [ walt)dt = 3 In (Aganwer (0)t 4+ Jp) + C'. (4.27)
fan
By assuming ¢q(0) = 0 as an initial condition, C' can be calculated as
J-
Ozkp-ln(p-J)JrC (4.28)
fan
J-p
C=- ‘In(p-J). (4.29)
fan
Assuming a sinusoidal shape of the induced voltage, u;(¢) can then be derived as
i(0) - walt) .
w(t) = WOl g0, (4.30)

wel(O)

with 4;(0) the induced voltage at t = 0.

As no rotor angle measurement is available, the zero-crossings of the induced voltages
are the only indicator available for capturing the velocity characteristic of the motor
during the measurement cycle. The first step therefore includes determination of the zero-
crossings and saving of the corresponding times. An exemplary shape of the induced
voltage during a power-off with low inertia, created with (4.30), is shown in Figure 4.16.
The zero-crossings are marked in the figure as well.

For the exemplary sine wave, the distance between two zero-crossings marks exactly
180°. Therefore, a diagram depicting the electrical angle depending on the times of the
zero-crossings can be drawn by multiplication of the number of zero-crossings found with
7 (See Figure 4.17). When using all three motor phases, the distance between two
zero-crossings reduces to 60°, as illustrated in Figure 4.18.

By approximating this relationship with a polynomial of degree n according to
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Figure 4.16: Simulated induced voltage during power-off with marked zero-crossings
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Figure 4.17: Electrical angle over time based on the detected zero-crossings
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Figure 4.18: Induced voltage during power-off for three phases with marked zero-crossings
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with ¢ € [0,n] € Ny and n € Ny, one can easily determine the velocity for the measured
period by differentiating (4.31), yielding

n—1

. d o
Gat) = 7palt) = D _dat™". (4.32)
) i=1
The angular velocity at time ¢ = 0 is given as
. d
@e(0) = —@a(0) = a1 (4.33)

dt

Utilizing (4.32) and (4.33), the measured voltage can be rescaled to a corresponding signal
with the velocity w(0)

. w(0)
Ui (0) (1) = Ui(t)w @ (4.34)
and a period length of
2w
Tou0) = = - 4.35
1(0) @a(0) (4.35)

Last step consists in fitting the original time-axis to a time-axis consistent with @ (0) as

¢c1(t)
2

toa0) = Toa (4.36)
Due to the fact that the new time axis ¢4 is not equally spaced, é;(o)(t) has to be inter-
polated to an equidistant time axis before performing an FFT of the signal. Requirements
regarding sampling rate for this time-axis are outlined in the following section.

During idle time of the controller, a FFT of (4.34) can be performed, yielding the ampli-
tude a, and phase angle ¢, of the n-th harmonic.

4.2.2 Implementation

Several factors have to be considered for series implementation of the described algo-
rithm. Different requirements regarding computing power and additional hardware can
be derived, depending on what application the method is used for, and for which of the
aforementioned scenarios it is employed.

The results of the algorithm were evaluated by comparison of the determined induced volt-
age shape with a reference signal measured with a 12-bit oscilloscope at the test bench.
For graphical illustration, the residual between the reference and the reconstructed signal
was built. In addition, the root mean square of both signals were compared to each other.

Several issues have to be dealt with, when implementing the described algorithm. First of
all, due to possible asymmetries attached to the electromagnetic circuit, the shape of the
flux linkage over angle can vary between the three phases. The rms-values of one complete
electrical period for each phase (measured with an oscilloscope) are shown in Table 4.1.
As can be seen, they differ slightly. The difference, however, is very small and is thus

21673.216.36, am 20.01.2026, 12:57:57. Inhalt,
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186262080

60 4 Fault Detection and Diagnosis of the electrical motor: Online Parameter Acquisition

Table 4.1: Measured rms-value of induction voltage over one electrical period for all phases.
Phase a b c
rms in V | 8.97 | 8.98 | 9.02

neglected. Furthermore, the zero-crossing during one electrical period can be at a position
slightly different than 180°, which can result from a misaligned magnetization head. This,
as a consequence, reduces the available number of zero-crossings for the polynomial ap-
proximation according to (4.31). The relative angle between two phases, however, is fixed
to 60°, i.e., starting from the first zero-crossing found, the following angles can be used
for approximation: 0°, 60°, 120°, 360°, 420°, 480°...

For determination of the induced phase voltages at the test bench a differential measure-
ment of the motor terminal voltages is carried out. Retrieving the phase voltages wyy, Uyw
and u, requires subtraction of the corresponding terminal voltages in software. During
the measurement procedure at the test bench the associated electronic unit is discon-
nected from the motor. This is obviously not possible during measurement in the field.
Despite all six MOSFETS of the B6-bridge being open, the anti-parallel diodes interfere
with the voltage measurement by clamping negative voltages below the corresponding
threshold voltage. This results in distorted measurements, as depicted in Figure 4.19. As
this effect is symmetrical for all three phases it is canceled-out by the subtraction required
for determination of the phase voltages.

Voltage in V

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Time in s

Figure 4.19: Terminal voltages distorted by connected electronics unit

The used Analog-to-Digital (A /D)-converter, however, cannot deal with negative voltages
which requires a slight modification of the hardware setup used for measurement as shown
in Figure 4.20. For a more compact illustration, the required layout is only shown for
one terminal voltage. The MOSFET’s are not shown in the figure as they are in high-
impedance state during measurement. The proposed modification adds a constant offset
of 1V to the measurement resulting in the ability to measure voltages in the range of —1V
tO Uimax- The additional offset can be switched on and off with the DSP, resulting in a
low bias-current when the measurement is disabled.
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Figure 4.20: Hardware setup for voltage measurement

Table 4.2: Frequency response of first order low-pass filter used for measurement. Base
angular frequency w = 1048 rad s~ 1.

Harmonic | Damping | Phase shift in ©
1 1.000 -1.18
2 1.000 -2.37
5 0.995 -5.90
7 0.990 -8.23

From Figure 4.20, the cutoff-frequency of the first-order low-pass filter before the A/D-
converter can be calculated to f. = 8kHz. The corresponding damping ratio and phase
shift for relevant frequencies are shown in Table 4.2, the voltage amplitude fraction of
the harmonics with reference to the fundamental voltage wave for the used motor are
illustrated in Figure 4.21. Besides the fundamental voltage wave, the fifth voltage harmonic
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=
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Figure 4.21: FFT voltage spectrum of (4.34): Amplitudes of voltage harmonics as fractions
with reference to fundamental wave amplitude

gives a contribution to the amplitude of the induced voltage. However, despite the phase
shift of —5.90° for the fifth harmonic caused by the low-pass filter, its influence was
neglected for the proposed method. Due to component tolerances, the real values for
damping and phase shift can differ from the ones given in Table 4.2. Furthermore, the

21673.216.36, am 20.01.2026, 12:57:57. Inhalt,
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186262080

62 4 Fault Detection and Diagnosis of the electrical motor: Online Parameter Acquisition

values change over temperature, resulting from changed resistance values. Accounting for
these changing values would require a large application effort, which poses contradictory
to the goal which states the reduction of application costs.

4.2.3 Results

Results for scenario one (strong deceleration during power-off due to very low rotor inertia
and active braking) and scenario two (slow deceleration during power-off in the field with
high inertia due to fan attached) are depicted in Figure 4.22 and Figure 4.23. The top plot
of the figures displays the first and fourth electrical period during the power-off procedure.
The second plot shows the recorded signal and the signal converted to constant speed
according to (4.33). The third and fourth plot give a comparison between a reference signal
measured with a drive operated under constant speed and the reconstructed waveform.
The reference signal was acquired on the test-bench with a 12-bit oscilloscope and a
sampling rate of 5 ps

The strong deceleration can clearly be observed in the first plot in Figure 4.22, which
shows a higher cycle time for the fourth compared to the first period. In comparison, the
first and the fourth period in Figure 4.23 have almost the same cycle time. This results
in the signal converted to constant speed in the second plot of Figure 4.23 being fully
covered by the shape of the recorded waveform.

Evaluation of the algorithm revealed, that phase angles determined for the harmonics show
a large deviation to the reference values acquired on the test-bench with an oscilloscope.
Furthermore, the deviation between the three phases a, b and c is different, caused by
different frequency responses of the low-pass filters shown in Figure 4.20. Due to the low
reliability of the phase angle determination, only the amplitudes of the different harmonics
will be considered in the following. This also applies to the demagnetization detection,
which solely relies on the amplitudes and does not evaluate any changes of the phase
angles (see Section 5.2).

The rate, with which the sampling of the measurements is performed, has a strong influ-
ence on the accuracy of the results. The illustrations in Figure 4.23 and Figure 4.22 are
both based on measurements with a sampling rate of 10 ps. For both cases, the exact zero
crossing times are reconstructed with linear interpolation.

The higher the sampling rate, the higher the consumed memory space. The deterioration
of the rms-value, when reducing the number of required points by 5, i.e. sampling with
50 ps, is illustrated in Table 4.3. For scenario 2, i.e. a power-off procedure in the field with
a high inertia attached, the deviation of the rms-values is acceptable for both sampling
rates. However, determination of the flux linkage over angle with an EoL-test with active
braking (scenario 1), shows a deviation of 9.2% for a sampling rate of 50 ps. Diagnos-
ing a demagnetization is still possible when measuring with a sampling rate of 50 s (as
demonstrated in Section 5.2), however, a deviation of 9.2 % makes a torque calculation as
required for detection of unusual load conditions very inaccurate. For applications requir-
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Figure 4.22: Results of a reconstruction of the induced voltage for a strong deceleration
with active braking (scenario 1). Deceleration was set to 8000 min—'s~'. First plot: First
and fourth period during power-off procedure. Second plot: Recorded signal and signal
converted to constant speed. Third and fourth plot: Comparison between reference signal
and reconstructed waveform.
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Figure 4.23: Results of reconstruction of the induced voltage for a slow deceleration in the
field with high inertia (scenario 2). First plot: First and fourth period during power-off
procedure. Second plot: Recorded signal and signal converted to constant speed. Third
and fourth plot: Comparison between reference signal and reconstructed waveform.

21673.216.36, am 20.01.2026, 12:57:57. Inhalt,
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186262080

4.2 Flux Linkage over Angle 65

Table 4.3: Deviation of rms-value of induced voltage to reference with different sampling
rates.

Scenario 1 Scenario 2

Sampling rate 10ps | 50ps | 10ps | 50ps
Deviation of rms to reference in percent | 2.9% | 9.2% | 0.3% | 0.8%

ing torque calculation, it is thus recommended to use a sampling rate of 10ps. As only
three voltage values have to be acquired and stored in the memory for each time step, this
does not place great demand on computing power, but it increases the required memory
space.

4.2.4 Conclusion

A method was presented for determination of the flux linkage over angle by measurement
of the induced voltage during a no-load operation of the drive, which can be used for
torque calculation and demagnetization detection. The algorithm is able to cope with
typical power-off scenarios of the engine cooling fan and the sole electrical motor, i.e. it
can be used for reconstruction of the flux linkage with and without an attached fan. The
demonstrated scenarios include an EoL-run with active braking (only electric motor, no
fan attached) and a normal power-off in the car with high inertia due to the attached fan.
Despite neglection of damping and phase shift caused by the filtering process, the pre-
sented method shows a good accuracy for the reconstructed induced voltage. It has to be
noted, though, that only the amplitudes of the harmonics could be reliably determined.
The phase angles showed a large deviation between the individual phases, which is due
to the different frequency responses of the low-pass filters used for measurement of the
line-to-line voltage.

As is illustrated in Table 4.3, the sampling rate does not have a significant impact on
the results for scenario 2. In contrast, the deviation of the reconstructed rms-value to
the reference rises to 9.2% for a sampling rate of 50ps, when considering scenario 1.
The sampling rate should thus be chosen according to the specified application. For an
accurate torque calculation a sampling rate of 10 s is recommended, whereas, as will be
demonstrated in Section 5.2, for detecting a demagnetization event a lower sampling rate
is sufficient.
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4.3 Equivalent Series Resistance of the DC-Link
Capacitor

Main function of the DC-link capacitor of the B6-bridge (see Figure 3.5) is the storage of
energy, the quick delivery of high currents and smoothing of the DC-bus voltage. Due to
its high capacity per volume and low cost, electrolytic capacitors are usually employed for
low-voltage automotive applications (Ma and Wang, 2005). They do, however, have some
disadvantages like high sensitivity to excessive temperature and low reliability (Lee et al.,
2008). Compared to other electronic devices, the electrolytic capacitor has the shortest
lifespan and is the most frequent cause of failure (Harada et al., 1993; Ma and Wang, 2005;
Wechsler et al., 2012). As Lee et al. (2008) point out, operation of a weakened capacitor
implicates an increased risk of further deterioration up to complete failure or, in some
cases, rupture or explosion. A method, which is capable of determining the current health
status of the capacitor in the field, is therefore highly desirable.

The following section describes the structure and the equivalent circuit model of an elec-
trolytic capacitor, gives an explanation of the wear-out mechanism that leads to failure
of the capacitor and presents a method suitable for determination of the equivalent series
resistance during standstill of the drive.

4.3.1 Structure and Degradation Mechanism of the Electrolytic
Capacitor

The structure of an aluminum electrolytic capacitor is shown in Figure 4.24 (based on
Kim et al., 2012). It is composed of two electrodes in the form of aluminum foils. Both the
anode and the cathode are etched to increase the effective surface area. The dielectric is
a thin layer of aluminum oxide AL,Oj3 and is chemically grown on the anode by a process
called formation. Between the anode and the cathode a paper is inserted which is soaked
with the electrolyte, an ionic solution.

The first capacitance is between the anode foil and the electrolyte. Just as the dielectric
insulates the anode from the electrolyte, so the cathode is insulated as well from the
electrolyte by a thin oxide layer, which is formed on the surface of the cathode. The second
capacitor therefore is between the electrolyte and the cathode foil (CDM Cornell Duilier,
2013). The total capacitance is the series connection of the two described capacitors.

Based on Figure 4.24, a equivalent circuit model of the capacitor can be derived as depicted
in Figure 4.25(a). In Figure 4.25(a), Ry, is the resistance due to the liquid electrolyte and
the ohmic losses of the connecting wires, R}, models the resistance caused by the dielectric
loss and Lggy, is the equivalent series inductance induced by connecting wires and coiled
aluminum foliage. Due to its small value (typical less than 2nH), the equivalent series
inductance can be neglected (CDM Cornell Duilier, 2013) and a simplified equivalent
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Figure 4.24: Schematic of electrolytic capacitor
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Figure 4.25: Equivalent circuit of electrolytic capacitor

circuit model for the capacitor can be drawn (see Figure 4.25(b)). The resistance Rpgsg is
the equivalent series resistance and models all ohmic losses of the capacitor. The equivalent
series resistance depends on frequency and temperature according to (see Gasperi (1996))

RESR = RO(f) + RSP(T) ’ (437)

with R, the equivalent series resistance of dielectric loss

DF
o)==~ 4,
Ro(f) =5 7C (4.38)
and
Rap(T) = Rap o2 (0725040 (4.39)

DF is the dissipation factor, which is defined as the ratio between the resistance Rgsr
and the capacitive reactance Xy

Rgsr
DF = —/——. 4.40
X, (4.40)
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A typical value for the dissipation factor is given in Parler and Macomber (1999) as 0.015.
The constants A; and By are depending on the used electrolyte. The constants are only
known to the manufacturer of the electrolytic capacitor, exemplary values are given in
Parler and Macomber (1999) for a 400 V electrolytic capacitor as 40 °C for constant A, and
0.6 for constant By. The 3d-plane showing the equivalent series resistance in dependence of
frequency and temperature is displayed in Figure 4.26. From (4.38), (4.39) and Figure 4.26,

1072

4
= s nEEn S
= R B s VY
= 3 | S

S
SO

e
—S—

Frequency in Hz 2000030

Temperature in °C

Figure 4.26: Measured frequency and temperature dependence of the equivalent series
resistance Rpgsg (electrolytic capacitor type: Elna RKD 25V 125°)

it can be seen that the equivalent series resistance decreases with increasing frequency and
temperature. This is due to the increased mobility of the ions dissolved in the electrolyte

and an increase in the effective surface area, which is caused by the expansion of the
electrolyte (Lee et al., 2008).

However, considering a longer time scale, high temperatures lead to the main wear-out
mechanism of electrolytic capacitors, which is the vaporization of the electrolyte and loss
through the end seals. According to Gasperi (1996), the rate of loss of electrolyte is in
direct proportion to its vapor pressure, which is depending on temperature and chemical
properties of the electrolyte. The loss of electrolyte increases both the equivalent series
resistance and the capacitance. Ripple currents, caused by the high inverter switching fre-
quency, lead to an accelerated wear-out process due to increased heating of the capacitor.
In Gasperi (1996), the relationship between the electrolyte volume V' and the equivalent

series resistance is given as

Ry )’

Resr _ (i) , (4.41)
Resro Vv

21673.216.36, am 20.01.2026, 12:57:57. Inhalt,
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186262080

4.3 Equivalent Series Resistance of the DC-Link Capacitor 69

According to Ma and Wang (2005), a capacitor has reached the end of its life when 40 %
of the electrolyte are lost. Application to (4.41) yields

Vo

2
—— ) ‘R ~ 2.8R, , 4.42
06vs ) ESR,0 ESR,0 ( )

REgsR EndofLite = (
which corresponds to a triplication of the initial value (Rgsgo) of the equivalent series
resistance. Determination of the equivalent series resistance while operating in the car
and comparing to the healthy value measured at the end-of-line, thus is a good indicator
for predicting the current health status of the capacitor.

In the following, a method for determination of the equivalent series resistance is ex-
plained, along with results showing the accuracy of this approach. Results concerning
health diagnosis are outlined in Section 5.1.

4.3.2 Proposed method

The algorithm proposed here is based on the same principle as the injection technique put
forward by Lee et al. (2008). During motor standstill, a short voltage pulse is injected onto
one motor terminal. Due to the configuration of the circuit employed by Lee et al. (2008),
the battery current is zero during discharge of the capacitor, which allows for evaluation
of the equivalent series resistance and capacitance without a sensor measuring the battery
current. However, the circuit topology at hand does not prevent a current flowing from
the battery to the capacitor, so a new approach is presented here.

The switching states for all six transistors during the measurement cycle are shown in
Figure 4.27. During injection (¢ € [to, t1[), transistors Ty and Tg are switched on, resulting

— i—

T1 o
Ty o
Ts o
T,
Ts o
Té off

.. .)
to 3] 2 time

Figure 4.27: Switching states of all six transistors during the measurement cycle

in a current flow i, as depicted in Figure 4.28. After switching off T;, the current is
freewheeling through transistor Tg and diode Dy (see Figure 4.29). When considering only
the transistors and diodes involved during the measurement cycle, a simplified equivalent
circuit can be derived (see Figure 4.30). The voltage uq., displayed in Figure 4.25(b), is
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Figure 4.28: Current path during injection (¢t € [to, t1])
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Figure 4.29: Current path during freewheeling (¢ € [ty 12])

given as
. 1 (™.
Udc(t) = RESRZC(t) + 5/ ’Lcdt B (443)
T1
At time ¢y, the capacitor current is reversing, resulting in a voltage jump across the
equivalent series resistance (see Figure 4.31). Differentiating (4.43) and evaluating at
time t; gives

duge die d /1 [0
= — — | = e [ I 4.44
de t=tq Eo de t=t +dt (O/n:tl ' ) ( )

—_— ———
=0
Rgsr can then be determined as
duge _
Rpsp = —— (4.45)
dic |y,

Two problems arise when trying to solve (4.45):

1. Determination of the capacitor current i., as only the line current ¢, can be mea-
sured.

2. Sampling of the differential values of dug. and di. at time ;.
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Figure 4.30: Equivalent circuit of the inverter during measurement cycle
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Figure 4.31: Simulated line, battery and capacitor currents during measurement cycle.
Please note that the freewheeling current after ¢; cannot be measured with the circuit
topology at hand.

Figure 4.32 displays the association between the battery current i, the capacitor current
i. and the line current 4,. A simulation result showing the respective currents during the
measurement cycle is depicted in Figure 4.31. The switch-off time of transistor 77 is
marked in the figure. It has to be noted, that, due to the position of the ,Shunt* (see
Figure 4.29), the line current 4, can not be measured for the time interval ¢ € [t1, t5[).

From Figure 4.32 and Figure 4.28, the capacitor current for ¢ € [to, ¢1[ can be derived as
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Ibat

Figure 4.32: Current node of the dc-link

After switching off transistor Ty, the line current freewheels through Tg and Dy (see
Figure 4.29 and ig, in Figure 4.30), and no current flows from the capacitor to the motor,
hence

io(t) = ibac(t)  fort € [ty tof . (4.47)

As can be seen in Figure 4.31, the capacitor current abruptly reverses direction when T
is switched off. In comparison, the battery current shows a continuous progression, which
leads to the assumption, that the battery current at time ¢; has barely changed compared
to point in time ¢; — p, with g being an infinitisemal time-step:

ibat‘[l ~ ibat'h*u ’ (448)
and, with (4.47), it follows that
ibat'fq = ic'h ~ ihat ti—p - (449)
Inserting (4.49) into (4.46) yields
Z‘cltlfu = ibatltlfu - 2Au|L17,u,7 (450)
and, with (4.49)
ic'tl—u = ibat'tl - i1L|t|—;L . (451)
With (4.48), (4.51) becomes
iclty—p = Telty = Tulty—p - (4.52)
With
di. = ic‘h - 7l’c|L17u ) (453)

the capacitor current at time ¢; can thus be expressed by sole measurement of the line
current at time t; — p according to

dic‘t:h = i,‘,(tl - H) . (4'54)

As can be seen in Figure 4.31, the capacitor inductance Lggy, causes a voltage spike when
i. is reversing direction. This spike and the noise caused by the concurrent switching
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process of transistor T; make it impossible to directly measure dug.. In the following, the
technique for determination of the required voltage dug. is described.

The voltage across the transistor is periodically measured during the measurement cycle.
Both the voltages before and after switching off transistor T; are approximated with a
polynomial according to

1=n

Uges—(t) = Y ait'  fort <t (4.55)
=0

Uders(t) = D bt fort >t (4.56)
=0

The voltage jump across the transistor caused by the equivalent series resistance is then
given as
Uae(t1) = Ude+ (t1) — Udee—(t1) - (4.57)

But still the problem remains, how to determine the switch-off time of transistor T;. The
switching signals are issued by the ECU and, hence, the corresponding times ¢y and ¢,
should be known exactly. However, due to the signal propagation time from ECU to the
MOSFET gate via the bridge driver and the load and temperature dependent switching
behavior of the MOSFETS’, the real switching times are attached with uncertainty. A
slight deviation in determination of the time ¢; leads to a significant change of the calcu-
lated voltage uqc|s, as shown in Figure 4.33.

The procedure for determination of time ¢, is illustrated in Figure 4.34. The line-current

A Udc

.

T

S —

- === Regression

— Udc

0

t’

hh—pt it +p
Figure 4.33: Demonstration of error in determination of voltage jump across the transistor
due to switching time uncertainty

is periodically sampled during the injection cycle. Based on these measurements, a poly-
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Figure 4.34: Curve fitting of line-current for determination of ¢, and ¢,

nomial approximation of the line current according to

i

W)= ¢t fortg <t <t (4.58)

n

Il
)

can be derived. Assuming, that
iy =0 fort < to, (4.59)
the switch-on time of the transistor can be found by solving
i=n
0=> at' (4.60)
i=0
Assuming further, that the switching delay for the switch-on process equals the delay for
the switch-off process, the time ¢; can be calculated with
ty=to+xT, (4.61)

with x the duty cycle and T the period length.

4.3.3 Implementation and Results

The correct functioning of the algorithm described was first evaluated by simulation. In
the second step, the voltage impulse was injected into a real system on the test-bench.
The resulting signals were recorded with an oscilloscope and fed into the algorithm. In
the last step, the algorithm was implemented on the microcontroller and evaluated on the
test-bench.

Several aspects have to be considered when implementing the algorithm on the microcon-
troller. As is shown by (4.38), (4.39) and in Figure 4.26, the equivalent series resistance
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depends on the frequency that is applied to the capacitor. Furthermore, the injection time
has to be chosen such, that the resulting line current does not get too large. The sampling
rate of the capacitor voltage and line current also have to be considered in terms of a
trade-off between sampling capabilities of the utilized microcontroller on the one hand,
and accuracy of the ESR determination on the other hand.

The course of Rpgr over frequency for a constant temperature is displayed in Figure 4.35.
The values were retrieved by measurement with an RLC-meter Fluke 6304 (test equipment
for measuring the inductance, resistance and capacitance of a component). Aging of the
capacitors was simulated by drilling holes in the ceramic body of the capacitor to allow
for faster vaporization of the electrolyte. For a frequency higher than ~ 10kHz, the
value of the equivalent series resistance stays constant. Considering the application of this
method for health diagnosis, a measurement in this frequency area would be the a suitable
choice, as a sole offset of the equivalent series resistance compared to the healthy state is
an indicator for an aged capacitor. In contrast, determination of the ESR in the falling

part of the curve always requires a measurement at exactly the same frequency, as each
deviation leads to a different result.

—o— New
0.3 e «»x» Medium aged
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A
S '
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= |1
1) 3
[
0.1
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Figure 4.35: Measured equivalent series resistance over frequency for constant temperature

(20°)

Times for ¢y, t; and ¢ have to be chosen such, that the resulting line current does not grow
too large, but on the other hand has to be large enough, so that the voltage drop across
the transistor is measurable by the microcontroller. For implementation on the utilized
hardware an on-time of transistor Ty was set to 100 ps, the off-time to 4.9 ms. The resulting
duty cycle of 2% allows for the freewheeling current to completely decline between two
consecutive measurements. Furthermore, the on-time of transistor T; of 100 ps guarantees
a measurement with a resulting frequency of 10 kHz.

Voltage and current for a measurement with the parameters described above and evalu-
ated with the microcontroller are shown in Figure 4.36. The corresponding results of the
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polynomial approximation are also shown. To eliminate measurement uncertainty, several
samples were taken and the mean value was calculated (see Figure 4.37).
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Figure 4.36: Measured line current and DC-link voltage during measurement cycle
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Figure 4.37: Results for several ESR measurements, corresponding mean value, resulting
spread and standard deviation

Choice of a proper sampling time is a trade-off between accuracy and hardware limitations
set by the used microcontroller. Results for different sampling rates are given in Table 4.4.
The obtained result was compared to the measurement conducted with an RLC-meter
(type Fluke 6304). It can be seen, that increasing the sampling rate also significantly
increases the relative error of the measurement. However, considering (4.41), and, as will
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Table 4.4: Comparison of Rgsg calculation performed with microcontroller (DSP) to
measurement with RLC-meter for different sampling times

Sampling time | RLC-meter | DSP Absolute deviation | Relative error
4ps 0.0296 0.0286 2 1.0 m¢ 3.37%
10ps 0.0296 0.0312 1.6 mQ2 5.12%
15 ps 0.0296 Q 0.0332Q 3.6 mQ 10.84 %
20 ps 0.0296 Q 0.0348 2 5.2m8 14.94 %

be shown in Section 5.1, even a sampling rate of 20 ps is sufficient for the determination
of the health status of the capacitor.

4.3.4 Conclusion

A method suitable for the determination of the equivalent series resistance of the DC-link
capacitor was presented in this chapter. The algorithm relies on measuring the voltage
across the capacitor and solely utilizes the measurement of the line current. It is charac-
terized by a low computing effort, as only simple polynomial functions have to be approx-
imated. Similar to the method for reconstruction of the flux linkage over angle, described
in Section 4.2, the sampling rate determines the accuracy of the result. The higher the
sampling rate, the more accurate the result. The relative error for a measurement with a
sampling rate of 4 ps is only 3.37 %, whereas a measurement with a sampling rate of 20 ps
shows a relative error of 14.94 % compared to a measurement with an RLC-meter (type
Fluke 6304). As is illustrated in Figure 4.53, the value of the equivalent series resistance
will be utilized for detection of an aged or damaged capacitor (see Section 5.1).
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4.4 Thermal Network for Determination of Magnet
Temperature

The trend towards reduction of volume and cutting back of used material implicates
smaller thermal capacities for storage of dissipated heat and dissemination to the sur-
rounding environment. A proper thermal management and knowledge about tempera-
tures of critical machine parts is thus highly important. The winding temperature can be
determined with the method described in Section 4.1. It can be used to avoid an over-
temperature of the windings and for tuning the control algorithm. However, sole knowledge
of the winding temperature is not sufficient for proper protection of the electrical machine.
The magnet is another critical component, which has to be guarded against a demagne-
tization event. Depending on the type of magnet used, large currents in connection with
low (in case of a ferrite magnet) respectively high (in case of a rare earth magnet) mag-
net temperature can lead to an irreversible demagnetization. Furthermore, the magnet
temperature is required for reliable diagnosis of a demagnetization (see Section 5.2), for
proper calculation of the hysteresis losses according to (3.21) and for calculation of the
machine torque (see (3.19)).

In the following, the path of the airflow through the engine cooling fan is described and
methods for determination of machine temperatures currently employed or described in
the literature are explained. Subsequently, a new approch for determination of the magnet
temperature is presented, which is based on a continuous online determination of the heat
transfer coefficients.

4.4.1 Airflow Through the Engine Cooling Fan

The airflow through the engine cooling fan is very complex and driven by the requirement
to cool the major components, which are heat sources, such as the electronics package and
the motor stator. A cross section of the stator and rotor including the resulting airflow is
illustrated in Figure 4.38 and Figure 4.39, respectively.

The fan air flow and two airflow paths through the cooling fan can be recognized. Airflow
path one is required for stator cooling, whereas path two is an additional airflow for
cooling of the heatsink of the electronics package. The airflow inside the motor is driven
by a radial blower, which is comprised of the rotor and the fan hub. The radial blower itself
is constituted of small fins on the inner surface of the fan hub (not shown in Figure 4.39).
Together with the rotation of the fan hub, this assembly creates an air pressure difference
resulting in the two airflow paths as depicted in Figure 4.39. The motor cooling principle
thus is a forced convection cooling of the motor driven by a radial blower inside the fan
hub.

Due to the limitations set forth by the test bench (see Section 3.2), the assembly described
above could not be exactly emulated on the test bench. For the radial blower principle
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Outer rotor

Inner stator

Figure 4.38: Cross section of motor
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Figure 4.39: Cross section of motor including airflow
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to work, the fan hub would have to be assembled, which is not possible, as it makes
a permanent measurement of the rotor temperature impossible. Nevertheless, to create
a forced convection inside the airgap and the stator, a fan was assembled in front of
the motor as illustrated in Figure 4.40. One part of the airflow created by the fan flows
around the rotor, the other part enters the rotor through the openings on the outer
surface. Measurements were made with an anemometer on an original engine cooling fan
with shroud and fan hub attached and on the test bench for comparison of the respective
air flow velocities. Measurement points are illustrated in Figure 4.39 and Figure 4.40,
measured air velocities are depicted in Table 4.5. The air velocity measured for a fully
assembled engine cooling fan is slightly higher than the air velocity measured on the test
bench. Furthermore, the direction of the air travelling through the stator and the airgap
is different. Although the test bench assembly does not resemble the original setup, it still
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causes an airflow in the stator and airgap, resulting in a heatflow influenced by forced
convection.

Fan airflow

A R

Magnet
N NEEN

Measurement with
infrared thermometer

ad

Measurement point

Figure 4.40: Cross section of rotor and stator including airflow as assembled on the test
bench (i.e. without shroud and fan hub). The airflow is caused by an additional small fan
assembled on the test bench instead of the inertia.

The rotor temperature is measured with an infrared thermometer (see Figure 4.40). The
temperature of the magnets, however, cannot directly be measured. In spite of that, the
magnet temperature is assumed to equal the rotor temperature, as the heat conductivity
between the magnet and the rotor body is very high.

Table 4.5: Measured airflow velocity for engine cooling fan and test bench assembly

Air velocity.
Rotational speed o Air velocity, test

engine cooling

(in min~1) fan (in ms—) bench (in ms™!)
1000 2.3 2.1
1300 3.5 3.1
1800 5.4 4.9
2000 6.2 5.4
2200 7.3 5.8

4.4.2 Thermal Modeling of Electrical Machines

The literature describes two main methods for thermal modeling of electrical machines,
analytical lumped-circuit modeling and numerical methods. The latter one can be divided
into Finite Element Methods (FEM) and Computational Flow Dynamics (CFD). As is
pointed out by Boglietti et al. (2009), both FEM and CFD suffer from a long model setup
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and high computational demand. Another disadvantage of FEM is, that the accuracy of its
results strongly depends on the assumptions made for the algorithms covering convection
boundaries. Main advantage of FEM, according to Boglietti et al. (2009), is its ability
to give highly accurate results for solid component conduction. The prediction of flow in
complex regions, like the end-windings, is an area strongly suited for CFD. The results
obtained from CFD-simulations can be used for tuning the underlying assumptions made
for setting up the FEM-model.

The analytical approach lumps together areas of the machine with the same tempera-
ture. A node is assigned to each of these areas, and they are interconnected by thermal
resistances representing the heat flow between the nodes. Lumped circuit models are
computationally less expensive compared to the numerical methods, but require much
experience for suitable discretization of the electrical machine into thermal nodes. Fur-
thermore, the results depend on the correct parametrization of the resistances. Boglietti
et al. (2008) and Staton et al. (2005) give advice on correct determination of resistance
values for some challenging parts of the machine, like the convection from the housing to
the surface or the heat transfer in the air-gap. Both papers assume a model discretization
suitable for machine simulation during design phase, i.e. a network with fifty or more
nodes. Computation of these networks is still too demanding for online implementation in
a microcontroller. A more simplified network is presented in Chowdhury and Baski (2010),
which use 21 nodes for modeling of the machine, which is still too large for simulation on
a controller.

A model suitable for online implementation is given in Duran and Fernandez (2004), Vetter
(1988), Wolfram (2002), Schréder (2009) and Leonhard (2001). All references mentioned
above assume a model with only two nodes, one for the stator and one for the rotor. While
the usage of constant values for the thermal resistances is prevalent, Duran and Fernandez
(2004) describe a model with speed-dependent resistance values (R = &) according to

G = Go(1+ bw), (4.62)

with G the thermal conductance, b the variation coefficient with motor speed and w the
motor speed. For determination of the corresponding parameters, six tests have to be con-
ducted, as outlined in Moreno et al. (2001). Although determination of the parameters is
straightforward, it nevertheless represents an additional application effort. More signifi-
cant, however, is the fact that lumped circuit models suitable for online implementation
do not account for forced convection in the air-gap, which render them unsuitable for
thermal modeling of an engine cooling fan. As illustrated in Figure 4.39, a constant axial
throughflow is present in the air-gap and inside the stator due to the radial blower in the
fan hub.

Literature about forced convection in the air-gap is very scarce. Based on experiments
with hot wire anemometry and flow visualization, Becker and Kaye (1962) reported, that
a configuration with a rotating inner cylinder yields four different modes of flow. The
first mode represents a purely laminar flow, the second mode a laminar flow with Taylor
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vortices, the third one a turbulent flow with vortices and the fourth mode a purely tur-
bulent flow. For a detailed description of Taylor vortices see Taylor (1923). Calculation of
the thermal resistance values for each of the modes is given in Howey et al. (2012). The
boundaries of the individual modes are defined by the Reynolds-number, which depends
on the rotational speed, the kinematic viscosity and the axial velocity of the air. Further-
more, Howey et al. (2012) point out, that the transition between the individual modes is
also depending on the machine design, e.g. if there are salient poles or not. Determination
of the resistance values covering forced convection in the air-gap thus requires extensive
and laborious experiments, which have to be repeated for each new application or motor
design (Benecke (1966)).

4.4.3 MIMO Model with Observer Structure

A simplified schematic of the motor is illustrated in Figure 4.41, modeling the inner stator,
the outer rotor and the airgap as single thermal masses. When modeling the airgap as a

Figure 4.41: Schematic view of motor

thermal mass, the simplified thermal behavior of the system, given in Figure 4.41, can be
split-up into three subparts. The heatflow to the airgap, which originates from the power
loss in the stator (mainly the windings) can be described by

mSCS% = Qi7L - Quut = (463)

dt
Py(t) = vs,a6As(Ys — Yac),

with P,(t) the copper losses incurred in the stator, ys ac the heat transfer coefficient from
the windings to the air inside the airgap, g the stator temperature, ¥og the temperature
of the air in the airgap, mg the mass of the stator, cg the corresponding specific thermal
heat and Ag the effective contact area. For the given derivation, heat transfer by means
of radiation was neglected. The heatflow from the airgap to the rotor and from the rotor
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Stator Airgap Rotor

Yac RAR [¢

%

75,46 4s + 7aG,RAR;

Veair

P TR cAirARo
Figure 4.42: Block diagram of simplified thermal network for determination of rotor tem-
perature based on measurement of 9J.,;; and calculation of winding loss P,

to the ambient air can be described accordingly, and one obtains

v
MAGCAG d/f\G = 7s.acAs(Ps —Yaa) — vacrAri(Yac — Ur) (4.64)
dv ~
TrLR(:Rd—tR = vacrARi(Vac — Ir) — YRcarAro (VR — Veair) » (4.65)

with mag, cag and mg, cr the mass and specific thermal heat of the air in the airgap and
rotor, respectively, yaq r the heat transfer coefficient from the airgap to the rotor, g cair
the heat transfer coefficient from rotor to ambient and Ag;, Ag, the effective contact area
on the inner and outer side of the rotor, respectively. The corresponding block diagram is
displayed in Figure 4.42. For each heatflow a transfer function of first order can be derived
as

_Us(s) _ Kpg
Fps(s) = PG) 1iThss (4.66)
Yac(s) Ksac
F: = = : 4.
S’AG(S) 195(8) 1+TS,AGs ( 67)
$ K
Fagr(s) = Oals) _ ASR (4.68)

ﬂAG(S) n 1+ TAG,RS ’

with Fp g the transfer function from the power loss source to the stator temperature rise,
Fg aq the transfer function from the stator temperature to the temperature of the air in
the airgap and Fygr the transfer function from the air temperature in the airgap to the
rotor temperature. From (4.63) to (4.65), the corresponding gains and time constants can
be derived as

1
Kpg=—— 4.69
e vs,a6As (4.69)
mgcs
Tog = 86 4.70
e 8,46 As (4.70)
1

K = 4.71
SAG Ys,46As + vacrRAR: (4.71)
Tsac = IAGAG (4.72)

Ys,06As + vac,rRARi
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Jac )
LP Fps(s HWSAGAS}—VL—P{FSAG }T—A‘(—’fl’YAG,RARi 0] i N

sacds) AGAs <

rAlr

TR, cairARo

Figure 4.43: Merged block diagram of simplified thermal network

1
. ) 4.73
AGR Yac.RAR + VRcAirARo o

MRCR
YacRAR: + VR,cAir ARo

Tracr = (4.74)

The merged block diagram is shown in Figure 4.43.

The effective contact areas and the thermal capacities can be obtained from geometry and
material properties. Making a test-run on the test bench with measurement of the stator,
the airgap and the rotor temperatures only leaves the heat transfer coefficients s ac,
Yac,r and g cair unknown. Estimation of the unknown coefficients based on test-bench
measurements and (4.63) to (4.65) results in a very low time constant Tg ag, which is
around eight thousand times smaller than 7p g and Taq g for stator and rotor mass. Due
to this large imbalance the resulting system is stiff and hence difficult to simulate and
unsuitable for parameter estimation.

For subsequent considerations the airgap thermal capacity is thus neglected, resulting in

a two-mass model of the electrical machine. Similar to (4.66) to (4.68), the heat flows can
be described as

dv

mscsd—: = P/(t) — FVS,AGAS(,&S — 79AG) (475)
0 = vs,a6As(Vs — Yaa) — vac,rAri(Yac — Ur) (4.76)

dd
mRCRTf = YacrRARI(Yac — UR) — TRcairARo (VR — orir) (4.77)

Taking Jg and Jr as system states, and setting P and J.a; as inputs, a MIMO state
space representation can be derived as

195} {(111 1112} {793] {bn 0 } [Pell }
= + 4.78
|:19R a1 a| |Ur 0 ba] |Veair ( )
- 1 0] [Ys
b ) am
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with
(75,46 4s)?
= —s.acA 4.80
11 7TZSCS ( Ys.acAs + yacr AR VS,AGAS ( )
Ag; A
arp = ( 7aG,RARIYs,AGAS ) ws1)
mSCS Ys,acAs + Yac rARi
Agi A
ag = ( YaGRARIYS AGAS ) w52)
mRCR vs,acAs + yacrAri
(7aq, RARi)
2T — TReairdro = Yac AR 1.83
a2 chR ( s, AGAS T ’YA(,RARl TR, cAir AR JAG,R Rl) ( )
bu = (4.84)
mscs
Vr.caird
- JRcAirAiRo (485)
MRCR

The corresponding block diagram is displayed in Figure 4.44. For determination of the

l a12mscs |«

Deai
L’ 'YR,cAirARo

Figure 4.44: Block diagram of the MIMO system, describing the thermal behavior of the
stator-rotor system

unknown rotor temperature, the method for measurement of the winding temperature as
described in Section 4.1 is exploited. As the copper losses P, which serve as an input to the
model according to (4.78), are directly incurred in the windings, the winding temperature
is assumed to accurately represent the stator temperature. Furthermore, it is assumed
that a mean temperature of the air behind the cooler is available, which can be calculated
with the equations given in Section 3.1.4.

Taking the Laplace-transform of (4.78), and eliminating the rotor temperature Jr gives
the equation

$20sky + sUsks + Osks + Doairks + sPks = B, (4.86)
with
kl = 7b11(l22 (487)
—Qa2y — d11
ko= ——— 4.88
: —b11a2 ( )
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a11a92 — A120s
ky = W (4.89)
— (12022
kg = W (4.90)
b= —. (4.91)
Transforming (4.86) back into the time domain yields
Dsky + Dsky + Dsks + Veaiks + Bhs = B (4.92)

Only known system states and inputs appear in (4.92), i.e. the stator respectively wind-
ing temperature, the temperature of the ambient air and the power loss induced in the
windings. The power loss can be calculated with

H(t) = Rﬂigrns,a + Rbifmsyb + Rci?ms,c N (493)

The first and second derivatives required in (4.92) can be determined with a state variable
filter (see Appendix C). Based on (4.92), a parameter estimation can then be carried out
with the data matrix

U= [195 'lés ﬁS 19(:Air P)l F)l] ’ (494)
and the parameter vector
@ = [k‘] k‘Q k‘g k‘4 k’5] . (49:))

For determination of the magnet temperature ¥y, the system given in (4.78) has to be
simulated online using the parameters gained from the parameter estimation. Setting
as = —ayz (see (4.78)), the parameters of the system and input matrix can be recon-
structed as

1
22 =7 (4.96)
—ky
by = — 4.97
11 P ( )
a1 = kobiiase — asgs (4-98)
—k4b
bos 4011022 (4.99)
ary
1
as1 = (—kzbiiazz — anas) e (4.100)
11

With the parameters gained from (4.96) to (4.100), the state space system can be simu-
lated for determination of the unknown rotor temperature ¥g. However, besides the input
u(t), the state of a system also depends on the initial system state zo. For the given

system,
U
z0= 1.7, (4.101)
Uro
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with Jg being the initial stator temperature and ¥g the initial rotor temperature. The
initial stator temperature can be determined with the method described in Section 4.1,
but the initial rotor temperature is unknown and cannot be measured. Thus, an observer
structure has to be utilized for estimation of the not measurable rotor temperature. The
resulting block diagram illustrating the approach is depicted in Figure 4.45.

The system and input matrix A and B, equal those of the thermal system given in (4.78).

Since
e =g — Vs, (4.102)
with l§s the stator temperature estimated by the observer, the observer output matrix is
given by
10
Cobs = . 4.103
= o] (4.103)
From Figure 4.45, following equations can be determined:
x = Ax +Bu+ Le (4.104)
€ = ’193 — ’193 = 195 — Cobsf{, (4.105)

which yields for the observer equation
x = (A — LCops) X + Bu + Li)s . (4.106)

The same quantities used as inputs for the parameter estimation serve as inputs to the
observer, i.e. Ui and Pp. Yeair is the mean temperature of the air behind the cooler,
which can be calculated with the equations given in Section 3.1.4, P, is the power loss
incurred in the windings according to (4.93).

The underlying principle of the block diagram illustrated in Figure 4.45 thus consists of
the following steps:

1. Continuously apply a parameter estimation according to (4.92) to determine the
unknown coefficients k; to ks.

2. Based on the determined coefficients k; to ks, calculate the parameters of the system
and input matrix (A and B), i.e. a1, a2, a1, a2, b1 and by as given in (4.96) to
(4.100).

3. Recalculate the observer feedback matrix L based on the new system and input
matrices A and B by using pole placement (see below).

4. Simulate the observer to determine the not measurable system state Jg.
The observer used here serves as a simulation system and is not used in a closed loop
control system. The dynamics of the observer thus should be higher compared to the

process itself, resulting in observer poles placed left from the eigenvalues of the process.
In the examples given here, the observer poles in the s-plane were placed according to

Robs = 10}{/\, (4.107)
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with kops the observer eigenvalues, and k, the eigenvalues of the system matrix A. The
eigenvalues of the system matrix A can be derived by solving

[sT—A|=0. (4.108)

The parameters of the observer matrix L are determined with the pole placement tech-
nique. As is derived in Féllinger et al. (2008), the poles can be placed by solving
sT— AT + CL LT| = (s — Fobs1)(5 — Fobs,) » (4.109)

obs

with Kghs1 and Kebs, the desired observer poles. Since

10
Cobe = , 4.110
b [o 0] ( )

the term CZ L7 yields an observer matrix of the form

l]] 0
L= . 4.111
) (a1
Solving (4.109) yields for the observer parameters

liy = a2 + a11 — (Kobs,1 + Kobs2) (4.112)

Kobs,1Kobs,2 — 1122 + l11022 + @12a21

Iy = (4.113)

12

This approach will only work, if the estimator is able to track the parameter changes fast

195
Determined with
. - ; DC-injection
determined from (3.54) - ; ; See Section 4.1
erir Parameter estimation
> . : .
p| Ok + dsks + Dsks + Denirks + Pls = P
Py &
determined from (4.92) ¢k1 ko ka,ky and }.--,¢
Recalculation of matrices
B and L
R - -
1 e Y :
: = L — |Stator temperature
19 yreconstructed by
—> S |observer
1y
1

Figure 4.45: Block diagram illustrating MIMO observer with parameter estimation. Aim
of the observer is to estimate the not measurable system state Jg.

enough. The forgetting factor A employed within the parameter estimator was thus set to
a value smaller than one to allow for a continuous adaption to the changing parameters.
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So far, the described approach was presented for the continuous case. Considering the com-

plex observer structure, discretizing the system (4.78) and the estimation equation (4.92)

would allow for an easier implementation on a microcontroller. Discretization of (4.92)

using a bilinear transformation, which introduces the mapping valid for small sampling

times

2(z—1)

Ti(z+1)’

with Ty the sampling rate and z the z-operator, yields
Qﬁsfz + 91952*1 + Qﬁsw (4.115)

G G ¢r

QP]Z’2 + gl:’l,z’1 + @Plz =

¢r G Cr

-2 -1
= ﬁcAirZ + 2’[QCAirZ + ﬁcAirz ;

s =

(4.114)

with

G =4—-2T(—agp —an) + Tf(an(hz — (12G91) ( )
G =-8+ 2Tg2(a11a22 — a12a91) ( )
G =4+2T(—as —an)+ Tf((l/n(lzz — (12a21) ( )
Gy = 2Tibyy + Ts%by1ass (4.119)
G = 2T52b11a22 ( )
G6 = beuan — 2T5bny ( )

(4.122)

(7 = —aizby .

Unfortunately, no closed-form solution for determination of ai1,ais, asi, ass, by, boy can
be derived from (4.116) to (4.122), only an iterative solution, which is unsuitable for
online implementation. Due to these difficulties, a discrete implementation was not further
considered, and the approach was evaluated using the continuous equations.

4.4.4 Results

Several test-runs were conducted on the test bench to evaluate the method explained
above. Figure 4.46 shows the measured thermal behavior of the electrical drive on the
test-bench for different constant operating points with an additional fan attached to the
motor shaft. Along with the stator and rotor temperature also the power loss incurred in
the windings and the ambient temperature are displayed. In Figure 4.46 and all subse-
quent illustrations, the mean winding temperature, determined with thermocouple mea-
surements of all three phases, represents the stator temperature. The rotor temperature is
measured with an infrared thermometer. The power loss is calculated according to (4.93),
with the current resistance value determined from the winding temperature measurement
according to (4.1). The winding loss displayed in Figure 4.46 is subject to two effects. First
effect is the change of the resistance due to a rise in the winding temperature according
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to (4.1), the second effect is caused by a decrease of the flux linkage of the permanent
magnets due to a rise in magnet temperature. From (3.19), it can be seen, that, with a
decreasing flux the current has to rise to deliver a constant torque M,¢. As is illustrated
in Figure 5.2, the temperature coefficient for the individual harmonics of the flux linkage
is not the same. However, for approximation of the relation of the power loss induced in
the windings at the beginning to the end of the measurement, it is sufficient to assume
a constant temperature coefficient of 41, = 0.2% K~! for all harmonics. The power loss
induced in the windings at the beginning of the measurement is given as

PAO = Ra,Uirzms,a,O + Rbyoi%ms,b,(] + RCﬁoi?ms,c,O . (4123)
Assuming that Re o = Rpo = Reo a0d fimsa0 = bimsp0 = frms,c,0, (4.123) becomes

Pro = 3R’ (4.124)

rms,0 *

At the end of the measurement, the winding loss yields

Pé,l = SRO(l + ,YCU(Twinding,l - Twinding,O)) (irms,D(1 + ’ybr(Tmag,l - T‘ma»g,O)))2 ) (4125)

with Tinding,0, Tmag,0, Twinding,1 and Tiag1 the temperature of the winding and the magnet
at the beginning and the end of the measurement, respectively. Setting (4.125) in relation
to (4.124) yields

Py

ﬁ = (1 + ﬂ/(:u(jjwinding.l - Twinding,[])) (1 + Pybr(TmagA,l - Tmag,O))2 . (4126)
,0

Applying (4.126) to the first test-run shown in Figure 4.46 with T\yinding1 = 60°, Twinding,0 =
8%, Thnag1 = 34°, Tonago = 28° yields

(1 + ’Ycu(TwindingJ - Twinding,O)) (1 + ’Ybr(Tmag,l - ,Tmag,()) = 113837 (4127)

Taking the values for the power loss at the beginning and the end of the test-run from
the diagram as Pp; = 18.2W and P,y = 16W, results in
Pra

2l = 1.1375, 4128
Pro (4.128)

which is in accordance with (4.126).

Looking at Figure 4.46, the shortcomings of the test bench (no assembly of fan possible)
used for the measurements can clearly be seen. Despite the large power loss, it takes
a considerably amount of time for the stator and rotor to warm up, resulting in large
time constants. Furthermore, both the rotor and the stator are far from reaching their
maximum rated temperature, which lies at 120 °C and 180 °C respectively. Reason for this
is the temperature of the ambient air, which only shows a slight deviation from its initial
state during the whole test-run. Unfortunately, no additional external heat source could
be assembled to increase the temperatures.
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Figure 4.46: Measured temperatures and winding power loss for test-runs on the test bench
with different operating points. Top: 1300 min~1@0.7 N m, middle: 1800 min~'@1 Nm, bot-
tom: 2000 min~1@1.2 N m. Left-hand diagrams: full black line: stator temperature, straight
grey line: rotor temperature, dashed line: ambient air temperature.

Applying the parameter estimation according to (4.92) yields the results illustrated in
Figure 4.47, shown for the operating point 2000 min~'@1.2 N m. Sampling rate for esti-
mation was set to 10s. It can be seen, that the estimator takes about 300s to converge,
which is due to the low dynamics inherent to the process.

Deriving the elements of the system and input matrix from the parameter estimates
according to (4.96) to (4.100), designing an observer according to (4.107) and feeding
the observer with the power loss, the ambient and winding temperature as illustrated in
Figure 4.46, yields the results depicted in Figure 4.48. The initial rotor temperature was
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Figure 4.47: Parameter estimates for test-run 2000 min~'@1.2 Nm

deliberately set to a wrong value to demonstrate the effectiveness of the observer. As can
be seen, the rotor temperature can be tracked with only minimal deviation of —4 K after
the observer has settled in.

The effect of a wrong assumption for the initial observer parametrization is illustrated
in Figure 4.49. In the beginning, the observer output shows a deviation of around 40K
compared to the measurement. A new set of parameters for the observer can be calculated
after around 350s, which decreases the deviation to almost zero.

The thermal network as described above is designed for a continuous parameter estima-
tion, i.e. the estimator has to track any parameter changes due to changing input signals
instantly. The results displayed in Figure 4.49 indicate, that, for a wrong parametrized
estimator, the time required for the parameter estimates to converge is too large to con-
tinuously tune the observer. This in turn implies, that, when turning on the engine cooling
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Figure 4.48: Observer output for operating point 2000 min~'@1.2 N m. The parameter set
for the observer was previously determined, the initial observer state was deliberately set
to a wrong value.

fan for the first time, a previously determined parameter set has to be used for the ob-
server. Two disadvantages arise from this necessity. First, the parameter set depends on
the operating point and the environmental conditions, such as vehicle speed and ambient
air temperature. However, due to the limited memory space, only a small number of pa-
rameter sets can be stored in the microcontroller. Consequently, until the estimator has
settled in and a new parameter set can be derived, the determined rotor temperature has
to be regarded as highly uncertain. Second, the parameter set has to be determined with
a test-run in the car, contradicting the initial objective of the presented thermal network,
which is to limit application effort to a minimum.

L
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Figure 4.49: Results for determination of magnet temperature with wrong inital parameter
set for observer
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The principle of the thermal network is to continuously determine new process parame-
ters, based on a parameter estimation according to (4.92). The effects on the parameter
estimates after a change of the operating point are illustrated in Figure 4.50. The for-
getting factor A\ was set to 0.95. Despite the small change in the power loss input, the
estimator is significantly disturbed resulting in time spans for convergence equal to the
situation depicted in Figure 4.47.
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Figure 4.50: Parameter estimates for changing operating point with a forgetting factor A =
0.95. The operating point is changed from 1300min~'@0.7 Nm to 2000 min~'@1.0 Nm
(time of the operating point change is marked with a vertical line).

The parameter estimates during the settling-in process of the estimator do not yield
parameters resulting in a stable observer system. The estimator thus cannot react quickly
enough to a change of the operating point, making it impossible to continuously adapt the
parameters of the observer. Consequently, the observer parameters can only be adapted

to the current operating point after the estimator has converged. Corresponding results
are displayed in Figure 4.51.
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Figure 4.51: Results for adaption of observer parameters after convergence of estimator

It can be seen, that, after a change of the operating point from 1300 min~'@0.7 Nm to
2000 min~1@1.0 Nm, tracking of the magnet temperature yields wrong results due to an
observer based on a wrong set of parameters. For the shown operating point, the deviation
reaches around 10 K. After re-parameterization of the observer, the magnet temperature
can again be determined with only a small error. The same approach was used for tracking
the magnet temperature in a series of several changes of the operating point as illustrated
in Figure 4.52. The same behavior can be observed, however, with a larger deviation of
the observer output compared to the measurement during the settling-in process of the

estimator.
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Figure 4.52: Results for adaption of observer parameters after convergence of estima-
tor for different operating points (1: 1300 min~'@0.7Nm, 2: 1800 min'@1.0Nm, 3:

1600 min~!@0.8 N m, 4: 2000 min~*@1.2 Nm)

4.4.5 Conclusion

This chapter introduced a thermal network, which is based on the continuous estimation
of process parameters and the subsequent dynamic tuning of an observer. Settling-in time
of the estimator is in the range of some minutes, which is due to the large time-constants
inherent to the thermal process and can thus not be increased. Limitations of the used
test bench, which cannot be equipped with additional heat sources, prevents speeding up

the heating process of the electrical drive.

Once converged, the determined parameter set is suitable for adequately tracking the
rotor temperature. For the shown operating point the deviation is smaller than 10 K. It
has to be noted, however, that proof for this can only be given for temperature regions
observed on the test-bench. These temperatures are far from the rated temperatures of
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the stator and rotor. If the presented approach is still suitable for higher temperature
regions of the stator and rotor, is a topic for further research.

The presented thermal network poses a valuable contribution to the field of online deter-
mination of critical motor temperatures. Together with the DC-injection technique (see
Section 4.1), it provides a new approach for determination of the rotor temperature with-
out any application effort. It has to be decided for each application, if the long convergence
times are acceptable.

As illustrated in Figure 4.53, the output of the thermal network, i.e. the magnet temper-
ature, has a major role in detecting and diagnosing faults in the electromechanical and
the mechanical subsystem. In both systems, it is utilized for adaption of the flux linkage
amplitude according to the current magnet temperature.

4.5 Summary

In this chapter, several algorithms were presented suitable for online determination of
internal states and parameters. Their significance for the topic of fault detection and di-
agnosis is illustrated in Figure 4.53.

A method for determination of the winding resistance was presented, which utilizes an
injection technique and a simple two-stage filter. Measurement of the equivalent series
resistance is also performed with a short voltage pulse injection. The method presented
does not require measurement of the battery current, which makes it cheaper to imple-
ment as existing solutions.

Furthermore, a novel algorithm was described for determination of the flux linkage over
angle. It can be applied during a power-off scenario both at the EoL with low inertia and
in the car with the fan attached. The method is characterized by low computing effort
and high accuracy.

The chapter is concluded with a novel approach for determination of the magnet temper-
ature. With utilization of the ambient air temperature and the power loss induced in the
windings, the parameters required for the observer structure are constantly updated by an
estimator. The presented approach provides good accuracy, however, it suffers from large
settling-in times of the estimator. The convergence time cannot be increased though, due
to the large thermal time constants inherent to the engine cooling fan motor. However,
this is no disadvantage for fault detection during driving.
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5 Fault Detection and Diagnosis:
Application

With the introduction of algorithms which provide the possibility to determine important
parameters and internal states online, the preceding chapter laid the foundation for the
application of fault detection and diagnosis. In the following, the principle of developed
algorithms for the detection and diagnosis of selected faults is presented. In the electrical
domain, detection of an aged or damaged capacitor as well as of winding faults, which are
caused by resistance changes, was investigated. The electromagnetic subsystem is con-
cerned with the detection of demagnetization events. In the thermal domain, the methods
for determination of the winding and magnet temperature, as described in Section 4.1 and
Section 4.4, are utilized for preventing overheating of one of the components. In the me-
chanical subsystem, detection of unusual load conditions are discussed along with bearing
faults, the detection of a blockage and of dirt on the fan blade.

The algorithms for fault detection and diagnosis, presented in subsequent sections, rely
on Eol-measurements for the determination of parameters in healthy state of the drive.
These parameters then serve as a reference for fault detection when the engine cooling
fan is operated in the car. In this work, two different EoL-stages of the engine cooling fan
are considered.

1. The first stage happens in the plant of the supplier of the electrical motor. At this
stage, the ECU is already connected to the electrical motor, but no fan or shroud
is assembled. It thus can only be used for determination of parameters concerning
the electrical motor, such as winding resistance or flux linkage over rotor position
angle.

2. The second stage is in the plant of the car manufacturer with the complete engine
cooling fan module (i.e. electrical motor including ECU and fan attached) assembled
in the engine compartment of the car. This stage is utilized for the acquisition of
process relevant parameters, required for usage of the affinity laws.

In the following, quantities determined in the first stage, i.e. in the plant of the supplier
of the electrical motor, are denoted with the subscript sp (supplier plant). Parameters
acquired in the plant of the car manufacturer are denoted with the subscript em (car
manufacturer).
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5.1 Electrical Subsystem

In the electrical subsystem, two components were investigated, the winding resistance
and the electrolyte capacitor. Values for both are directly measured with the procedures
described in Section 4.1 and Section 4.3.

5.1.1 Principle of Operation

For detection of winding resistance faults, an initial value of the winding resistance in
healthy state has to be determined. The EoL-stage at the supplier plant of the electrical
motor (ECU connected to the electrical motor, but no fan or shroud assembled) is used for
that purpose. As described in Section 4.1, an additional voltage is injected onto one motor
terminal during standstill of the drive. The winding phase resistance in star configuration
is then determined by evaluation of

2 Uum

Rosp(Tp) = 37 (5.1)
res,inj

with Uy the motor terminal voltage and I in; the resulting current from the super-
imposed voltage. The ambient air temperature Tsp has to be measured externally and
supplied by EoL-equipment to the ECU of the electrical motor at this stage. For the
measurement it is assumed, that the winding temperature equals the externally supplied
ambient air temperature. Please note, that in the following, externally supplied quantities
are denoted with a tilde as a superscript and reference quantities with a 0 as subscript.

During operation, detection of winding faults is difficult, as the resistance value strongly
depends on the winding temperature. Furthermore, with the method as described in Sec-
tion 4.1, only a mean resistance value can be determined. However, as the resistance value
depends on geometry and material properties, an expected resistance value for a given
temperature can be calculated and also supplied to the ECU of the electrical motor. Given
this information, a winding resistance residual can be derived, comparing the measured
with the expected resistance value directly at the EoL of the supplier plant according to

Tel,1sp = RO,sp(Tsp) - Rsp(Tsp) . (5.2)

In (5.2), Rygp denotes the EoL-value of the winding resistance determined with the ap-
proach described in Section 4.1, Rsp(ﬂp) the externally supplied resistance value at the
EoL in the supplier plant in healthy state and Ty, the supplied temperature at the EoL.

Fault detection concerning the equivalent series resistance (ESR) is similar to the approach
described above. Like for the winding resistance, an initial value of the equivalent series
resistance is determined by injection of a short pulse as described in Section 4.3. The
ESR-value is then determined by evaluation of
duge -
Resrosp = T (5.3)

c
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with duq. the voltage across the electrolytic capacitor and di. the capacitor current, both
determined at the injection time. Supplying a reference value of the used electrolytic capac-
itor in healthy state, which can be retrieved from data-sheet parameters or by measure-
ment with an RLC-device, allows for the derivation of a capacitor resistance residual
directly at the EoLL of the supplier plant as

Tel2,5p = FESR,05p — [PESR,sp - (5.4)

In (5.4), Rgsr,osp denotes the EoL-value of the equivalent series resistance and INEESR_VSP
the externally supplied resistance value in healthy state.

During operation in the car, a new value for the ESR is determined each time the drive is
in standstill (also with the method described in Section 4.3). The newly acquired value is
then compared to the reference value Rggsg osp, Which was determined at the EoL at the
supplier plant. A further capacitor resistance residual can then be derived as

ot
ot
~

Tel,3 = REsr — REsr,0.8p 5 ( .

with Rgsr the newly determined value of the equivalent series resistance.

5.1.2 Results

As no motor with a winding fault was available, only simulation results can be given for
the detection of a winding fault at the EoL. Both the accuracy of the externally sup-
plied ambient temperature Tsp and the resistance value ]:ZSP(TSP) are assumed to be of
high accuracy, leading to a low threshold of 714, for the detection of a winding fault.
Results for differently aged capacitors are depicted in Table 5.1. As can be seen, the ESR
determination performed with the ECU-implementation shows good congruence with the
reference measurement performed with an RLC-device.

However, as can be seen in Figure 4.26, the value of the equivalent series resistance de-
creases with rising temperature. To distinguish between a decrease caused by temperature
and an increase caused by an aging capacitor (see Figure 4.35), a temperature information
therefore has to be included.

Considering (4.41), however, which states, that a capacitor has reached the end of its
lifetime when the equivalent series resistance is three times as high as the initial value,
a strongly aged capacitor can also be diagnosed without any temperature information
due to the strong change in resistance value. The resulting fault-symptom table for the
electrical subsystem is listed in Table 5.2.

5.2 Electromagnetic Subsystem

The literature describes various methods to detect a demagnetization. Rosero et al. (2006),
Ruschetti et al. (2010) and Rosero et al. (2007) perform an FFT or a Wavelet transforma-
tion on the stator current and the zero sequence current. Their findings suggest, that the
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Table 5.1: Equivalent series resistance (ESR) measurements with RLC-meter and with
implemeted algorithm on ECU (see Section 4.3) for differently aged capacitor

Absol lativ
RLCometer BCU bs'o 1.1te Relative
deviation €rTor
New capacitor 0.0236 Q2 0.02329Q 0.4mQ 1.69%
Medi
edlum. aged 0.0296 Q2 0.0286 Q 1.0m¢ 3.37%
capacitor
Strongly aged
rongly age 0.0620 0.0555Q 6.5mQ 10.84%

capacitor

Table 5.2: Fault-symptom table for the electrical subsystem (0 no significant change; +

increase; ++ large increase; — decrease; —— large decrease)
Fault Tel,1,sp Tel,2,sp Tel,3
Winding fault +/— 0 0
Aged / damaged
ged / damag 0 +/ ++
capacitor

derived symptoms vary depending on the winding configuration as well as the operating
point. Casadei et al. (2009) and Khoobroo and Fahimi (2010) both perform the FFT on
the shape of the induction voltage waveform. As the form of the induction voltage can
only be measured or simulated under a no-load condition, this method is not operating
condition dependent. However, it shows, that the winding configuration has to be taken
into account as well for determination of suitable symptoms.

5.2.1 Principle of Operation

The approach presented here is based on the reconstruction of the flux linkage as described
in Section 4.2. To investigate the potential of the reconstruction for diagnosing a demag-
netization event, several motors were subjected to demagnetization currents between 60 A
and 140 A.

The decrease of the rms-value of the flux linkage over the demagnetization current for
the given motor with ferrite-magnets is shown in Figure 5.1.  Amplitudes of relevant
harmonics (the occurence of sub-harmonics was not further investigated in this work) of
the induction voltage during power-off compared to the healthy state are displayed in
Figure 5.2. A decrease of the amplitude can be observed, but with a different slope for
each harmonic. A counter-effect to this trend, however, is shown in Figure 5.3. For ferrite
magnets, the harmonics also decrease with rising temperature. Neglecting temperature
effects can thus result in wrongly diagnosing a healthy system with a demagnetization.
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Figure 5.1: Decrease of rms-value of flux linkage over demagnetization current
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Figure 5.2: Amplitude of different harmonics of induction voltage during power-off at
room temperature over demagnetization current

When looking at the second harmonic, however, a temperature-independent symptom can
be derived as illustrated in Figure 5.4. The second harmonic shows a steep increase when
a demagnetization occurred with currents above 110 A.

Based on the observed effects, several residuals can be derived for diagnosing a demagne-
tization by comparison of the amplitudes of the harmonics. As pointed out in Section 4.2,
due to the different frequency responses of the low-pass filters used for measurement of
the line-to-line voltage, the phase angles showed a large deviation between the individual
phases, rendering them unsuitable for utilization in fault diagnosis.

The initial values for the individual harmonics are measured with an EoL-test at the
supplier plant with the procedure described in Section 4.2. At this stage, only the ECU is
connected to the electrical motor, which corresponds to scenario one as described in Sec-
tion 4.2. In case that values for the healthy state are supplied externally, a first evaluation
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Figure 5.4: Amplitude of second harmonic of the flux linkage at room temperature over
demagnetization current

of demagnetization residuals can take place directly at the EoL:
Tem,i,sp — aO,Lsp(Tsp) - di,sp s (:)6)

with ag;sp the determined amplitude of the i-th harmonic at the EoL of the supplier
plant, @; s, the externally supplied value for the amplitude of the i-th harmonic in healthy
state and Tsp the externally supplied ambient air temperature.

During operation in the car, a new set of amplitudes can be acquired during a power-off
procedure. As the fan and hub are attached to the electrical motor, this corresponds to
scenario 2 as depicted in Section 4.2. The newly determined parameter set yields a new
set of demagnetization residuals as

a;

1- Vayi * <Trnag - Tsp) 7

(5.7)

Tem,i = 0/017;,5})(7:1513) -

with a; the amplitude of the i-th harmonic determined during the power-off procedure, 7, ;
the temperature coefficient of the i-th harmonic and T, the current magnet temperature
(derived with the thermal network as described in Section 4.4).
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5.2.2 Results

As can be seen in Figure 5.3, each harmonic has a different temperature coefficient. This is
due to saturation effects in the magnetic circuit. Determination of the different coefficients
requires measurements in the temperature chamber. To reduce complexity and application
effort, the temperature coefficients are set to the value which is supplied with the data-
sheet of the used magnet:

Yai = Vbr - (58)

As a consequence, the thresholds for diagnosis have to be increased slightly.

In healthy state, the second harmonic is not present in the spectrum of the flux linkage.
As illustrated in Figure 5.4, it can be measured when demagnetizing with currents above
110 A, which results in a decrease of the rms-value of approximately 8 % (see Figure 5.1).
In case a second harmonic is detected, this is thus a clear and temperature-independent
indicator for a demagnetization. When taking other harmonics into account, the temper-
ature has to be considered as well. The fault-symptom table, exemplary for the first, the
second, the third and the seventh harmonic, is displayed in Table 5.3.

Table 5.3: Fault-symptom table for electromagnetic subsystem both at EoL of the supplier
plant and during operation in the car (0 no significant change; + increase; ++ large

increase; — decrease; —— large decrease)
Fault Tem,1{,sp} Tem,2{,sp} Tem,3{,sp} Tem,7{,sp}
Strong
s ++ + ++ o+
demagnetization

Medium or low
o + 0 + +
demagnetization

5.3 Thermal Subsystem

An overheating of the winding and the magnets was investigated in this work. As pointed
out in Section 3.2, no external heat source could be assembled on the test bench. Reaching
the required temperatures for an overheating of the winding or the magnet on the test-
bench was therefore not possible. Evaluation was thus carried out by simulation.

Fault detection for winding and magnet overheating is perfomed, while the engine cooling
fan is being operated in the car. Overheating of one of the components is detected by a
simple limit checking, requiring the current temperature of the winding and the magnets
and maximum rated temperatures of both components.

Based on the measured winding resistance (see Section 4.1), the winding temperature is
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retrieved by solving (4.1) for Tyinding. yielding

1 Ryinding =
Twinding = g (m - 1) + Twinding,0 - (5.9)
In (5.9), 7 is the temperature coefficient of the winding material (for copper it holds v =
0.39% K1), Ryinding0(Twinding,0) the reference resistance at a given temperature, Tyinding,o0
and Ryindging the currently measured winding resistance. For the reference resistance, the
value retrieved at the EoL of the supplier of the electrical motor (see Section 5.1) is used.
The current winding temperature is thus determined by evaluation of

1 windin s 1%
Twinding = - i d~ g _ 1]+ Tsp . (010)
v RU-,SD (Tsp)

The winding temperature and resistance both serve as an input to the termal network
described in Section 4.4. Output of the network is the current magnet temperature 7i,aq.
The rated maximum temperatures of the windings and the magnets can either be supplied
externally at an EoL-stage or hardcoded into the ECU-firmware. Here it is assumed, that
the corresponding values are transferred to the ECU at the EoL of the supplier of the
electrical motor.

Winding and magnet overheating residuals can thus be derived as

Tth,1 = Twinding,max,sp - Twinding (L)].].)

Tth,2 = Tmag,max,sp - Tmag ) (512)

with Twinding,max,sp the externally supplied maximum temperature of the winding, Tiinding
the current winding temperature determined with the method described in Section 4.1,

Trnagmaxsp the externally supplied maximum temperature of the magnet and T,,,; the
current magnet temperature (output of the thermal network described in Section 4.4).

It has to be noted, that the magnet temperature can not be determined as accurate as
the winding temperature due to the limitations set forth by the thermal network. The
threshold at which a reaction takes place should therefore be chosen much lower than
the threshold for the detection of an overtemperature of the winding. The resulting fault-
symptom table is shown in Table 5.4.

Table 5.4: Fault-symptom table for the thermal subsystem (0 no significant change; +
increase; ++ large increase; — decrease; —— large decrease)

Fault Tth,1 Tth,2

Overheat Winding - —
Overheat Magnet - —
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5.4 Mechanical Subsystem

Main topic in this work concerning the mechanical subsystem is the identification of
unusual load conditions. These conditions can be caused by a blockage of the fan module
by an object (e.g. leaves or whole branches), or by a stiff bearing leading to higher friction.
Both events shift the operating point to one with a higher torque, resulting in larger
currents flowing through the machine. This in turn can lead to a demagnetization event,
overheating or in the worst case, to a burning down of the whole device. This is serious,
as the thermal event can pass over to the whole vehicle.

The algorithm for identification of unusual load conditions currently implemented on the
series ECU of the engine cooling fan has several limitations, the most severe among them
being:

e High calibration effort in terms of expensive test bench measurements during design
phase for parametrization of the algorithm for each different motor/fan combination.

e High error margin due to the lack of information about the system, such as magnet
temperature and phase currents.

e No possibility for adaption to changes in machine characteristics due to aging or
malfunction.

5.4.1 Principle of Procedure

Aim of the algorithm developed is to overcome the above mentioned shortcomings, with a
focus on minimizing application effort and the ability for adaption to machine tolerances
and changing motor parameters. The first is accomplished with EoL measurements both
in the supplier plant and the production line of the car manufacturer. The adaption
to machine characteristics is achieved with an online thermal network (see Section 4.4)
and the methods for gathering machine parameters covered in Chapter 4. A simplified
topology of the algorithm is depicted in Figure 5.5. Main principle is to determine an
expected torque and compare that value with the actually delivered torque of the drive.
A value other than zero suggests a possible unusual load condition. For calculation of the
currently delivered and the expected torque several drive-specific parameters are required.
Some of them, like the actual stator phase current or the actual rotor position angle, are
determined during runtime, others, like the flux linkage or process-specific parameters,
have to be acquired with an EoL. procedure. To achieve a higher degree of robustness
more than one residual is evaluated.

The presented structure is twofold. Foundation of the algorithm is the acquisition of a
base parameter set with the drive being in a healthy state. This is done with an EoL run
of the motor. The actual fault detection and diagnosis during operation of the drive in

21673.216.36, am 20.01.2026, 12:57:57. Inhalt,
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186262080

108 5 Fault Detection and Diagnosis: Application

[ EOL-acquisition of base parameter set HCOnlparisoll with expected values }

During operation

e Parameter estimation during run-up

e Comparison of expected with actually delivered torque in steady state

Figure 5.5: Basic topology of the algorithm for detection of unusual load conditions

the car is done by calculation and evaluation of several residuals, which will be derived
and explained in the following.

Base Parameter Set

The algorithm requires several parameters, all of which are acquired with an EolL-run
of the machine. Parameters specific to the electrical machine like the winding resistance
or the flux linkage over angle are determined at the EoL of the supplier of the elctrical
machine.

Determination of the process-specific parameters demands a run-up procedure of the elec-
trical drive under known ambient conditions while being installed in the vehicle, as these
parameters are strongly dependent on the air perfusion through the engine compartment.
As a consequence, this test-run has to take place in the plant of the car manufacturer.
Both EoL-tests and the resulting parameters are outlined in Figure 5.6 and Table 5.5,
respectively. Please note that externally delivered variables are marked with a tilde and
acquired reference values are indicated with the subscript 0.

EoL supplier plant EoL car manufacturer plant
Measurement of Parameter estimation during run-up
1. Reference motor resistance Ro.sp(Tsp) 1. Reference inertia Jo om
- Vo .sp [ ) . 7. 7.
2. Reference flux linkage 6;‘“” (Tep) 2. Reference friction coefficients kg1,0,cm; K0,0,em

!

Calculation of reference load torque Mo, cm (10,cm» j‘c.,,)

Figure 5.6: Diagram depicting required steps for determination of the base parameter set
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Table 5.5: Overview of base parameter set determination

EoL supplier of electrical drive

Supplied Determined Corresponding
Method .
externally parameter residual
Winding resistance
determination Rep,Tsp Rosp(Tsp) Tel,1,sp

(Section 4.1)

Flux linkage over angle

~ OVo,sp (Tsp)

determination QjsprLsp Do Tem,i,sp
(Section 4.2)
- kfr().spa kfrl,sp(Tsp) -
EoL car manufacturer
Supplied Determined Corresponding
Method P R
externally parameter residual
Parameter estimation ~ A
(Section 213) Jem JO,cm Tmech,1,cm
Parameter estimation i
. T :
(SeCthIl 213) r0,0,cm mech,3
Parameter estimation 3
. Tmed
(Section 2.1.3) fr1,0,cm mech,4
Calculation ((5.26)) Tem Mo e (n0,ems Tem) Tmech,5

For the proposed method, parameters specific to the ele(trical machine, i.e. the winding

resistance Roq,(Ty,) and the flux linkage over angle 2 ;)el"(pr), are determined at the
supplier plant of the electrical machine and stored in the microcontroller.

The motor resistance is required for determination of the winding temperature during
operation of the drive, whereas the flux linkage is utilized for torque calculation according
0 (3.19). Determination of both parameters at the EoL of the supplier plant was already
described in Section 5.1 and Section 5.2, respectively. After determination of the values,
a first fault detection can take place by comparing to externally delivered reference value
in healthy state, leading to the winding resistance residual (5.2)

Tel,1,sp = RO,sp(Tsp) - Rsp(:fsp) ) (513)

and the demagnetization residuals (5.6)

rem i,5p = Qo ap(T ) &i,sp . (514)

(7‘1’0 O%o,sp

The flux linkage over angle =52=> can easily be determined from the retrieved amplitudes
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and phase angles of the relevant harmonics. The right part of Figure 5.6 depicts the
procedure for determination of parameters when the drive is completely assembled in
the car including fan and shroud, i.e. it represents the EoL stage at the plant of the car
manufacturer. The reference inertia jg,m and the friction coefficients ];'fr().(],cm and ];'frlﬁg,cm
are determined by parameter estimation during a run-up procedure with

7 . 7. 2 7. 7. =15
]vjmot = '](),cmwrot + kf’dn,cmwrot + kfrlt(),cmwrot + kfr0,0,cm . (‘)'1‘))

Mot is the torque produced by the electrical machine and calculated according to (3.19),
j().crn the inertia of the motor and the fan, and ];’fan_rcm the fan constant.

In Table 5.5 it can be seen, that two reference friction coefficients in healthy state, ];}[1-075},
and /;mysp, are already supplied to the ECU during the EoL stage in the plant of the
supplier of the electrical drive. This is because estimation of the friction coefficients with
(5.15) gives implausible results, as the estimator seems to be distorted by the additional

entries in the measurement matrix. For calculation of the friction torque with

7. Tma 7. -
A{fr = Wrotkfrl,sp ( T g) + kfr(),spv (016)

sp
however, correct values of the friction coefficients are required. As will be shown later,
storage of the wrongly estimated friction coefficients is not unnecessary. Re-estimating
the coefficients with a defect bearing showed significant deviations of the estimated values
for the friction coefficients, which makes them suitable for diagnosing a bearing fault.
Estimation of the inertia with (5.15) gave results which were expected based on geometric
data. Comparing the estimated value at the EoL with the externally delivered inertia in
healthy state jcm yields the inertia residual

Tmech,1,cm = jcm - jO,cm . (517)

Similar to the EolL measurement at the supplier plant, the current air temperature Tom
has to be measured and transferred to the ECU. The estimated values are stored as a
reference in the microcontroller and can be compared to newly estimated ones after each
run-up procedure when the drive is operated in the car.

Main principle of the algorithm is to calculate an expected torque for the given operating
point and compare that value with currently delivered torque by the electrical drive.
Calculation of the expected torque is performed by utilization of the affinity law

~ 2
Mexpected = ( = P ) . ( 1 ) AJO.cm s (518)
P0,cm 10,cm '

with Mexpected the expected torque for the operation point given by the air density p

and the rotational speed n. In (5.18), Pocm, Moem and ngen are reference values which
have to be determined at the EoL: of the car manufacturer. For determination, the engine
cooling fan has to be held at a steady state operating point for a short time. The reference
parameters can then be retrieved with

T 7. TC m 7.
]MO,cm (”07 Tcm) = Mmot - kfrl,sp . =~ Wrot — kfrO,sp ) (019)
TU‘sp
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with ng the current rotational speed, Thy the externally supplied ambient air temperature,
Mot the torque delivered by the electrical machine according to (3.19), and l%rr,o,sp and
l;fryl’sp the externally supplied friction coefficients at the EoL of the supplier of the electrical
drive. The friction coefficients estimated with (5.15) can not be used here as they, due
to their wrong value, would distort the determination of the reference torque Mg . For
later usage of (5.18) it is also required to externally supply the ECU with a value for the
current air density poem, which can be delivered by the ECU of the combustion engine.

Fault Detection and Diagnosis

Three stages for fault detection and diagnosis can be identified for the mechanical sub-
system. The first one is at the EoL of the supplier of the electrical machine, the second
stage is at the EoL of the car manufacturer and the third one is while the drive is being
operated in the car.

The fault detection possibilities in the first and second stage, i.e. at the EoL, consist of
comparison of determined parameters with externally supplied values in healthy state. At
the EoL of the supplier of the electrical drive, winding and demagnetization faults can be
detected with the winding residual and the demagnetization residual

Tel,1sp = RO,SP(TSP) - Rsp(Tsp) (5.20)

Tem,isp = aO,i,sp(Tsp) - ai,sp . (521)

At the EoL of the car manufacturer, one residual can be evaluated. With the inertia
residual it is possible to detect problems connected with the fan blade, such as dirt
sticking to it:

Tmech,1,cm = jcm - jO,cm . (522)

While the drive is being operated in the car, a new set of residuals can be built. During
each run-up procedure, a new parameter estimation according to (5.15) is performed,

yielding a new set of values for the inertia J and the friction coefficients ko and l%[r,l.
With the new estimation, another inertia residual can be built as

Tmech,2 = j - j(],cm7 (:)23)

with J the newly estimated inertia and j(]’cm the inertia estimated during a run-up pro-
cedure at the EoL of the car manufacturer. The estimated friction coefficients can also be
compared, leading to the friction residuals

Tmech,3 = kfrl - kfrl,(],cm (524)
Tmech, 4 = kfr() - kfr().(l,cm ) (525)
with kg and ko the newly estimated friction coefficients, and koo em and kg oem the

friction coefficients estimated during a run-up procedure at the EoL of the car manufac-
turer.
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When the drive is operated in steady state, a torque residual can be evaluated as
Tmech,5 = ]\/[mot - (]\/[Af + ]\/fﬁ') ) (526)

with Mo the currently delivered torque according to (3.19), the term Ma; representing
the currently expected torque and My, the friction torque. The currently expected torque

~ 2
Mas = (Np )( n ) Moem » (5.27)
£0,cm T00,cm

with p the air density of the current operating point, taking into account the air pressure

can be calculated with

and temperature behind the cooler. See (3.46) to (3.49) for the corresponding equations.
The air density can be supplied to the ECU of the engine cooling fan by the ECU of the
combustion engine.

The resistance torque generated by friction and iron losses is calculated as

7 ﬂx;av 7 =
]V[fr = wrolkﬁrl,sp < T 5) + kfrO,sp- (028)

sp

5.4.2 Results

The faults, that can be detected and isolated with the above residuals, are listed in
Table 5.6. For evaluation of the residuals, all faults were reproduced on the test bench.
As the estimation of the friction coefficients is attached with a high degree of uncertainty,
only one bearing defect was prepared (leaking lubrication) to investigate, whether the
estimates can be used for diagnosis despite their wrong values. As can be seen in Table 5.6,
the corresponding residuals show a clear pattern when the motor is operated with the
defect bearing.

The fault dirt on the fan blade was simulated by using different sized clutches, which
increase or decrease the overall inertia of the system. As expected, rmech,1.cm 1S a clear
indicator for a changed inertia. Blockage, caused e.g. by leaves or whole branches stuck in
the engine compartment, was reproduced by an additional constant load during operation,
which leads to a load higher than expected.

An exemplary development of the parameter estimate of the inertia is shown in Figure 5.7,
development of the residual 7,ech 5 for different car velocities is illustrated in Figure 5.8.
As can be seen, the car velocity distorts ryecns as shown in Figure 5.8. The airstream
caused by the moving car decreases the load of the fan drive, which is not covered by
(5.27). Consequently, a moving car with no blockage leads to a negative value of Tmecn 5,
whereas a moving car with a simulated blockage is not detected, as ryecns stays around
zero. The car velocity for the example shown in Figure 5.8 was 10km h~!. Adjustment of
(5.27) to account for the car velocity is possible, but, due to the nonlinearities inherent,
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Table 5.6: Fault-symptom table for mechanical subsystem (0 no significant change; +

increase; ++ large increase; — decrease; —— large decrease)
Fault Residual
Tel,1,sp Tem,i,sp Tmech,1,cm Tmech,2 Tmech,3 Tmech,4 Tmech,5
Winding fault +/- 0 0 0 0 0 0
Demagnetization 0 ++/0 0 0 0 0 0
Defect bearing 0 0 0 0 ++ + 0
Dirt on fan blade 0 0 + + 0 0
Blockage 0 0 0 0 0 0 ++
g
g Healtl
SR 0 = Healthy
“5 =X sesressnaad auas Faulty
= f=}
s &
- 5 —50
S g
E =3
g -100
= -8 —6 —4 -2 0 2 4 6

Time in s

Figure 5.7: Development of parameter estimates for J (Pmech,2). The error dirt on fan blade
is introduced at time ¢t = 0s.

demands a high computing effort. As the engine cooling fan is mainly operated when the
car is not moving, this does not constitute a severe limitation.

The presented algorithm is able to overcome the limitations of current implementations
indicated above. The implementation complexity, however, is very high, as a large number
of parameters have to be acquired and be handled with. Despite the implementation
issue, the presented approach shows a large potential in terms of decreasing application
costs, as all relevant information is gathered with an EoL run. Unfortunately, the friction
coefficients could not reliably be estimated, which requires to supply them externally. It
was shown however, that despite their wrong values, the coefficients estimated with (5.15)
can be used for diagnosing a defect bearing. Their utilization in a series product, however,
is highly questionable due to the unreliability and the not fully understood side-effects on
the estimation of the inertia and the fan constant.

5.5 Required Cycle Time at EoL

Assuming, that all described methods for fault detection and diagnosis are to be applied
in a series product, several parameters have to be acquired at both the EoL of the supplier
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7E 010 1 Healthy, v = 0 km/h "‘"“"..‘-f."'."""-:‘a}‘: W "":f\-"";“'
;: === Faulty, v = 0 km/h
= 0.05
=
Z
~ 0.00
-0.8 —0.6 —-04 —-0.2 0 0.2 0.4 0.6 0.8
Time in s
ZE 0-10 Fr— Healthy, v > 0 km/h
= 0.05 w=x= Faulty, v > 0 km/h | o o 08 ei,tubes CXRS ETIIKY
—5 0.00
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<
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—0.10
-08 —-06 -04 -0.2 0 0.2 0.4 0.6 0.8
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Figure 5.8: Development of calculated residual ryec 5 according to Table 5.6 for unusual
load detection. The error blockage is introduced at time ¢ = 0s.

of the electrical machine and the car manufacturer. Approximate times for the detection
of the required parameters are given in Figure 5.9. At the EoL of the supplier of the
electrical machine reference values for the winding resistance Ry sp, the resistance of the
DC-link capacitor Rggg osp and the flux linkage over angle = ;’“" have to be acquired.
Both the winding resistance and the equivalent series resistance can be determined with
the electrical motor being in standstill. Determination of the reference winding resistance
demands superposition of an injection voltage on one of the three phases. This superim-
posed DC-voltage leads to a short rotor movement, which has to be waited for to decline
before the actual measurement can take place, resulting in an approximate time for the
determination of the reference winding resistance of 200 ms.

The equivalent series resistance of the DC-link capacitor can be retrieved by injection of
a short voltage pulse. As the rotor movement does not interfere with the measurement,
Rpsr,0,sp can be determined in approximately 5ms.

The flux linkage over angle can only be acquired during a power-off procedure of the
drive. This requires a power-up of the electrical drive to an arbitrary rotational speed.
The following power-off procedure can be supported by active braking perfomed by the
EoL equipment, leading to a determination time of 30 ms.

At the plant of the car manufacturer reference values for the inertia j(],cm and the friction
coefficients ];fno,cm and ];'fu]'cm have to be acquired. Furthermore, a reference torque has to
be determined for later usage with the affinity laws. The inertia and friction coefficients
are determined with parameter estimation during a run-up of the drive. As the drive is
fully equipped, i.e. fan and shroud attached, the run-up procedure takes (depending on
the final operating point) around 9s. Once the run-up procedure is completed, acquisi-
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EoL supplier

n Vg
Ro sp Rgsr.0,sp e

~ 200ms ~ dms ~ 30ms t

0 >
0
EoL car manufacturer
n . jO,cm ];’fr0,0,cm ]%frl,O,cm .MO,Cm
i i
1 1
] ]
1 1
1 1
1 1
i i
OD 1 1 )

~ 9s ~ 100ms t

Figure 5.9: Required cycle times for detection of parameters at the EoL

tion of the reference torque requires the drive to be held in steady state for approximately
100 ms.

5.6 Conclusion

In this chapter it was demonstrated, that knowledge of internal states and parameters
enables the application of a detailed fault detection and diagnosis, which is simple to
implement and does not require extensive computational resources. Furthermore, connec-
tions between the single residuals were kept at a minimum, allowing for implementation of
the described methods to different applications without requiring additional application
effort. Since there is no interconnection between the individual residuals, all faults can be
diagnosed unambiguously.

In most cases, the detailed knowledge of the parameters enables a procedure for fault de-
tection and diagnosis by a comparison with a predefined threshold. Only the mechanical
subsystem requires evaluation of several residuals to increase the overall robustness of the
algorithm.

A summary of all fault-symptom tables developed in Section 5 is given in Table 5.7 and a
complete overview of the required parameters for detection and diagnosis of the selected
faults is given in Table 5.8.
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Table 5.7: Summarized fault-symptom table for investigated faults (0 no significant
change; + increase; ++ large increase; — decrease; —— large decrease)

Electrical subsystem

Tel,1,sp Tel 2,sp Tel,3
Winding fault +/— 0 0
Aged / dqmagcd 0 4+ i
capacitor
Electromagnetic subsystem
Tem,1 Tem,2 Tem,3 Tem,7
Strong demagnetization ++ ++ ++ ++
Medium or low n 0 n n

demagnetization

Thermal subsystem

Tth,1 T'th,2

Overheat Winding — _
Overheat Magnet — —

Mechanical subsystem

Tmech,1,cm Tmech,2 Tmech,3 T'mech,4 Tmech,5
Defect bearing 0 0 ++ + 0
Dirt on fan blade + + 0 0 0
Blockage 0 0 0 0 ++
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Table 5.8: Investigated faults in this work broken down to the different stages. Also given

are required parameters for their detection and diagnosis along with a reference to the
used method for parameter acquisition.

EoL supplier of electrical drive

Supplied Determined Correspondin,
Fault Method PI 1 8
externally parameter residual
Winding resistance
Winding fault determination Ryp, Ty Rosp(Tsp) Tel,1,sp
(Section 4.1)
Flux linkage over
Demagnetization  angle determination di,sp,ﬂp ag.i,sp Tem,i,sp
(Section 4.2)
Aged / damaged ~ ESR determination i R
. . . e S [ 4,8 T
DC-link capacitor (Section 4.3) ESR.sp ESR.0.sp el2sp
EoL car manufacturer
Supplied Determined Correspondin,
Fault Method bp ponns
externally parameter residual
Parameter
Dirt on fan blade estimation Jem jo,cm Tmech,1,cm
(Section 2.1.3)
Operation in the car
Fault Method Supplied Determined Corres.ponding
externally parameter residual
Flux linkage over
Demagnetization — angle determination - a; Tem,i
(Section 4.2)
Aged / damaged ESR determination
. . . Rpsr Tel,3
DC-link capacitor (Section 4.3)
Winding resistance
QOverheat winding determination ~ Ttho1
(Section 4.1) Sp:Twinding,max,sp Rwinding7Twinding '
Thermal network -
Overheat magnet Tinag,max,sp Tnag Tth,2

Defect bearing

Dirt on fan blade

Blockage

(Section 4.4)

Parameter
estimation -
(Section 2.1.3)

ko, ke

Parameter
estimation - J
(Section 2.1.3)

Calculation ((526)) Tcmylz"fro,sp\%frl,sp ]\/[motyz\/lfn]b[Af

T'mech,3,""mech,4

Tmech,2

Tmech,5
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6 Summary and Outlook

In this work, a contribution to the area of fault detection and diagnosis for electrically
driven engine cooling fans has been made. As is illustrated in Figure 6.1, the focus was
set to the determination and handling of internal states and parameters of the electrical
machine. They not only allow for the development of a detailed fault detection and diag-
nosis but also serve as an enabler for the reduction of application costs.

This was demonstrated in Section 5, which illustrates the techniques used for detecting
and diagnosing selected faults. Due to an efficient EoL parametrization, most of the algo-
rithms can be utilized without any additional application effort. It is furthermore shown,
that the detailed knowledge of internal states and parameters allows for a straightforward
and resource saving implementation.

After an introduction of the engine cooling fan and derivation of corresponding equations,
methods for determination of important parameters are presented. Acquisition of the
winding resistance (see Section 4.1) by injection of a short pulse allows for the detection
of winding faults and can be used for derivation of the winding temperature, which is
utilized in the thermal network. The technique furthermore allows for the determination
of a winding temperature before starting the motor, which represents a new contribution,
as this was not possible so far without a dedicated temperature sensor.

Acquisition of the fluz linkage over rotor position angle (see Section 4.3) is done during
a power-off procedure of the drive by just measuring the line voltages. It is both utilized
for torque calculation and for detection of a demagnetization fault. In terms of required
resources and computing power it is superior to the methods described in the literature.
The equivalent series resistance is, like the method for determination of the winding
resistance, based on an injection technique. During standstill of the drive a short pulse
is injected and the resistance value derived from the system answer by measurement of
the DC-link voltage and the line current. It is utilized for detection of an aged DC-link
capacitor. The proposed method can be applied without requiring a current sensor for the
battery current. Compared to existing approaches, it is thus cheaper to implement, as it
requires less current sensors to operate.

The algorithms were specifically designed to account for the limited resources available.
Usefulness of the proposed methods was proven both by simulation and by evaluation
on the test bench. The algorithms can not only be used for engine cooling fans, but
are suitable for all continuous run motors. In some cases, such as determination of the
equivalent series resistance or the winding resistance during standstill, they can also be
used for actuators.

The thermal network presented in Section 4.4 takes the winding, the ambient air temper-
ature and the power loss induced in the windings as an input to determine the current
magnet temperature. Both the winding temperature and the magnet temperature are
important quantities for fault detection and diagnosis, which is presented in Chapter 5.
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Figure 6.1: Overview of covered topics.

Despite some shortcomings, the presented thermal network poses a promising approach for
the online determination of critical motor temperatures. Together with the DC-injection
technique (see Section 4.1), it furthermore provides the ability to determine the rotor
temperature without any additional application effort.

The presented approach for a thermal network, however, can still be improved by further
investigations. Another proposal for a thermal network is depicted in Figure 6.2. It is based
on an advancement in model order reduction, which allows for an efficient determination
of a state space model based on a complex FEM model. Considering certain boundary
conditions, the output temperatures of the state-space model can be chosen arbitrarily.
However, the created state space model is only valid for certain environmental conditions,
rendering it unsuitable for usage in the field. However, if the relationship between the
parameters of the reduced-order model and the environmental conditions were known,
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a look-up-table (LUT) could be calculated offline and stored in the microcontroller for
later usage. Based on this parameter set and the reduced-order model an observer could
be designed, equal to the one proposed in Section 4.4. The observer error could also be
designed to be
62195*1%, (61)
with g the measured stator temperature and 195 the observer output. Like in the thermal
network presented in Section 4.4, the stator temperature could be measured with the
DC-injection technique.
Finding the relationship between the parameters of the reduced-order model and the

n ﬁcAir

LUT
> (’Yl» cee 7’7n(n7 Ucar, 19cAir)

I

Process observer

19cAi'r
—3(
Vo 0y

R

B
Figure 6.2: Proposal for an online thermal network based on FEM model combined with
LUT

environmental conditions is a difficult task and requires extensive research. However, once
the LUT can be calculated offline, an efficient online thermal model can be implemented
which requires no application effort, as the FEM model is always created during the design
phase of the electrical motor and can thus easily be used for the model-order reduction.

Future work in the area of online parameter gathering should concern the adaption of
the developed algorithms to dynamic operating points, which would make them more
suitable for utilization for actuator applications. In their current implementation, only
selected functionalities can be applied to actuators.

Furthermore, due to the novelty grade of the presented algorithms, experience has to be
gathered with implementation on series hardware to ensure reliable functioning of the
system in all operating conditions.

In summary, following new contributions could be obtained for the field of fault detection
for engine cooling fans:

e an enhanced method, which allows for determination of the winding resistance both
during standstill and operation of the drive was presented. The value of the winding
resistance is utilized for detection of a winding fault. Futhermore, it is utilized for
derivation of the winding temperature and thus serves as a temperature sensor inside
the motor.
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e an approach for determination of the equivalent series resistance of the DC-link
capacitor was presented, which does not require a battery or capacitor current to be
measured. The resistance value is used for detection of an aged or damaged capacitor.

e a novel approach for determination of the flux linkage over rotor position angle
during a power-off of the engine cooling fan was presented. The acquired flux linkage
over rotor position angle is used for detection of a demagnetization and utilized for
torque calculation.

e a thermal network was developed, which uses the winding temperature and the
power loss incurred in the windings to determine the magnet temperature. The
temperature of the magnets is used in several places throughout this work, such as
adaption of the calculated torque and prevention of an overheating of the magnets.

e All above described methods were combined to allow for the detection of several
faults at the EoL of the supplier of the electrical machine, the Eol of the car man-
ufacturer and while the engine cooling fan is being operated in the car. Among
the fault detection algorithms is a novel approach for detection of unusal load con-
ditions, caused for example by a blockage. Due to the possibilities, to acquire all
required parameters at the EoL, the application effort to apply the fault detection
algorithms to new applications is minimized.
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A The Condition of a Matrix

The condition number is a measure to determine how linearly dependent a system of
equations is or how strong it reacts to measurement uncertainties. The system of equations

A-©=b (A.1)

is considered well-conditioned if a small change in the coefficient matrix A or the input
vector b results in a small change in the solution vector ©. Likewise, the system (A.1)
is considered ill-conditioned if a small change in A or b results in a large change in the
solution vector @. The definition of the condition number ¢ is based on the matrix norm.
If using the Lo-norm the condition number can be derived as the ratio of the largest to
the smallest singular value of A

a(A) =me > (A2)
Omin
If A is normal, (A.2) becomes
5(A) = "mer (A3)
Kmin

with Kiuee and K, the largest respectively smallest eigenvalue of A.
The higher the condition number, the worse the condition of the matrix. Assuming a
disturbance of vector b by Ab the correct solution according to (A.1) is falsified by A®

A(©®+AB)=b+ Ab. (A.4)
The parameter error hence yields
A® = A'Ab. (A.5)
By applying the Lo-norm to (A.5), one obtains
|A®]| = [|[A™'Ab]| < [|A7"]] - [|Ab|. (A-6)
From (A.1) it follows, that
bl =[lA - ©[ < [|A]l-||©]], (A7)
from which one obtains ) Al
— < T (A.8)
el ~ bl
Extending (A.8) with (A.6) finally yields
1AB]] 1 ||Ab]| ||Ab||
<[lAfl-[]A7] =4(A) ; (A.9)
lel| |1l I[b]]

which shows, that the relative error [|Ab||/||b|| amplifies the relative error of the solution
[|AB[|/]|®]| by the condition number §(A). Hence, the condition number should be kept
as small as possible. One possibility is a continuous excitation of the process, as this
increases the smallest eigenvalue k,,;,, which in turn decreases the condition number
(Vetter, 1988).
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B Star-Delta-Transformation

The motor used for validation of the developed methods is delta-connected. Star quantities
have to be transferred to their corresponding delta quantities and vice versa. For the
following derivations the notations are used as depicted in Figure 3.5.

Assuming identical values for all phases, resistances can be transformed between star and
delta configuration according to
1
Ry = 2Ra. (B.1)

When transforming voltages, the harmonics have to be taken into account. The induction
voltage of phase a in star configuration can be written as

a o0
Uiay (t) = 50 + Z (Agcos(kwt — @y)) -

k=1
Substituting

a=wt,
and considering a phase-shift of 120° for phase b, the induced voltages in star configuration

can be written as
o0

a
Ugy(a) = 5“ + ) (Arcos(ka — ¢)) (B.2)
k=1
Uipy () = L, i Agcos(k(a — gw) — ) - (B.3)
w 2 3
Transferring the induced voltages in phases a and b to the delta connected motor yields
U, a (@) = Uiy () — Uipy (@) (B.4)
= 2
= Z Ay, (cos(ka — ) — cos(k(a — gﬂ') - gak)) .
k=1
Using the addition theorem, which states that
cos(z) — cos(y) = 2sin* L sin ;
equation (B.4) can be rearranged to
(TN ;Ak (25111(ka - kg - go@sin(—k%)) = ;ui,w&k(a) . (B.5)

Substitung k = 6n + ¢, n € Ny, equation (B.5) can be solved as

—V/3sin(ka — ¢, — k%) for ¢ € [1,2]

Ui a k(@) = Ag . { V3Bsin(ka — @f, — kZ)  for ¢ € [4,5] (B.6)
0 for ¢ € [0, 3]
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C State Variable Filter

When using continuous process models for estimating unknown process parameters, time
derivatives of certain variables often appear in these equations. As the time derivatives
can seldomly be measured in the system, they have to be calculated in software. However,
standard differentiation methods can hardly be implemented, as they amplify the signal
noise. To overcome this problem, Wolfram and Vogt (2002) describes alternative ways
for computing time derivatives. The method used in this work is the state variable filter,
which is an analog filter in Frobenius form (direct form II), in which the internal states
correspond to the differentials of the filtered signal.

Consider the following transfer function

Y(S) bo

&= _ 1
G(s) U(s)  ans"+ an18" 1+ ...+ a1s+ag (C.1)

in canonical form, i.e. a, = 1. In the time domain this equals
™+ an 1y g+ agy = bou. (C.2)

Letting y = 1, one can derive the following equations:

T = Xo (C.3)
Ty = a3 (C.4)
(C.5)

Tyl = Tn (C.6)
Ty = —Gn-1T(m) — An2T(n_1) — - .. — QT3 — Qo1 + byt . (C.7)

This yields the following equations in state space notation

i 0 1 0o .- 0 T 0
: = oo o N “u (C.8)
j711—1 0 0 0 e 1 Tpn—1 0
Tn —Qp —a; —Az - —Ap-1 Tn bo
10 00 T 0
01 00 To 0
y = : + u (C.9)
00 . 10 Tno1 0
00 1 Ty 0

As can be seen, the internal states correspond to the looked for quantities.
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D Datasheet Parameters of
Selected Test Bench
Components

Load machine

Manufacturer Stoeber Antriebstechnik GmbH + Co. KG

Model EK501U

Type Permanent magnet brushless motor, electronically commutated
Rated speed 6000 min~!

Rated torque 2.6 Nm

Rated Power 1.6 kW

Stall Torque 3.36 Nm

Peak Torque 15Nm

Electrical time constant 2.85ms

Mass moment of inertia 3.19 x 10~*kgm?

Torque sensor

Manufacturer Lorenz Messtechnik GmbH

Model DR-2531

Type Contactless dual range torque sensor
Maximum speed 1200 min~—?

Nominal torque 2Nm---20Nm

Accuracy 0.1% from scale

Incremental encoder

Manufacturer Heidenhain
Model ERN420
Increments 1024
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