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XIV

Abstract

Composites are of enormous importance to the industry. The usage of such materials for in-
dustrial products has rapidly increased over the last years. Therefore, there is high interest
in gaining a better understanding of these materials and their physical behaviour. Aside
from performing experimental studies, this can also be achieved by using homogenisation
methods. With these methods, the composite can be characterised in a macroscopic ho-
mogeneous manner by taking into account the microscopic heterogeneous structure. This
approach provides the opportunity to calculate the so-called effective properties of the
composite.

The focus of the present thesis is to develop and advance numerical homogenisation me-
thods which are based on the finite element method (FEM). These methods developed are
applicable to calculate the effective properties of unidirectional fibre reinforced composites
with a periodic fibre distribution. In the developed numerical models repeated unit cells
(RUCs) are used, whose cross sections can even be parallelogram shaped. The significant
advantage of these models, especially those with the parallelogram shaped cross section, is
the capability to simulate a wide range of unidirectional fibre reinforced composites with
different fibre arrangements. This also includes the special cases of hexagonal and square
fibre arrangements, which are commonly used in the literature.

The numerical models are extended by employing an imperfect contact formulation bet-
ween the matrix and fibre phase to represent the presence of a very thin interphase, which is
for instance caused by chemical reactions in manufacturing processes. Besides pure elastic
considerations models capable of simulating piezoelectric composites are also developed.
In this thesis, all the developed models are, as far as possible, validated by comparing the
calculated effective material properties to results from methods given by the literature or
to results calculated from verification models. Furthermore, studies have been performed
in order to investigate the influence of different fibre distributions, fibre volume fractions
and imperfect contact conditions on the effective composite properties. All together, this
gives a better insight into the material behaviour of composites as well as the modelling
techniques.
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XV

Kurzfassung

In der Industrie sind Kompositwerkstoffe von grofser Wichtigkeit. Der Einsatz solcher hete-
rogenen Werkstoffe fiir industrielle Produkte ist in den letzten Jahren rasant angestiegen.
Daher besteht ein sehr grofes Interesse darin, diese Materialien und ihr physikalisches
Verhalten besser zu verstehen. Um dies zu erreichen, konnen neben der Durchfithrung
von experimentellen Untersuchungen Homogenisierungsverfahren genutzt werden. Diese
Verfahren dienen dazu, den Kompositwerkstoff unter Berticksichtigung der mikroskopisch
heterogenen Struktur in einer makroskopisch homogenen Weise zu charakterisieren. Unter
bestimmten Annahmen lassen sich sogenannte effektive Materialeigenschaften berechnen.
Der Schwerpunkt der vorliegenden Dissertation liegt in der Weiterentwicklung von numeri-
schen Homogenisierungsverfahren, welche auf der Finite-Elemente-Methode (FEM) basie-
ren. Diese werden zum Berechnen der effektiven Materialeigenschaften von unidirektional
faserverstérkten Verbundwerkstoffen mit einer periodischen Faseranordnung verwendet. In
den entwickelten numerischen Berechnungsmodellen werden Einheitszellen (RUCs) verwen-
det, deren Querschnitt sogar parallelogrammformig sein kann. Der Vorteil dieser Modelle
besteht darin, dass mit ihnen ein breites Spektrum an unidirektionalen Faserverbundwerk-
stoffen mit unterschiedlicher Faserverteilung simuliert werden kann. Das schlieft auch die
Spezialfille der quadratischen und hexagonalen Faseranordnung mit ein, welche haufig in
der Literatur zu finden sind.

Die Berechnungsmodelle werden auf einen imperfekten Phaseniibergang erweitert, welcher
sich als sehr diinne Verbindungsschicht zwischen der Matrix- und Faserphase interpretie-
ren lasst. Die Auspriagung einer solchen Zwischenschicht kann zum Beispiel auf chemische
Reaktionen im Herstellungsprozess zuriickgefiihrt werden. Neben rein elastischen Betrach-
tungen werden auch Modelle entwickelt, mit denen piezoelektrische Faserverbundwerkstoffe
simuliert werden kénnen.

Alle in dieser Arbeit entwickelten Berechnungsmodelle werden hinsichtlich ihrer Eignung
iiberpriift. Dazu werden die berechneten effektiven Materialeigenschaften nach Moglichkeit
mit Ergebnissen von Verfahren aus der Literatur oder mit Ergebnissen aus Verifizierungs-
modellen verglichen. Dariiber hinaus werden Studien durchgefiihrt, die den Einfluss der
Faserverteilung, des Faservolumenanteils und des imperfekten Phaseniibergangs auf die
effektiven Werkstoffeigenschaften untersuchen. Dies fithrt zu einem besseren Verstdndnis
des Materialverhaltens von Kompositwerkstoffen sowie der Modellierungstechniken.
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1 Einleitung

1.1 Motivation

In der heutigen Zeit ist ein Wandel beim Materialeinsatz von Strukturbauteilen zu erken-
nen. Dieser dufert sich darin, dass Verbundwerkstoffe zunehmend homogenen Materiali-
en bevorzugt werden. Die Ursache dafiir sind neben 6konomischen (Preisentwicklung der
Rohmaterialien) vor allem physikalische Gesichtspunkte, wie zum Beispiel die Gewichts-
reduktion bei gleichbleibenden Festigkeitseigenschaften. Die Verbundwerkstoffe sind durch
einen heterogenen Strukturaufbau charakterisiert. Bei solchen Werkstoffen, speziell den
Faserverbundwerkstoffen, besteht die Struktur aus mindestens zwei Phasen. Mit dem Be-
griff Phase soll hier ein Bereich des Verbundwerkstoffes aus gleichem Material bezeichnet
werden. Bei einem aus zwei Phasen bestehenden Kompositwerkstoff iibernimmt die eine
Phase die Aufgabe des Fiillmaterials, und die andere Phase dient zur Verstirkung oder
Verminderung bestimmter physikalischer Eigenschaften.

Durch das Kombinieren unterschiedlicher Ausgangsstoffe sind die Materialmodelle von
Kompositwerkstoffen nicht mehr nur auf reine Modelle einer physikalischen Kategorie aus-
gelegt. Als Beispiel lisst sich hier der Einsatz von piezoelektrischen Fasern in Kombination
mit elastischen Fiill-/Bindematerialien nennen. Durch den piezoelektrischen Effekt werden
elastische und elektrische Zustandsgrofen in Abhéngigkeit zueinander gebracht. Infolge
einer mechanischen Verformung oder durch Anlegen eines elektrischen Feldes kommt es
zu elektrischen und elastischen Interaktionen zwischen den Phasen. Man spricht in diesem
Fall von einem gekoppelten Feldproblem.

Die Analyse und Berechnung von Bauteilen aus Verbundwerkstoffen hinsichtlich ihrer Be-
lastbarkeit und Anwendung ist mitunter sehr komplex. Dies resultiert hauptséichlich dar-
aus, dass eine exakte Modellierung der heterogenen Struktur einen sehr hohen Rechenauf-
wand nach sich ziehen wiirde. Die Betrachtungsebene der heterogenen Struktur ist sehr
viel grofer als die atomare Ebene, wodurch eine Beschreibung der Heterogenitit mittels
klassischen Materialmodellen durchgefiihrt werden kann, aber sie ist zu klein, um bei einer
Untersuchung von Bauteilen mit blofen Augen sichtbar zu sein. Es entsteht der Eindruck,
der betrachtete Werkstoff sei homogen. Die Betrachtungsebenen der Heterogenitédt und
des Kompositwerkstoffes werden als Mikro- bezichungsweise Makrolevel bezeichnet. Jedes
Level ist dabei durch spezifische Langenangaben charakterisiert. Diese leiten sich meistens
aus geometrischen Grofsen ab. In manchen Féllen werden noch Zwischenebenen eingefiihrt
(Mesolevel). Fiir klassische Materialien, wie Metalle oder Holz, lassen sich auch solche Be-
trachtungsebenen zuordnen. Metalle haben eine kristalline Struktur und Holz ist mit feinen
Poren durchsetzt (Abb. 1-1). Fiir viele klassische Materialien wurden trotz dieser Kenntnis
Materialeigenschaften abgeleitet, die ein homogenes Material suggerieren. Dadurch wird
die Beriicksichtigung solcher Materialien in Berechnungsmodellen vereinfacht. Somit ist es
von Vorteil, im Fall der Verbundwerkstoffe, eine #hnliche Herangehensweise zu nutzen, um
sogenannte effektive (homogene) Materialeigenschaften zu ermitteln.
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2 Einleitung

Es gibt verschiedene Wege, um (effektive) Materialeigenschaften von (heterogenen) Werk-
stoffen zu bestimmen. Eine Méglichkeit besteht darin, diese Eigenschaften auf experimen-
tellem Wege zu ermitteln. Bei rein elastischen Materialien werden sogenannte Zug-/Druck-
und Schubtests durchgefiihrt [88], [101]. Hierfiir werden spezielle Probekorper aus dem zu
untersuchenden Material hergestellt. Im Fall der Zugpriifung besitzt die gewéhlte Probe
einen langlich schlanken, mittleren Abschnitt mit einem konstanten, kreisférmigen Quer-
schnitt. Die verdickten Enden der Probe, die mit Abrundungsradien in den mittleren Ab-
schnitt ibergehen, dienen zum Einspannen und zur Krafteinleitung. Der Testkorper wird in
die Priifmaschine biegungsfrei eingespannt und durch eine zunehmende Zugkraft gedehnt.
Dabei erfahrt er eine Verldngerung, die mittels Messaufnehmern (z.B. Dehnungsmessstrei-
fen) in geeigneter Form abgegriffen wird. Eine weitere Moglichkeit der experimentellen
Untersuchung von Materialkennwerten besteht in der Nutzung der Ultraschalltechnik [29].
Die Schallerzeugung und der -empfang erfolgen iiber Wandler mit piezoelektrischen, elek-
trodynamischen, magnetorestriktiven Effekten oder durch Laserpulse. Dabei ist der direkte
Kontakt zwischen Probekérper und Wandler zur Schalliibertragung nicht in allen Fillen
erforderlich. Im Fall eines makroskopisch isotropen Probekorpers lassen sich die Material-
eigenschaften aus den Geschwindigkeiten der Longitudinalwelle und der Transversalwellen
ableiten. Die so ermittelten Materialkennwerte konnen unter Umsténden von den Ergeb-
nissen eines mechanischen Zug- oder Druckpriifverfahrens abweichen. Eine Ursache kann
in dem Auftreten von plastischen Verformungen bei héherer Zug- beziehungsweise Druck-
belastung liegen.

Die experimentellen Untersuchungen sind kostenintensiv, da geeignete Apparaturen zur
Testdurchfithrung gekauft, gelichen oder gebaut werden miissen. Des Weiteren sind Kennt-
nisse im Umgang mit ihnen erforderlich, um mdgliche Untersuchungsfehler so gering wie
moglich zu halten.

200pm 115X

Abbildung 1-1: Heterogene Mikrostrukturen, links: Balsaholz [99], rechts: Kupfer [65]

Ein anderer Weg zur Ermittlung der Materialeigenschaften besteht in der Untersuchung
des Werkstoffes mittels analytischer und/oder numerischer Methoden. Das Verhalten der
Mikrostruktur wird dabei als physikalischer Zustand eines materiellen Punktes auf der
Makroebene interpretiert. Der Ubergang von einem mikroskopischen zu einem geeigne-
ten makroskopischen Materialmodell wird als Homogenisierung bezeichnet. Die Nutzung
analytischer Verfahren erfordert héufig eine Vereinfachung der zu untersuchenden mikro-
skopisch heterogenen Struktur. Durch diese Vereinfachung erhélt man fiir einige Falle ein-
fach zu handhabende Formeln fiir die Berechnung von effektiven Materialeigenschaften
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Motivation 3

des heterogenen Kompositwerkstoffes. Dies konnen je nach Vereinfachung Koeflizienten
des Elastizitétstensors oder physikalische Materialkonstanten, wie zum Beispiel der Elas-
tizitdtsmodul, sein. Im Gegensatz zu den analytischen Methoden ist bei einer Nutzung
numerischer Berechnungsverfahren, speziell der Finite-Elemente-Methode (FEM), fiir die
kommerzielle Softwareprodukte (z. B. ANSYS oder ABAQUS) zur Verfiigung stehen, eine
Vereinfachung der Mikrostruktur nicht erforderlich. Die Mikrostruktur kann in Form eines
repréasentativen Volumenelementes (RVE), welches bei zufillig verteilten Mikroeinschliis-
sen bevorzugt wird, oder in Form einer sich periodisch fortsetzenden Einheitszelle, auch
RUC (RUC-repeated unit cell) genannt, berticksichtigt werden.

Das makroskopische Materialverhalten heterogener Werkstoffe, speziell Verbundwerkstof-
fe, ist im hohen Mafte von den beteiligten Phasen auf dem Mikrostrukturlevel abhéngig.
Einflussreiche Faktoren sind die Form, die Verteilung, die Materialeigenschaften und der
Volumenanteil der Phasen des Kompositwerkstoffes. Sie sind dafiir verantwortlich, dass sich
ein richtungsabhéngiges, effektives Stoffverhalten ausprégen kann. Diese Faktoren werden
mafsgeblich durch den Herstellungsprozess eines Verbundwerkstoffes beeinflusst. Typische
Herstellungsprozesse von Faserverbundwerkstoffen sind das Handlaminieren /Faserspritzen,
Wickelverfahren und Injektionsverfahren [8]. Beim Handlaminieren handelt es sich um das
alteste und einfachste Herstellungsverfahren, mit dem man beispielsweise Bauteile aus glas-
faserverstérkten, duroplastischen Kunstoffen herstellen kann (siche Abb. 1-2 aus [8]). Viele
der Verfahren werden zugunsten des Zeitaufwandes und der Wirtschaftlichkeit in automa-
tisierten Prozessen realisiert (zum Beispiel das Profilziehverfahren). Dadurch ist man in
der Lage, Verbundteile zu produzieren, die im Idealfall identische oder wenigstens dhnliche
Mikrostrukturverteilungen aufweisen, wodurch Zufélligkeiten im Strukturaufbau reduziert
werden.

Entiiftungswalze Glasfaser

mit Harz

N getrankt
% ;

/

/
Form

Abbildung 1-2: Darstellung des Verfahrens der Handlaminierung [8|

Infolge von Herstellungsprozessen von Faserverbundwerkstoffen kann es vorkommen, dass
sich zwischen Faser und Matrix eine Zwischenschicht (nachfolgend auch Zwischenphase
genannt) auspréagt [75], welche von den physikalischen Eigenschaften der Fasern und der
Matrix verschieden ist (Abb. 1-3). Selbst bei keiner erkennbaren Auspriagung dieser Schicht
kann man von einer Zwischenschicht sprechen und meint den Kontaktbereich, der durch den
gemeinsamen Rand charakterisiert wird und eine Lastiibertragung zwischen den Phasen
gewdhrleistet [62]. Dieser Kontaktbereich bezichungsweise die Zwischenschicht hat Ein-
fluss auf das makroskopische Verhalten des Verbundwerkstoffes. Die Eigenschaften dieser
Zone sind in der Regel unbekannt. Die vorliegende Arbeit soll unter anderem auch einen
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4 Einleitung

Beitrag zur Berechnung von effektiven Materialeigenschaften von Faserverbundwerkstof-
fen mit periodischer Mikrostruktur unter Beriicksichtigung der Faseranordnung und des
Phasenkontaktes leisten.

2812 20Ky frn W29 | A 0008 18Ky ELC ViGN WEREW

Abbildung 1-3: Mikrostruktur eines Faserverbundwerkstoffes mit einer Zwischenphase [75]

1.2 Stand der Forschung

Die rechnerische Ermittlung effektiver Materialeigenschaften unter Einbeziehung der Mi-
krostruktur eines Materials ist seit Jahrzehnten Gegenstand der Forschung, und es ist eine
Vielzahl von Herangehensweisen entwickelt worden. Zwei der ersten Pioniere auf diesem
Gebiet sind VOIGT [98] und REUSS |[81]. Thre Untersuchungen beziehen sich auf Polykris-
talle. Dabei nehmen sie an, dass auf makroskopischer Werkstoffebene ein quasiisotropes
Materialverhalten zu Grunde liegt. Mit Hilfe von Mittelungsmethoden, unter der Annah-
me von homogenen Verzerrungen oder Spannungen in den einzelnen Kristallen, wurden
Materialeigenschaften von Polykristallen abgeleitet. Infolge des gleichen Belastungszustan-
des aller Kristalle kommt es zu physikalischen Unstetigkeiten an den Kristallgrenzen [53].
Gleiche Verzerrungszustinde von Kristallen produzieren Unstetigkeiten in den Spannungen
zwischen benachbarten Kristallen. Aus gleichen Spannungszustanden resultieren Unstetig-
keiten in den Verschiebungen. Das bedeutet, verformte benachbarte Kristalle passen an den
Grenzen nicht mehr zusammen. Die effektiven Eigenschaften eines Polykristalls, die sich aus
der Annahme eines homogenen Verzerrungs- oder eines homogenen Spannungszustands er-
geben, unterscheiden sich. Die beiden unterschiedlichen Modellbetrachtungen, welche auch
auf andere heterogene Strukturen angewendet werden konnen, liefern die Schranken von
VOIGT und REUSS.

Genauere Berechnungen der Materialeigenschaften wurden durch die Nutzung von Variati-
onsprinzipien erreicht [47], [48]. Die dabei verwendeten Methoden liefern fiir polykristalline
Materialien eine obere und eine untere Schranke fiir die makroskopischen Materialeigen-
schaften, welche anisotroper Natur sein kénnen. Diese Vorgehensweise ldsst sich auch auf
heterogene Verbundwerkstoffe tibertragen. Die Schrankenbildung ist darin begriindet, dass
an einem reprisentativen Volumenelement, welches Bestandteil des Kompositwerkstoffes
ist und im Mittel die gleiche Beanspruchung aufweist, keine Ubereinstimmung mit den
realen Randbedingungen im heterogenen Werkstoff gewéhrleistet ist, sondern stattdessen
lineare Randverschiebungen oder homogene Randspannungen beriicksichtigt werden.
Weitere Methoden, mit denen sich ebenfalls analytische Formeln zur Berechnung effektiver
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elastischer Materialeigenschaften herleiten lassen, sind die Methode der wechselwirkungs-
freien (,diinnen”) Defektverteilung [35], [12] und das Selbstkonsistenzschema [35], [63],
[50], wobei in [63] und [50] polykristalline Medien untersucht werden. In [100], [103], [24],
[25] werden angepasste Betrachtungen an Kompositstrukturen behandelt. Weitere Metho-
den sind das Verfahren nach MORI-TANAKA [71], [12], [35] und das Differentialschema
[70], [73], [35]. Die analytischen Verfahren lassen sich in zwei Klassen einordnen. Die erste
Klasse beinhaltet Verfahren, mit denen sich Ndherungslosungen fiir effektive Eigenschaf-
ten berechnen lassen. Diese greifen meist auf stark vereinfachte Modelle zuriick, wie zum
Beispiel ein unendlich ausgedehntes RVE und die Erfassung der Wirkung der heterogenen
Materialverteilung durch die Betrachtung einer einzelnen Heterogenitét. Die zweite Klasse
beinhaltet Verfahren, die sich auf Variationsformulierungen oder Extremalprinzipien stiit-
zen. Diese ermoglichen es, aus Energiegleichungen obere und untere Schranken fiir effektive
Eigenschaften abzuleiten.

Werden periodische, heterogene Strukturen betrachtet, so ist das représentative Volumen-
element (RVE) der kleinste periodische Bereich der Struktur. Dieser wird in der Literatur
auch als (sich wiederholende) Einheitszelle (RUC, repeated unit cell) bezeichnet [96]. Be-
ziiglich solcher Strukturen sind die Randbedingungen, wie sie in den analytischen Betrach-
tungen verwendet werden, nicht mehr adéquat. Die Randbedingungen miissen dahingehend
verandert werden, dass sie die Periodizitat der RUC berticksichtigen. Das Konzept der RUC
basiert auf einer Mikro-Makro-Betrachtung der Materialstruktur, einer Abhéngigkeit be-
ziiglich einer makroskopischen Variablen und einer mikroskopischen Variablen [96]. Eine
ahnliche Betrachtung wird bei der Methode der asymptotischen Erweiterung (auch mul-
tiple Skalenmethode genannt) genutzt, welche eher in mathematischen Verdffentlichungen
zu finden ist [26], [10]. Fiir die Bestimmung der effektiven Materialeigenschaften ist es er-
forderlich, Randwertprobleme zu 16sen. Dafiir kénnen verschiedene Berechnungsverfahren
verwendet werden. In [37], [85], [107], [56] werden Verfahren beschrieben, die zum Losen
der Randwertprobleme komplexwertige Potentialfunktionen verwenden. Ein weiteres weit
verbreitetes Verfahren stellt die Finite-Elemente-Methode dar [106], [17], [61], [96], [78].
Wie im Abschnitt 1.1 beschrieben, kann es im Herstellungsprozess fiir Verbundwerkstof-
fe zur Ausprigung einer Verbindungsschicht zwischen Faser und Matrix kommen. Selbst
wenn keine eindeutige Ausprégung erkennbar ist, kann ein Bereich vorliegen, in dem sich
die Eigenschaften der Faser in die der Matrix dndern. Dieser Bereich kann sehr diinn aus-
fallen. Daher wurden in den letzten Jahren zur Beriicksichtigung des Kontaktbereiches
zwischen Faser und Matrix verschiedene physikalische Modelle entwickelt und untersucht.
Im Fall der Interpretation einer (sehr diinnen) Zwischenphasenbetrachtung haben sich zwei
unterschiedliche Varianten etabliert. Bei der ersten Variante wird die Zwischenphase mit
einem endlichen Volumen und zusitzlichen Phasencigenschaften berticksichtigt [75], [60],
[5], wobei die Zwischenschicht auch aus mehreren Phasen bestehen kann [51],[52]. Die
zweite Moglichkeit besteht darin, den Kontakt zwischen Faser und Matrix iiber Unstetig-
keitsbedingungen, sogenannte imperfekte Phaseniibergénge, zu beschreiben [46], [11], [6],
[15], [13], [72], [33], [43], [90]. Diese Bedingungen ordnen der Kontaktbereichszone, die in
der Regel als gemeinsame Grenzflache zwischen Faser und Matrix modelliert ist, gewisse
Eigenschaften zu, die die Interaktion der Phasen beschreiben. Der imperfekte Phaseniiber-
gang kann im Rahmen der Elastizitatstheorie durch Unstetigkeiten in den Spannungen,
in den Verschiebungen oder in beiden physikalischen Grofen charakterisiert werden. Die
meisten Ubergangsformulierungen werden aus einer isotropen Zwischenschichtmodellierung
hergeleitet. In [80] und [108] werden Modelle beschrieben, bei denen die Kontaktzone in

1P 21873.216.38, am 23:55:08, Inhalt,
tersagt, m ‘mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186346186

6 Einleitung

Teilzonen unterschiedlichen Kontaktverhaltens unterteilt ist. In Kombination mit der Ver-
wendung der FEM besteht der Vorteil einer imperfekten Phaseniibergangsmodellierung
darin, dass eine beliebig diinne Zwischenphase simuliert werden kann. Ein FE-Modell mit
einem Zwischenphasenvolumen dagegen kann aufgrund der Diskretisierung nur bis zu einer
gewissen minimalen Zwischenphasendicke realisiert werden.

Wie bereits im Abschnitt 1.1 erlautert, riicken immer mehr Verbundwerkstoffe mit gekop-
pelten physikalischen Effekten in den Fokus der industriellen Anwendung. Dazu zéihlen
unter anderem Verbundwerkstoffe mit piezoelektrischen Eigenschaften. Daher ist man be-
strebt, von diesen Materialien Eigenschaften zu bestimmen, die eine homogenisierte Be-
schreibbarkeit des Werkstoffverhaltens fiir Berechnungsuntersuchungen mdoglich machen.
In [30], [20] und [73] sind bekannte analytische Homogenisierungsverfahren fiir elasti-
sche Materialien (Methode der ,,diinnen“ Verteilung, das Differentialschema, das Verfahren
nach MORI-TANAKA, das Selbstkonsistenzschema, Schranken nach REUSS/VOIGT und
HASHIN-SHTRIKMAN) auf piezoelektrische Materialien erweitert worden. Im Fall von
periodischen Mikrostrukturen sind analoge Erweiterungen von Homogenisierungsverfah-
ren zum Beispiel in [93], [28], [78], [39], [17] und [16] zu finden.

Die Bestimmung und Berechnung effektiver Materialeigenschaften unidirektional faserver-
starkter Verbundmaterialien mit periodischer Mikrostruktur und variabler Faseranord-
nung, deren Phasenkontakteigenschaften durch eine imperfekte Phaseniibergangsmodel-
lierung charakterisiert wird, ist kaum erforscht. In [69] werden fiir Strukturen mit einer
rhombischen Faseranordnung und einer imperfekten Phasentiibergangsformulierung nach
[43] effektive elastische Eigenschaften ermittelt. Diese resultieren aus einer makroskopi-
schen Schubbelastung. Das betrachtete Homogenisierungsverfahren basiert auf der Ver-
wendung von komplexwertigen Potentialfunktionen.

Modelle mit einer rhombischen Faseranordnung besitzen den Vorteil, durch eine Parame-
trisierung ein breites Spektrum an Verbundmaterialien mit periodischer Struktur abzude-
cken. Darunter fallen zum Beispiel auch Kompositwerkstoffe mit hexagonaler oder qua-
dratischer Faseranordnung, welche in der Literatur sehr héufig betrachtet werden. In [34]
und [56] werden Homogenisierungsverfahren unter Verwendung komplexwertiger Potentiale
auf Kompositstrukturen mit festgelegten rhombischen Faserverteilungen angewendet und
effektive Eigenschaften unter Nutzung einer makroskopischen Schubbelastung ermittelt.
Das in [34] behandelte Homogenisierungskonzept ermoglicht es im Fall einer periodischen
Faserverteilung, die durch einen parallelogrammférmigen RUC-Querschnitt charakterisiert
ist, effektive Eigenschaften aus einer Schubbelastung zu bestimmen. Konzepte und Resul-
tate zur Bestimmung aller Komponenten des Elastizitéitstensors fiir Kompositwerkstoffe
mit einem parallelogrammf{érmigen RUC-Querschnitt sind zum aktuellen Zeitpunkt nicht
bekannt.

1.3 Ziele und Gliederung der Arbeit

Homogenisierungsverfahren bilden die Grundlage zur Bestimmung und Berechnung effekti-
ver Materialeigenschaften von Verbundwerkstoffen. Wie bereits in Abschnitt 1.2 erlautert,
existiert eine Vielzahl an Verfahren, die dafiir genutzt werden kénnen. Homogenisierungs-
verfahren unter Nutzung einer RUC besitzen grofe Vorteile und werden daher im Rahmen
der vorliegenden Arbeit vorzugsweise betrachtet. Da das Losen von Differentialgleichun-
gen beziehungsweise Variationsformulierungen erforderlich ist, hat sich die Verwendung
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der Finite-Elemente-Methode als vorteilhaft erwiesen. Man ist in der Lage, auch komplexe
dreidimensionale Geometrien als RUC zu berticksichtigen.

Die Literaturrecherche hat gezeigt, dass die Berechnung effektiver Materialeigenschaften
fiir unidirektionale Faserverbundwerkstoffe mit einer periodischen Mikrostruktur, welche
durch einen rhombischen oder parallelogrammférmigen RUC-Querschnitt widergespiegelt
wird, bisher nur ungeniigend betrachtet worden ist. Dies gilt insbesondere unter Einbezie-
hung imperfekter Phaseniiberginge und gekoppelter Feldprobleme. Des Weiteren ist der
Einfluss der Faseranordnung auf die effektiven Materialeigenschaften bei einem rhombi-
schen oder parallelogrammf{érmigen RUC-Querschnitt nur fiir ausgewéhlte Elastizitatsko-
effzienten untersucht worden. Die Entwicklung von dreidimensionalen Modellen zur Be-
rechnung aller effektiven Materialkoeffizienten unter Nutzung der FEM und unter Beriick-
sichtigung solcher Faserverbundstrukturen einschlieflich imperfekter Phaseniiberginge ist
nach dem aktuellen Stand der Literatur noch nicht behandelt worden. Dies gilt sowohl fiir
elastische als auch fiir piezoelektrische Verbundwerkstoffe. Es ergeben sich damit folgende
Zielstellungen fiir die vorliegende Arbeit:

e Entwicklung von dreidimensionalen Berechnungsmodellen mit verallgemeinerter Fa-
seranordnung (rhombischer, parallelogrammformiger RUC-Querschnitt) zur Berech-
nung aller effektiven Elastizitdtskoeffizienten unter Verwendung der FEM,

e Untersuchung des Einflusses einer verallgemeinerten Faseranordnung auf die effekti-
ven Koeffizienten,

e Erweiterung der Berechnungsmodelle auf einen imperfekten Phaseniibergang,

o Untersuchungen zum Einfluss des imperfekten Phaseniibergangs auf die effektiven
Materialeigenschaften,

e Erweiterung der Berechnungsmodelle auf das Gebiet der Piezoelektrizitit.

Dadurch soll ein wissenschaftlicher Beitrag zur Weiterentwicklung von geeigneten Ho-
mogenisierungskonzepten und zum besseren Verstédndnis des Materialverhaltens von
Faserverbundwerkstoffen geleistet werden. Die vorliegende Arbeit ist folgendermafen
gegliedert.

Im zweiten Kapitel werden die grundlegenden Gleichungen fiir die Berechnung elas-
tischer und piezoelektrischer Materialien zusammenfassend dargestellt. Ebenso wird auf
Symmetrieeigenschaften von materialbeschreibenden Tensoren eingegangen.

Das dritte Kapitel widmet sich der Homogenisierungstheorie. Es werden zwei Methoden
zum Bestimmen effektiver Materialeigenschaften présentiert und n#her erldutert. Sie
dienen spéter zur Validierung der entwickelten Berechnungskonzepte. Bei den beiden Me-
thoden handelt es sich um analytische Verfahren, die auf einfache Formeln zur Berechnung
der effektiven Materialeigenschaften fithren. Dariiber hinaus werden die in dieser Arbeit
entwickelten Homogenisierungskonzepte fiir unidirektionale Faserverbundstrukturen mit
periodischer Mikrostruktur in detaillierter Form beschrieben. Es wird dabei néher auf die
Geometrieverdnderung der RUC, den imperfekten Phaseniibergang sowie die Beschreibung
der periodischen Randbedingungen eingegangen.

Das vierte Kapitel gibt einen Einblick in die Finite-Elemente-Methode. Dazu werden
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grundlegende Gleichungen zur Beschreibung eines FE-Modells présentiert. Es wird zusétz-
lich néher auf die Uberfithrung der periodischen Randbedingungen und der imperfekten
Phaseniibergangsmodellierung in ein FE-Modell eingegangen.

Das fiinfte Kapitel befasst sich mit der Berechnung und der Auswertung der effektiven
Materialeigenschaften von Faserverbundwerkstoffen. Es werden Verbundwerkstoffe be-
trachtet, deren Phasen unterschiedlichen Materialsymmetrieklassen angehoren. Weiterhin
wird der Einfluss der Faseranordnung, des Faservolumenanteils und des imperfekten
Phaseniibergangs auf die effektiven Werkstoffeigenschaften untersucht.

Das letzte Kapitel enthélt eine Zusammenfassung der Arbeit und eine Darstellung des
Erkenntnisgewinns. Zusétzlich werden mogliche Inhalte fiir weiterfithrende Arbeiten
diskutiert.
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2 Modellierung von Werkstoffen

Fiir die analytische Untersuchung von Werkstoffen sind geeignete mathematische Modelle
fiir die Beschreibung ihres Materialverhaltens erforderlich. Mittels eines Materialmodells
lésst sich eine Problemstellung ableiten, die eine bestimmte physikalische Situation des
Werkstoffes beschreibt. In den einfachsten Féllen besteht das Problem aus einer Differen-
tialgleichung mit Randbedingungen. Zum Lésen solcher Randwertprobleme werden in der
Regel zugehorige schwache Formulierungen (auch schwache Formen genannt) aufgestellt,
die als Ausgangsbasis fiir eine Finite-Elemente-Analyse (kurz: FE-Analyse), welche ein nu-
merisches Verfahren zum Losen von Differentialgleichungsproblemen darstellt, dienen.
Zunéchst werden grundlegende Gleichungen von Werkstoffen présentiert, welche ein rein
elastisches Verhalten widerspiegeln. Im Anschluss daran erfolgt eine Erweiterung der Mo-
dellbetrachtung auf Materialien mit piezoelektrischen Effekten. Dieses Kapitel wird mit In-
formationen zu speziellen Symmetrien von materialbeschreibenden physikalischen Gréfen
beendet, wodurch sich die mathematischen Modelle vereinfachen kénnen beziehungsweise
explizit Materialkonstanten aus den Grofen ableitbar sind.

Zur {ibersichtlichen und kompakten Darstellung von Gleichungen werden in dieser Arbeit
zwei verschiedene Schreibweisen verwendet, die EINSTEINsche Summenkonvention und
eine modifizierte VOIGTsche Notation. Bei der EINSTEINschen Summenkonvention wird
iiber doppelt auftretende Indizes summiert (die Summenzeichen werden weggelassen)

Za,,;bi =ab;
22 Aijby = Aiby 1)
J
> Aijiabi = Ajjrbr
k,l

Die modifizierte VOIGTsche Notation wird im weiteren Verlauf des Kapitels naher erlau-
tert. Zusatzlich werden alle grundlegenden Gleichungen in kartesischen Koordinaten des
dreidimensionalen Raumes angegeben.

2.1 Grundlagen der linearen Elastostatik

Die Ausgangsbasis einer elastostatischen Berechnung ist ein System von Differentialglei-
chungen (kurz DGL-System) und zusétzliche Randbedingungen. Im Rahmen der linearen
Elastostatik lassen sich die Differentialgleichungen aus der Betrachtung des Kréftegleich-
gewichtes am differentiell kleinen Volumenelement herleiten. Unter der Annahme, dass ein
zusammenhingendes offenes Gebiet ) C R3 eines Kérpers vorausgesetzt wird, sieht dieses
DGL-System wie folgt aus

- i0-2](X) = f,(X), i = 172,3,)( e . (2_2)
8([}1'
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Mit o (x) wird der (CAUCHYsche) Spannungstensor bezeichnet, welcher neun Komponen-
ten 0;;(x), 4,7 = 1,2,3 besitzt und als 3 x 3-Matrix darstellbar ist

o11(x) o12(x) 013(%)
O’(X) = 091 (X) (722()() 0'23()(
031(x) 032(x) o33(x

(2-3)

NANA

Die Grofen f;(x) sind die Komponenten des Vektors f(x), welcher die Intensitét infolge von
verteilten Volumenkréften kennzeichnet. Wie man der Gleichung (2-2) entnehmen kann,
gilt sie punktweise, das heifst fiir jedes x € Q. Aus Griinden der kompakteren Darstellung
wird im weiteren Verlauf auf die Abhéngigkeit der Grofen von x verzichtet. Aus den
Momentengleichgewichten an einem differentiell kleinen Volumenelement erhalten wir die
Beziehung

Oij = O0j4i - (2—4)

Unter der Angabe einer konstitutiven Gleichung, d. h. einer Gleichung, die das Materialver-
halten eines betrachteten Werkstoffes festlegt, ldsst sich das DGL-System umformulieren.
Wir nehmen dazu an, dass der betrachtete Korper homogen ist, ein linear elastisches Mate-
rialverhalten aufweist und infolge von Belastungen nur hinreichend kleine Deformationen
zugelassen werden. Das daraus resultierende Materialgesetz

05 = Cijri€ml (2-5)

beziehungsweise in inverser Form
€ij = SijkiOkl (2-6)

wird auch HOOKEsches Gesetz genannt. Es verkniipft den Verzerrungstensor e, gegeben
durch die Komponenten ey, mittels Proportionalitétsfaktoren, Cj;; beziehungsweise Sjji,
mit dem Spannungstensor o. Die Verzerrungskomponenten sind durch

1/0 0
en(u) = 3 (8% + ﬂ) (2-7)

gegeben, wobei u; die Komponenten eines Verschiebungsvektors u = ( u; wuy wuz )T sind.
Wenn im Folgenden von einer Verschiebung gesprochen wird, ist damit in der Regel der
Verschiebungsvektor gemeint.
Die Gleichung (2-7) kann als ein Operator (Linearkombination zweier partieller Differen-
tialoperatoren), angewendet auf eine Funktion u, interpretiert werden. Wird aus dem Kon-
text klar, beziiglich welcher Funktion sich die Verzerrungskomponenten bilden, so wird ey
anstelle eg(u) geschrieben. Der Verzerrungstensor lasst sich wie der Spannungstensor in
Form einer 3 x 3-Matrix

€11 €12 €13

€21 €2 €23 (2-8)

€31 €32 €33

darstellen, und es gilt auch hier
Eij =Eji (2-9)
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Die Proportionalititsfaktoren Cjji sind Komponenten eines Tensors C vierter Stufe, die in-
folge der Homogenitét des betrachteten Korpers invariant beziiglich x und somit konstant
sind. Dieser Tensor wird Elastizitétstensor genannt. Infolge der Symmetriecigenschaften
des Spannungs- und Verzerrungstensors aus Gleichung (2-4) beziehungsweise (2-9) verrin-
gert sich das Gleichungssystem (2-5) von neun auf sechs unabhéngige Gleichungen, und
die Anzahl der unabhéngigen Koeffizienten Cj;i; reduziert sich von 81 auf 36. Unter der
Voraussetzung, dass ein quadratisches, elastisches Potential (Forménderungsenergiedichte)
existiert, lasst sich die Anzahl um weitere 15 auf 21 reduzieren [19], [97]. Im Allgemeinen
gelten fiir die Koeffizienten des Elastizitétstensors folgende Symmetrieeigenschaften

Ciji = Cjim = Cijie = Chiij - (2-10)

Das Gleichungssystem (2-5) ldsst sich unter Berticksichtigung der Symmetrieeigenschaften
(2-4), (2-9) und (2-10) in einer modifizierten VOIGTschen Notation (kurz: M-V-Notation)
darstellen

01 QH Q12 C:13 C:14 C:15 Qw &1
02 Cia Cy O Coh Cos O &s
&= l?s _ Q13 Q23 Cfs% Q34 C:% C:% 8:2 —Ce (2-11)
04 Cuu Cy Csy Cu Cy Cgs €4
05 C~'15 C~'25 C~'35 C~V45 C~V55 656 €5
%6 Cis Cx C36 Cis Cse Cgs €6
wobei
(?1 = 011, (%2 = 022, (?3 = 033, 574 = 012, (:75 = 023, ~(i =013 (2_12)
€1 = €11, &2 =€y, €3 =¢€33, E4= 261y, €5 =263, E¢=2€13

gilt. Die Koeflizienten C‘i]v der Elastizititsmatrix C ergeben sich aus den Cjjy mittels
folgender Indexrelationen

1= 11, 2 = 22, 333 ,

4= 120r21, 5= 23or32, 6« 13or3l (2-13)

Analoge Aussagen iiber die Symmetrieeigenschaften von Cjji lassen sich auch fiir die Ko-
effizienten Sjjp; formulieren. Der durch diese Koeffizienten definierte Tensor vierter Stufe
wird Nachgiebigkeitstensor genannt. Aus der Beziehung (2-11) ldsst sich die inverse For-
mulierung

¢ =S& (2-14)
ableiten, wobei S die Nachgiebigkeitsmatrix mit den Koeffizienten gij darstellt.
Das DGL-System (2-2) sieht in der M-V-Notation wie folgt aus

~-Vie=f . (2-15)
Hierbei ist V die folgende Differentiationsmatrix
o T

= 0 9 0 9

8551 P 8(%2 P 8953
V= 0O — 0 — — 0 . (2-16)

0o Jdxy  Oxs
o o 2 o 9 9
81'3 81'2 (91'1

tersagt, m ‘mit, flir oder in Ki-Syster


https://doi.org/10.51202/9783186346186

12 Modellierung von Werkstoffen

Zusétzlich zu dem DGL-System sind noch Randbedingungen erforderlich, wodurch der Ver-
schiebungsvektor u eindeutig bestimmt werden kann. Die geldufigsten Randbedingungen
sind Verschiebungsrandbedingungen (DIRICHLET-Randbedingungen)

u=u aufl, (2-17)
und Randbedingungen infolge von Randspannungen (NEUMANN-Randbedingungen)
p=o;n;=p aufl, . (2-18)

Hierbei sind 4, p und n = ( ny ng N3 )T eine vorgegebene Verschiebung, ein vorgege-
bener Randspannungsvektor beziehungsweise der dufsere Normalenvektor. Weiterhin kann
die Verschiebung u auch durch festgelegte Zwangsbedingungen an einem Rand T'.. ge-
geben sein. Diese Bedingungen sind durch Gleichungen definiert, in denen physikalische
Grofsen, wie zum Beispiel die Spannungen oder Verschiebungen, des betrachteten Korpers
miteinander gekoppelt sein konnen. Diesbeziiglich wird auf das Kapitel 3 verwiesen.

Schwache Formulierung

Eine Differentialgleichung beziehungsweise ein Differentialgleichungssystem mit gegebenen
Randbedingungen kann in eine schwache Formulierung (auch schwache Form genannt)
iiberfithrt werden. Dies ist einerseits dadurch motiviert, dass numerische Verfahren wie
die FEM auf schwache Formulierungen zuriickgreifen [57]. Ebenso werden spezielle Anfor-
derungen an die Losung (Verschiebungsfunktion) abgeschwécht. Damit sind zum Beispiel
Stetigkeits- und Differenzierbarkeitseigenschaften gemeint. Eine schwache Formulierung
besteht aus einer Gleichgewichtsbeziehung in integraler Form, durch welche die DGL (das
DGL-System) und die Randbedingungen niherungsweise im integralen Mittel erfiillt wer-
den. In mathematischer Literatur werden meistens noch ein Funktionenraum, in dem die
Losung dieses Gleichgewichts zu suchen ist, und ein Funktionenraum, aus dem Testfunk-
tionen gewahlt werden, angegeben. Hier soll nur die Gleichgewichtsbeziehung hergeleitet
und betrachtet werden. Die Vorgehensweise fiir die Herleitung der schwachen Formulierung
dhnelt grundlegenden Schritten der Methode des gewichteten Residuums [109)].
Ausgangspunkt der Betrachtung ist das in M-V-Notation gegebene DGL-System (2-15)
in 2, wobei sowohl Verschiebungsrandbedingungen (2-17) als auch Spannungsrandbedin-
gungen (2-18) am betrachteten Korper aufgebracht sind. Es ist dabei zu bemerken, dass
I'.N T, = @ gilt, das bedeutet, dass sich die Gebiete der Randbedingungen nicht iiber-
schneiden. Nach Multiplikation des Systems mit einer Testfunktion v = (v, vy w3 )T,
der anschliefenden Integration iiber Q2 und der Annahme, dass die gesuchte Funktion u
bereits die DIRICHLET-Randbedingungen (2-17) erfiillt, ergibt sich

7/VT(VT&) dQ = /vadQ . (2-19)
Q Q

Nun wird die erste GREENsche Formel, welche einer partiellen Integration im Mehrdi-
mensionalen entspricht, auf die linke Seite angewendet. Dadurch ist es moglich, eine Ab-
leitungsordnung auf die Testfunktion zu iibertragen. Man erhalt

/(VV)T& aQ — /vadF — /va dl' = /va aQ . (2-20)
Q : Q

Ty Lo
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Als Néchstes wird die Randbedingung aus Gl. (2-18) in die Gl. (2-20) eingesetzt. Unter
der Voraussetzung, dass die Testfunktion auf I', den Wert Null annimmt, ergibt sich die
integrale Gleichgewichtsbeziehung zu

/ (Vv)T'edQ = / vIfdQ + / vipdl . (2-21)
Q Q r,
Da
é(u) = Vu (2-22)
gilt, lasst sich die Beziehung weiter umformen zu
/ (VV)ICVudQ = / v dQ + / vipdl . (2-23)
Q Q To

Diese integrale Gleichgewichtsbeziehung ist dquivalent zur schwachen Form nach dem Prin-
zip der virtuellen Arbeit, indem man

v =du (2-24)

setzt, wobei du auch Vektor der virtuellen Verriickungen genannt wird.

2.2 Piezoelektrische Werkstoffe

Piezoelektrische Materialien werden fiir Sensoren oder Aktoren unter anderem bei Ul-
traschalluntersuchungen benétigt. Dabei spielen ferroelektrische Mischkeramiken wie bei-
spielsweise Bleizirkonattitanat (PZT) eine wichtige Rolle [29]. Makroskopisch betrachtet
sind diese Materialien nicht von Natur aus piezoelektrisch. Dies wird erst durch einen Po-
lungsvorgang gewéhrleistet. Nachfolgend wird ein kurzer Einblick in das Verhalten solcher
Materialien gegeben. Im Anschluss daran werden grundlegende Gleichungen zur mathema-
tischen Beschreibung eines piezoelektrischen Modells présentiert.

2.2.1 Piezoeffekt

Der piezoelektrische Effekt wurde erstmalig an natiirlichen Kristallen, wie zum Beispiel
Quarz und Turmalin, entdeckt [87]. Der Effekt bezeichnet die an Kristallen beobachtete
Erscheinung, dass durch eine mechanische Verformung elektrische Ladungen auf Aufenfla-
chen des Kristalls auftreten. Dieser Effekt ist beziiglich Ursache und Wirkung proportional,
und er lasst sich umkehren. Damit ist gemeint, dass infolge eines angelegten elektrischen
Feldes eine Verlangerung oder Verkiirzung eintritt. Ursache fiir den Effekt ist bei Einkris-
tallen aus Quarz der unsymmetrische Kristallaufbau.

Piezokeramiken werden auf Elementarebene durch Perowskit-Strukturen charakterisiert
[87]. Oberhalb der sogenannten CURIE-Temperatur besteht der elementare Aufbau solcher
Materialien aus einer kubischen Gitterstruktur (sieche Abb. 2-1), bei der der Schwerpunkt
der positiven und negativen Ladungen identisch ist. Es sind keine Unsymmetrien und somit
keine Dipole vorhanden. Unterhalb der CURIE-Temperatur verindert sich der elementa-
re Aufbau aus energetischen Griinden in tetragonale Gitter, wodurch die Schwerpunkte
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nicht mehr identisch sind und ein elektrischer Dipol entsteht. Dipole beeinflussen sich ge-
genseitig, wodurch sich spontan Bereiche mit gleicher Dipolausrichtung bilden. Aus dem
entstehenden Dipolmoment solcher Bereiche lésst sich die dazugehorige spontane Polari-
sation ableiten. Ein Kristallit beinhaltet mehrere Bereiche unterschiedlicher Ausrichtung.
Infolge der statistisch verteilten Orientierung der kristallinen Struktur und damit der Di-
polmomente tritt auf Makroebene keine Polarisation und somit auch kein piezoelektrischer
Effekt auf. Daher wird gegen Ende des Herstellungsprozesses das piezokeramische Mate-
rial polarisiert. Dies geschieht durch Anlegen eines starken elektrischen Feldes in einer
gewiinschten Richtung knapp unterhalb der CURIE-Temperatur. Nachdem das Material
abgekiihlt und das angelegte Feld abgeschaltet sind, bleibt die Richtung der Dipolmomente
nahezu erhalten. Man spricht dann auch von einer remanenten Polarisierung.

Abbildung 2-1: Elementarzelle einer Piezokeramik mit kubischem Gitter (links)
beziehungsweise tetragonalem Gitter (rechts), nach [87]

2.2.2 Grundlagen der Modellierung

Nachfolgend wird eine Theorie fiir die mathematische Beschreibung eines piezoelektrischen
Feldproblems fiir den Fall kleiner Feldstdrken und Verformungen angegeben. Hierfiir wer-
den Feldgleichungen fiir physikalische Grofsen aus der Elastostatik mit der Elektrostatik
kombiniert. Die Kopplung der Feldgrofen ergibt sich aus konstitutiven Gleichungen (Ma-
terialgesetz). Das DGL-System, welches sich aus den Bilanzgleichungen fiir das Kréfte-
gleichgewicht und das Gleichgewicht der Ladungen herleiten lédsst, wobei Volumenkréfte
angreifen, aber keine freien Ladungen im betrachten Kérper Q anliegen, lautet [64], [40]

0
—TUU =fi
L (2-25)

—~ D =
aIi ' 0

Die Grofen o045, f; und D; sind die Koeffizienten des Spannungstensors, die Koeffizienten
des Intensitatsvektors infolge verteilter Volumenkrifte beziehungsweise die Koeffizienten
des dielektrischen Verschiebungsvektors.

Die konstitutiven Gleichungen fiir ein piezoelektrisches Material sind durch

0ij = Cijuen — erij B, (2-26)
D; = eipiep + KirEy
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gegeben, wobei die physikalischen Groften Ej, e und ky;, die Koeffizienten des Vektors der
elektrischen Feldstérke E, die Koeffizienten des Tensors der piezoelektrischen Konstanten
e bezichungsweise die Koeffizienten des Tensors der dielektrischen Konstanten s sind.
Die Koeffizienten der materialbeschreibenden Tensoren e und & besitzen die folgenden
Symmetrieeigenschaften [58]
Cijk = €Cikj (2_27)
K/ij = li]‘i
Das bedeutet, die Tensoren besitzen im allgemeinsten Fall 18 beziehungsweise 6 unabhén-
gige Koeffizienten.
Der Vektor der elektrischen Feldstérke ist durch den negativen Gradienten des elektrischen
Potentials ¢

E=-Vy (2-28)
definiert. Das Symbol V,, bezeichnet einen Vektor, dessen Komponenten partielle Ablei-
tungsoperatoren sind

a o 0\

Vo= — — — . 2-29
¢ ( 81’1 81’2 81'3 ) ( )

Die konstitutiven Gleichungen aus Gl. (2-26) lassen sich unter Nutzung der Indexrelationen
GL (2-13) (M-V-Notation) schreiben als

&1 Cn Cip Ciy Ciy Ci5 Cig —én —€n —én &
9 Q12 Q22 Q23 Q24 Q25 QQG —€1p —Cyp —E€3 &9
03 Cis Co3 Cy3 Csq Cy5 Cye —E13 —€x3 —€s3 €3
04 Cu Cy Ciy Cy Cy Cyg —€14 —€yy —E€3 &4
s - C~Y15 (725 035 (745 éss C~v56 —€15 —€x; —f35 S (2-30)
96 Cis Cy C36 Cis Css Cgs —€i6 —€as —E36 6
Dy €11 €2 €13 €4 €15 €16 ki K12 K13 £y
Dy €1 €2 €3 €og €5 €6 K2 K22 K23 Ly
Dy €31 €32 €33 €34 €35 €36 K1z Koz Ka3 By
oder auch

(5)-(C (&) e

Unter Verwendung der Matrixschreibweise ergibt sich aus dem DGL-System (2-25) das
System

-V'e =1
ViD=0 (2-32)
Da im Vergleich zum rein elastischen Modell drei zusétzliche Differentialgleichungen hin-
zugekommen sind, miissen diesbeziiglich auch zusétzliche Randbedingungen neben den
Bedingungen (2-17) und (2-18) angegeben werden. Das sind die elektrischen DIRICHLET-
und NEUMANN-Randbedingungen [40], [64], [95]

¢=¢ auf T, (2-33)

beziehungsweise

g=Dn;=—G aufTp . (2-34)
Dabei sind (;AS und ¢ ein vorgegebenes elektrisches Potential beziehungsweise eine vorgege-
bene elektrische Randladung(-sdichte).
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Schwache Formulierung

Fiir das Aufstellen der Gleichgewichtsbeziehung in schwacher Form kann man in analoger
Weise wie im rein elastischen Fall vorgehen. Es sei angenommen, dass die Randflaichen I'y
und I'p die leere Menge als Mengendurchschnitt besitzen.

Ausgehend von dem DGL-System (2-32) werden die erste Gleichung mit der Testfunktion
v und die zweite Gleichung mit der Testfunktion w multipliziert und anschliefsend iiber
Q integriert und addiert. Unter der Annahme, dass die gesuchten Losungen u und ¢ die
DIRICHLET-Randbedingungen (2-17) beziehungsweise (2-33) bereits erfiillen, ergibt sich
der folgende Ausdruck

/ vI(VTe)do + / vIfdQ + / w(ViD)dQ =0 . (2-35)
Q Q Q

Unter Anwendung der partiellen Integration lassen sich Ableitungsordnungen auf die Test-
funktionen iibertragen. Man erhilt

—/(VV)T& o — /(V¢w)TD dQ + /vadQ+ /vadF
O

¢ ° f (2-36)
+/vadF+/wqu+/wqu:O .

Ty Ty I'p

Unter der Bedingung, dass die Testfunktionen v und w auf den Réndern I', beziehungs-
weise I'y den Wert Null annehmen, verschwinden der vierte und der sechste Term. Nach
Einarbeiten der restlichen Randbedingungen (2-18) und (2-34) lasst sich die Gleichge-
wichtsbeziehung (2-35) wie folgt darstellen

/ (V)76 d + / (Vow) D dQ — / vTEdQ — / vTpdr + / widl =0 . (2:37)
Q Q Q Ty I'p

Nach Einsetzen der konstitutiven Gleichungen aus Gl (2-31) und der Gln. (2-22) und
(2-28) in Gl. (2-37) und anschlieRendem Umformen erhélt man

/ (Vv)TCVudQ + / (Vv)Tel'V 4 dQ + / (V) eVudQ

— [ (Vyw) KV 30dQ2— [ v — [ vipdl+ [ wgdl'=0 .
sw) TRV 46 dQ Tf dQ Thd d
Q Q

o I'p

2.3 Materialsymmetrien

In den vorhergehenden Abschnitten wurden Tensoren eingefiihrt, die das Materialverhalten
charakterisieren. Die Koeffizienten solcher Tensoren, welche in einem kartesischen Koordi-
natensystem {z1, z2, z3} dargestellt werden konnen, erfiillen im Allgemeinen grundlegende
Symmetrieeigenschaften. Verwendet man fiir die Darstellung ein beziiglich x;, xs, =3 ge-
drehtes kartesisches Koordinatensystem 7, a5 und 2%, so wird der gleiche Tensor in der
Regel durch Komponenten représentiert, die beim Komponentenvergleich von ungleichem
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Wert sind.

Sind die Koeffizienten beziiglich einer Koordinatentransformation, wie zum Beispiel der
Rotation um eine Achse mit einem festen Winkel «, invariant, so besitzt der Tensor zu-
sétzliche Symmetrien, welche auch materielle Symmetrien genannt werden. Je mehr Sym-
metrien vorliegen, desto weniger unabhéngige Koeffizienten sind zur Darstellung des Ten-
sors erforderlich. Die Symmetrien eines Tensors und damit eines Materials kann man in
Symmetrieklassen einteilen. Zu méglichen Koordinatentransformationen zéhlen neben Ro-
tationen auch Spiegelungen (Reflektionen) beziiglich Koordinatensystemebenen [97], [22],
[18], [89].

Nachfolgend werden im Fall der Elastizitéit einige Klassen présentiert, die im spéteren
Verlauf Verwendung finden beziehungsweise als Eigenschaften von Kompositwerkstoffen
auftauchen. Analoge Symmetrieeigenschaften lassen sich auch fiir andere Materialtensoren
beziehungsweise Materialien formulieren, wofiir auf die weiterfithrende Literatur [94], [55]
verwiesen wird.

2.3.1 Koordinatentransformation

Fiir Koordinatentransformationen sind die Richtungskosinus beziiglich der Koordinaten-
achsen von Bedeutung. Aus der Abb. 2-2 ergeben sich folgende Richtungskosinus

Ty =cos(a’), Thr=cos(f), T5=cos(y) , (2-39)

wobei o, ', 7' die eingeschlossenen Winkel der Strecke OP mit den Achsen 1, xo bezie-
hungsweise 3 sind.

Abbildung 2-2: Strecke OP bildet mit den Achsen 1, z2, ¥3 die Winkel o/, 3/, ' [21]

Bei der Transformation eines Tensors beziiglich kartesischer Koordinaten ergeben sich pro
Achse drei Richtungskosinus, das heifst insgesamt neun. Diese lassen sich in Matrixform
schreiben

Ty Ty T
T=| To T T ; (2-40)
Ty Ty Tis

wobei die Richtungskosinus von z beziiglich x1, za, z3 die Komponenten Tjy, Tio, T;
sind. Die Matrix wird auch Transformationsmatrix genannt. Fiir den Fall, dass das neue
Koordinatensystem in Bezug zu dem alten System nur um den Winkel o um die x3-Achse
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im entgegengesetzten Uhrzeigersinn gedreht ist, erhdlt man die Matrix

cos(a’) cos(90 —a’) 0 cos(o/) sin(ef) 0
T = cos(90+ ') cos(a’) 0 | =| —sin(e/) cos(a/) 0 . (2-41)
0 0 1 0 0 1

Mittels einer Transformationsmatrix ist man in der Lage, ein geeigneteres Koordinaten-

system zur Darstellung von Tensoren zu wéhlen. Es seien dazu zwei kartesische Koor-

dinatensysteme {x1, 2,23} und {a}, 25,24} gegeben. Die Transformationsregel fiir den
Elastizitdtstensor C ist dann durch
!

Cp = TpiquTrkTelCijkl (2‘42)

qrs

definiert, wobei die T4, 4,7 = 1,2, 3 die Richtungskosinus nach Gleichung (2-40) sind.

2.3.2 Symmetrien des Elastizitatstensors

In diesem Teilabschnitt werden einige Symmetrieklassen fiir den Elastizitétstensor prasen-
tiert und daraus weitere Informationen abgeleitet. Wie bereits in den vorherigen Abschnit-
ten beschrieben wurde, ldsst sich der Tensor im allgemeinen Fall durch 21 unabhéngige
Koeffizienten beschreiben. Diese Anzahl kann infolge zusétzlicher Symmetrien reduziert
werden. Die Klassifizierung der einzelnen Symmetrien ist durch die Darstellung des Elas-
tizitatstensors bezliglich geeigneter Koordinatensysteme gegeben.

Monokline Symmetrie

Ein monoklines Material ist durch eine Symmetrieebene charakterisiert. Damit ist gemeint,
dass Tensorkomponenten nach Transformationen mittels Gleichung (2-42), welche die Sym-
metrie beriicksichtigen, invariant bleiben. Beziiglich eines geeigneten kartesischen Koordi-
natensystems und unter der Annahme, dass die Symmetrieebene die x1-zo-Ebene ist, wird
ein monoklines Material durch die folgende Darstellung des Elastizitatstensors in M-V-
Notation représentiert

C? 11 Cj 12 Cj 13 Cj u 0 0
Ciz Cy Cy3 Cyy 0 0
~ Ciz Cy Cs3 Cay 0 0
c=| G Cu O C 9-43
Cu Cu Cyu Cu 0 0 (2-43)
0 0 0 0 C~'55 Cse

0 0 0 0 Css Ces
Die Anzahl der unabhéngigen Koeffizienten reduziert sich auf 13.

Orthotropie

Orthotrope Materialien zeichnen sich dadurch aus, dass drei Symmetrieebenen vorliegen.
Diese stehen orthogonal zueinander. Unter der Verwendung eines kartesischen Koordina-
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tensystems, bei dem die Achsenrichtungen parallel zu den Normalenrichtungen der ortho-
gonalen Symmetrieebenen verlaufen, ldsst sich der Elastizititstensor wie folgt schreiben

Ch Ci Ci3 0 0 0
Cio Cyp Coys 0 0 0
Cis Cyy Ci3 0 0 0
0 0 0 Cu 0 0
0 0 0 0 Cs O
0 0 0 0 0 Cg

C= (2-44)

Fiir diese Symmetrieklasse reduziert sich die Anzahl der unabhéngigen Koeffizienten auf
neun. Die Koeffizienten der Gl. (2-44) lassen sich auch mit Hilfe der Elastizitdtsmoduln £,
der Schubmoduln G; und der Querkontraktionszahlen v;; und vj;, 4, j = 1, 2,3 schreiben.
Die Nachgiebigkeitsmatrix, geschrieben mit den Ingenieurkonstanten, lautet

]./E1 7V21/E2 *I/31/E3 0 0 0
71/12/E1 1/E2 *I/32/E3 0 0 0
& *V13/E1 *V23/E2 1/E3 0 0 0
S= 0 0 0 1/G 0 0 (2-45)
0 0 0 0 1/Gsys O
0 0 0 0 0 1/Gy

Bei der Querkontraktionszahl v;; kennzeichnet der erste Index die Richtung der aufge-
brachten Belastung und der zweite Index die Richtung der Antwort.
Aufgrund der folgenden Symmetrieeigenschaft

~ VU i ~
L N L < 2.4
Si=T T Y (2-46)

und da Ez 7é E]‘ iSt, gllt Vij 7é Vji.

Transversalisotropie

Ein transversal isotroper Werkstoff besitzt eine Isotropieebene. Daraus ldsst sich schluss-
folgern, dass beziiglich beliebiger Rotationen um den Normalenvektor der Ebene die Dar-
stellung des Elastizitatstensors invariant bleibt |18]. Unter Berticksichtigung eines Koordi-
natensystems in eine dieser Konfigurationen stellt sich der Tensor wie folgt dar

Ci Cip Cis 0 0 0
Ciy Ci Cis 0 0 0
N Ciz Ciz Css 0 0 0
€ 0 0 0 %(CH—C@ 00 (2-47)
0 0 0 0 0
0 0 0 0 0 Css
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Hier ist die Isotropieebene die x-z5-Ebene, und die x3-Achse steht senkrecht dazu und ist
damit parallel zum Normalenvektor der Ebene. Die Anzahl der unabhéngigen Koeffizienten
betragt fiinf. Die Nachgiebigkeitsmatrix unter Verwendung der Ingenieurkonstanten lautet

1/Et 7Vt/Et 7V1/El 0 0 0
—u/E, 1/E, -u/E 0 0 0
S _Vl/El —l/l/El I/El 0 0 0
S= 0 0 0 204+ v)/E; 0 0 (2-48)
0 0 0 0 /G, 0
0 0 0 0 0 1/G,

Dabei kennzeichnet der Index ,,¢“ die transversale Richtung und der Index ,,I“ die longitudi-
nale Richtung. Eine weitere Materialkonstante, die im spéteren Verlauf Anwendung findet,
ist der transversale Kompressionsmodul. In Abhéngigkeit von den Elastizitatskoeffizienten
hat er die Form

1
ki = 5(011 + CIZ) . (2—49)

Isotropie

Im Fall, dass die Darstellung des Tensors unabhéingig von der Orientierung des Koordina-
tensystems ist, reprasentiert der Tensor ein Material mit einem isotropen Stoffverhalten.
Beziiglich eines beliebig gewéahlten kartesischen Koordinatensystems stellt sich der Elasti-
zitatstensor wie folgt dar

Cu G Ci 0 0 0
le Qu Q12 0 0 0
Cip Cip Cn 0 0 0
C=| 0o 0 0o }(Cu-Cu) 0 0 (2-50)
0 0 0 0 L(Cu - Cro) 0
0 0 0 0 0 3 (Cn - i)

Die Anzahl der unabhéngigen Koeffizienten des Elastizitéatstensors reduziert sich auf zwei.
Die dazugehorige Nachgiebigkeitsmatrix hat die Form wie Gleichung (2-45), wobei hier

Ei=FE=Fy—E |
Vij = Vji = Vg =V, VZ,]k‘.l =123 , (2_51)
Gi=G=G3=G

gilt. Weiterhin gilt die Beziehung

G=5qy77 - (2-52)
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3 Homogenisierungsverfahren

Das Wissen tiber das Materialverhalten von Werkstoffen ist grundlegend fiir die Untersu-
chung von Bauteilen. Ist das Material homogen, so wird es durch konstante Koeffizienten
materialbeschreibender Tensoren, wie zum Beispiel den Elastizitatstensor C und den Ten-
sor der dielektrischen Konstanten, charakterisiert. Nun ist im Allgemeinen bei detaillierter
Betrachtung der Struktur, das heift unter Verwendung eines Mikroskops, die Sichtweise
der Homogenitit nicht mehr gegeben. Es zeigt sich eine heterogene Struktur, in der zum
Beispiel Risse oder Fremdeinschliisse auftreten. Diese beiden Betrachtungsebenen, welche
auch Skalen genannt werden, sind die Makroebene und die Mikroebene, wobei der Unter-
schied der charakteristischen Langen beider Skalen sehr grof ist. Daher werden fiir beide
Skalen eigene Koordinaten eingefiihrt. In der Literatur findet man haufig x1, x5, 3 und
Y1, Yo, ys fiir die Bezeichnung der makroskopischen beziehungsweise der mikroskopischen
Koordinaten.

Durch die Anwendung von Homogenisierungsmethoden ist es moglich eine feinskalierte
heterogene Mikrostruktur eines Werkstoffes so zu ,,verschmieren®, dass das Material auf
Makroebene als homogen betrachtet werden kann und sich ortsunabhéngige effektive Ma-
terialeigenschaften zuordnen lassen. Dabei wird die Mikrostruktur in einem gemittelten
Sinne beriicksichtigt [35]. Dieser Ubergang von einer Mikro- zur Makrobetrachtung wird
Homogenisierung genannt.

lMlkm

RVE

Abbildung 3-1: Heterogene Mikrostrukturen

Dieses Kapitel beinhaltet Grundlagen und Informationen zur Homogenisierung und zum
Bestimmen der effektiven Materialeigenschaften von Verbundwerkstoffen. Zuerst werden
einige grundlegende Gleichungen zur Homogenisierung in der linearen Elastizitdt ange-
geben. Im Anschluss daran werden zwei Methoden aus der Literatur vorgestellt, die zur
Validierung eigener Untersuchungen verwendet werden. Das sind die CCA-Modellierung
(CCA - composite cylinder assemblage) [46] und das verallgemeinerte Selbstkonsistenz-
schema [24], [25], [46]. Im dritten Abschnitt wird detaillierter auf den Fall periodischer
Mikrostrukturen eingegangen. Der vierte Abschnitt widmet sich dem Einbeziehen eines
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imperfekten Phaseniibergangs in die Homogenisierungsbetrachtungen. Am Ende wird der
Aspekt der Homogenisierung auf piezoelektrische Materialien erweitert.

3.1 Das reprasentative Volumenelement (RVE)

Bei der experimentellen Bestimmung von Materialeigenschaften werden geeignete Probe-
korper mittels Testvorrichtungen kraft- oder weggesteuert belastet. Die Messungen sind nur
sinnvoll, wenn das Ergebnis nicht konkret vom betrachteten Probekorper abhéangt oder von
der Art der Laststeuerung. Mit anderen Worten der Probekdrper muss ,reprasentativ® fiir
den Werkstoff sein. Genau wie bei einer experimentellen Untersuchung am représentativen
Probekérper wird bei einer theoretischen Betrachtung ein Volumenbereich 2 der Mikro-
ebene gewahlt, der reprisentativ fiir das gesamte Material ist. Das ist das reprasentative
Volumenelement (kurz: RVE). Eine Bedingung fiir die Représentativitit ist die Unabhén-
gigkeit des Volumenbereiches von mikrostrukturellen Details im Sinne der Verteilung der
Heterogenitat. Damit ist gemeint, dass die mikrostrukturelle Anordnung innerhalb des Vo-
lumenbereichs zu jeden anderen gleichgrofen Volumenausschnitt des Materials Aquivalent
ist, so dass die Unabhéngigkeit der abgeleiteten effektiven Materialeigenschaften beziiglich
makroskopischer Koordinaten gewéhrleistet ist. Man spricht dann auch von einer statistisch
homogenen Verteilung der Defekte oder Heterogenitdten im Material. Aus Sicht der Rea-
litét ist dies eine Annahme, die schwer zu erfiillen ist, da die Defektverteilung im Material
im Allgemeinen regelfrei (zufallig) ist. Trotzdem soll angenommen werden, dass es moglich
ist, ein geeignetes RVE zu wéhlen. Infolge dieser Wahl sollen hier zwei Fille unterschieden
werden. Diese sind die Wahl eines nichtperiodischen RVE, welches fiir ein Material mit
einer zuféllig verteilten Heterogenitét représentativ ist, und die Wahl eines periodischen
RVE, welches dquivalent fiir ein Material mit einer speziellen Verteilung der Defekte steht.
Fiir den Fall einer zufélligen Mikrostruktur sollte das RVE eine ,hinreichend“ grofe An-
zahl an Defekten beinhalten 35|, um ndherungsweise als repréasentativ zu gelten, wobei das
Wort , hinreichend* nicht néher spezifiziert wird. Als richtungsweisend ist diesbeziiglich die
Beziehung

Ivikro < lrvE < IMakro (3-1)

zu sehen. Hierbei sind Iygikro, lrve Und lypaieo charakteristische Abmessungen aus der Mikro-
ebene, fiir das RVE beziehungsweise aus der Makroebene (sieche Abb. 3-1). Die Abmessun-
gen des RVE miissen die Gl. (3-1) erfiillen, damit das RVE représentativ fiir den Werkstoff
ist. Im Fall einer periodischen Mikrostruktur wird in der Regel der kleinste periodisch
fortsetzbare Strukturbereich als RVE benutzt.
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\\Q\\\\ﬂ F

Abbildung 3-2: Représentatives Volumenelement fiir einen Kompositwerkstoft bestehend aus
zwei Phasen

Fiir die weiteren Betrachtungen wird angenommen, dass der betrachtete Volumenbereich
Q, der als RVE genutzt wird, eine konvexe Form besitzt. Es wird weiterhin angenommen,
dass der zu untersuchende Werkstoff aus zwei Phasen besteht, welche jeweils linear elastisch
sind. Eine Phase dient als Basismaterial, O™, wihrend die andere Phase, Qf, welche in das
Basismaterial eingebettet ist, als Storung des Basismaterials interpretiert werden kann
(siehe Abb. 3-2). Der Rand, den die beiden Phasen gemeinsam haben, wird mit Ty =
'™ N It bezeichnet. Der #ufere Rand des RVE wird mit T' bezeichnet.

Unter der Annahme, dass Volumenlasten fehlen, ergibt sich mit Verweis auf Gl. (2-2) fiir
den Volumenbereich 2 = Qf U Q™ das folgende DGL-System

0
07yjaij(y) =0 (3-2)

mit dem dazugehorigen konstitutiven Materialgesetz nach Gl. (2-5)

0i(y) = Ciju(y)en(uly)) . (3-3)
Hierbei sind 04(y), Ciju(y) und u(y) durch

o (y) wenny € Q™
0ii(y) = , (3-4)
ol(y) wemny e Qf

Chy wenny € Q™
Cigu(y) = ; (3-5)
ijkl wenn y € Qf
und
u™(y) wenny € Q™
u(y) = (3-6)
ul(y) wenny € Qf

definiert. Auf dem gemeinsamen Rand der Phasen T gelten die Bedingungen |[1]

ul =u auf Ty (3-7)
fof m,,m -
oyn; = —oinf auf Tnyp . (3-8)
IP 218.73.216.38, am 23:55:08. Inhalt.
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Diese Ubergangsbedingungen charakterisieren einen sogenannten perfekten Phaseniiber-
gang (auch perfekter Kontakt genannt). Erst in einem spéteren Abschnitt (siehe Abschnitt
3.4) wird auch der Fall eines imperfekten Phaseniibergangs behandelt.

Aus einer Zweiskalenbetrachtung heraus wird ein materieller Punkt der makroskopischen
Ebene dem représentativen Volumenbereich zugeordnet [35], [96]. Da auf Mikroebene
fluktuierende physikalische Felder vorliegen, werden die zur Beschreibung des mechani-
schen Zustands eines Punktes auf der Makroebene zugehorigen Makrospannungen und
-verzerrungen durch folgende Volumenmittelwerte

(04) = |Q| /02] Q)

(er) /Ek/ dQ
~al

der mikroskopischen Felder definiert. Hierbei bezeichnet || das Volumen von . Unter
Berticksichtigung der Bedingungen aus Gl. (3-7), (3-8) und dem Anwenden des GAUSSs-
chen Integralsatzes lassen sich die Makrogrofen auch durch die folgenden Randintegrale
darstellen

(3-9)

(04) = |Q|/Jzknky7 ar
(3-10)
(em) = Q‘Sz‘/zlwl—l—ulnk)df

Der effektive (homogenisierte) Elastizitiitstensor CF ist durch die Beziehung zwischen
Makrospannungen und -verzerrungen

(0i5) = Cifalen) (3-11)

definiert. Fiir die Deutung von C°T als Materialeigenschaft wird gefordert, dass die HILL-
Bedingung [35]

= l<<7z'j><5ij> (3-12)

~{0ij€i5) 3

2

erfiillt wird. Diese beschreibt die Aquivalenz der mittleren Forménderungsenergiedichte auf
Mikroebene mit der Forménderungsenergiedichte auf Makroebene [54].
Es ist offensichtlich, dass im Rahmen der linearen Elastizitat die Symmetrie der Makro-
spannungen und Makroverzerrungen und somit auch der Koeffizienten des effektiven Elas-
tizitdtstensors gewihrleistet bleibt, wodurch die Beziehung Gl. (3-11) unter Verwendung
der Indexrelationen Gl. (2-13) in M-V-Notation dargestellt werden kann

(6,) =CMe) pg=1,--- 6. (3-13)
Die Grofen C’jg sind die Koeffizienten der effektiven Elastizititsmatrix C°f. Durch
(&) = Spatay) (3-14)
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lésst sich eine analoge Beziehung unter Verwendung der Koeffizienten der effektiven Nach-
giebigkeitsmatrix S formulieren.

Um effektive Elastizititseigenschaften Cfjj; aus der Beziehungsgl. (3-11) bestimmen zu
konnen, ist es vorher von Noten, die mikroskopischen Gréofen o;; und € im représenta-
tiven Volumenbereich © zu kennen. Somit muss vorher das DGL-System Gl. (3-2) gelost
werden.

Fiir eine vollstdndige Formulierung eines Randwertproblems fehlt noch die Angabe von
geeigneten Randbedingungen auf I'. Plausible Bedingungen sind homogene (konstante)
Randspannungen oder lineare Randverschiebungen. Diese sind durch

o, = J?jnj auf ' |
(3-15)
u; = E?jyj auf I’
gegeben, wobei J?j und E?j konstante Grofen sind, die die Symmetrieeigenschaften eines
Spannungs- bezichungsweise Verzerrungstensors besitzen. Der Vektor n ist der dufsere Nor-
malenvektor auf I'. Es gilt je nach Art der verwendeten Randbedingungen aus Gl. (3-15)
die Beziehung
(e5) = €3 (3-16)
oder
(0ij) = 0f; . (3-17)
Dies bedeutet, dass unter Vorgabe von homogenen Spannungs- oder Verzerrungszustén-
den auf dem Rand die makroskopischen Spannungen beziehungsweise Verzerrungen gerade
den homogenen Grofen entsprechen. Die Bezichungen (3-16) und (3-17) werden auch als
average strain theorem“ beziehungsweise ,,average stress theorem* bezeichnet. Es sei noch
bemerkt, dass durch die beiden Randbedingungstypen aus Gl. (3-15) die HILL-Bedingung
Gl. (3-12) erfiillt wird [96].
Unter der Annahme, dass ein Kompositwerkstoff mit einer periodischen Mikrostruktur zu
Grunde liegt und als RVE die sich wiederholende Einheitszelle gew#hlt wird, sind diese
Typen von Randbedingungen zur Bestimmung der mikroskopischen Grofen abzulehnen,
da sie zu schlechten Ergebnissen bei den effektiven Elastizitétseigenschaften fithren kon-
nen. Eine genauere Untersuchung dazu wird im Kapitel 5 anhand einer zweidimensionalen
Modellbetrachtung durchgefiihrt.
Infolge der periodischen Struktur des Kompositwerkstoffes liegt es nahe, dass sich diese
Periodizitat in den Spannungs- beziehungsweise den Verzerrungsfeldern (und damit auch
in den Verschiebungsfeldern) wiederspiegeln sollte. Addquate Randbedingungen fiir die pe-
riodische Einheitszelle, welche auch als periodische Randbedingungen bezeichnet werden,
sind dann unter der Annahme herleitbar, dass die Spannungsvektoren on auf gegeniiber-
liegenden Réndern anti-periodisch sind und sich die Komponenten des Verzerrungstensors
gij(u) in Q in
eij(u) = &) + £i(uP™) (3-18)
aufspalten lassen [96], [67], [68]. Hierbei sind ), konstante Grofen, die die symmetrischen
Eigenschaften eines Verzerrungstensors besitzen, und uP*" ist ein Vektorfeld, welches peri-
odisch beziiglich € ist. Anhand der Periodizitéit der Funktion uP*" und dem GAUSSschen
Integralsatz lédsst sich schlussfolgern, dass

er 1 ber
Q
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gilt. Damit folgt aus Gl. (3-18)

1 0
() = 1 / ey(u)d =< (3-20)

Die periodischen Randbedingungen lauten (siehe [96])

oijnj = —o,n; auf I' (anti-periodisch) |
= ey +up” auf T (3-21)
uP®  periodisch auf ',

wobei die Komponenten ¢; eines Tensors €” vorgegeben sind.

Die erste Bedingung aus Gl. (3-21) kann vernachléssigt werden, da die iibrigen Bedingungen
aus Gl (3-21) dazu fiihren, dass die Anti-Periodizitat automatisch erfillt wird [68], [23].
Daher reicht es aus, sich bei der Formulierung der Randbedingungen auf

€]
wp=edy; +ul” aufT |

u?®  periodisch auf T

(3-22)

zu beschrianken. Diese Randbedingungen werden noch zum spéteren Zeitpunkt in eine
geeignetere Form {iberfiihrt, da sie sich in der jetzigen Darstellung nicht fiir eine numerische
Analyse eignen (Abschnitt 3.3). Auch diese Randbedingungen erfiillen die HILL-Bedingung
[96].

3.2 Nichtperiodische Mikrostruktur

3.2.1 CCA-Modellierung

Unter einem CCA-Modell nach Hashin [41] versteht man einen Kompositwerkstoff,
welcher vollstédndig aus eingeschrinkt zuféllig verteilten Zylindergeometrien unterschied-
licher Grofe besteht. Ein jeder Zylinder besteht aus einer Matrix 2™ und einer zentral
eingebetteten unidirektionalen Faser Qf mit einem kreisférmigen Querschnitt, weshalb
dieser auch wie in [41] als Kompositzylinder bezeichnet werden soll. Zwischen den
beiden Phasen wird ein kontinuierlicher Ubergang von Spannungen und Verschiebungen
angenommen. Alle Kompositzylinder sind so angeordnet, dass sie zueinander parallel
liegen und sich nicht schneiden. Damit liegen auch alle Fasern parallel zueinander. In
Abb. 3-3 ist ein zylinderformiges CCA-Modell dargestellt, wobei in dem Bild noch der
freie Raum QF zwischen den Kompositzylindern erkennbar ist. Dieser wird ebenfalls
mit Zylindern aufgefiillt, so dass das Volumen von QF gegen Null strebt. Es sei nun
rf der Radius der Faser im n-ten Zylinder und 7% der Radius des n-ten Zylinders. Die
Einschrdnkung in Bezug auf die Zufilligkeit in der Verteilung besteht nun darin, dass
alle Kompositzylinder das gleiche Verhltnis rf /7% aufweisen. Das bedeutet, dass alle Zy-
lindergeometrien fiir sich betrachtet den gleichen Faser- und Matrixvolumenanteil besitzen.
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Abbildung 3-3: Zylinderformiges CCA-Modell (links), welches vollsténdig aus
Kompositzylindern besteht (das Volumen von QF strebt gegen Null)

Die CCA-Modellierung basiert auf dem Konzept des neutralen Einschlusses [46]. Die-
ses Konzept definiert sich wie folgt. Es wird in einem homogenen Korper ein gegebener
Spannungs- und Verzerrungszustand angenommen. Ist es moglich, eine Teilregion 2 aus
diesem Korper durch eine Region mit einer heterogenen Materialstruktur zu ersetzen, ohne
dass sich die gegebenen Spannungs- und Verzerrungszustédnde in dem Restgebiet verén-
dern, so wird die ersetzende Teilregion als neutraler Einschluss bezeichnet. In [41] wird
gezeigt, dass ein aus zwei Phasen bestehender Kompositzylinder unter der Annahme eines
konstanten Verzerrungszustandes der Form

e 0 el
= 0 & & (3-23)

o 0 .0
€13 €23 €33

mit geeigneten Grofen 5% ein neutraler Einschluss innerhalb eines homogenen, zylindri-
schen, transversal isotropen Korpers ist, wobei die Materialeigenschaften des Korpers équi-
valent zu den (homogenisierten) Eigenschaften des Kompositzylinders sind (siehe Abb. 3-4)
[46]. Das bedeutet, dass der Kompositzylinder als ein RVE interpretiert werden kann. Die
transversal isotropen Eigenschaften lassen sich im Sinne der Homogenisierung durch die
Betrachtung eines beliebigen Kompositzylinders des Verbundkérpers als RVE bestimmen.

X, L f
. o

Abbildung 3-4: Austausch des homogenen Teilgebiets 2°¢ durch einen Kompositzylinder
(Konzept des neutralen Einschlusses)

Unter Verwendung des CCA-Modellierungskonzeptes lassen sich fiir einen Kompositwerk-
stoff, welcher sich aus zwei (transversal) isotropen Phasen mit einem perfekten Phasentiber-
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gang zusammensetzt, explizite Formeln fiir den effektiven longitudinalen Elastizitédtsmodul
E¢f die effektive longitudinale Querkontraktionszahl v£f und den effektiven longitudinalen
Schubmodul G§¥ angeben, in die die Phasenvolumenanteile und die Materialeigenschaften
der beteiligten Phasen eingehen. Im Fall des effektiven transversalen Schubmoduls G, der
effektiven transversalen Querkontraktionszahl v¢f und des effektiven transversalen Elasti-
zitdtsmoduls EfT lassen sich Schranken angeben [41], [42].

Eine Ausnahme bildet der transversale Kompressionsmodul k¢, fiir den sich ebenfalls wie
bei den longitudinalen Konstanten eine explizite Formel herleiten ldsst. Die Formeln und
die Schranken der Materialkonstanten sind den folgenden Gleichungen zu entnehmen [46],

1], [42

kT =k — L : (3-24)
kK — k™ P+ GR
_ ,m\2,,f,,m
BT = Bl + Emym 4+ Enl . Sv = (3-25)
Wk Gr
f__ . m 1]€m*1kf m, f
vt = vl + o™ + G Vlm)( / : { U ) (3-26)
[ [
—t—t+ =
Kk GR
eff m 1)f 2
Gl' =G+ 1 = (‘5'27)

: +
Gr—ar gy

B = LA, (3-28)
b ket et

f,
ot ke — mefigEh T

=t "t __ 3-29
t k‘eﬁ + meﬂ»Ggﬁ,; ( )

mit
Ak
Efﬂ ’

mt =1+

bei Gt > GP, kf > kM

of

1 (k™ 1 2Gm)o™
GI—Gp 2GRy +Gp)

Gt =ar

(3-30)
(14 K)ot

3K2(Um)2 ’
Ko —of (14 =221y /7
= (L

G =1+
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bei G < G, kf < kP

1+ Ky)of
G =ar 1+ Chs 3];:2(1,“)2 :
K, —of (1 oMW )
2 ( +Ks(vf>3—f<1) (3-31)
of

v
1 (k™ + 2GP)o™
G- Gr  2GR(kP + GP)

Gt =g 4

mit

B k© GG+ K,
YRR G T oGlem -1
K, - G}/G'K, Kk
Ky = Lm0 N YTl
1+Gt,/Gt Ky kt + 26}

Fiir die Schranken Gl. (3-28), Gl. (3-29), Gl (3-30) und Gl. (3-31) kennzeichnet der Index
»— und ,,+“ die untere Schranke beziehungsweise die obere Schranke.

Das Konzept der CCA-Modellierung lésst sich auch bei mehrphasigen Kompositzylindern
anwenden (siche Abb. 3-5). Dabei steht jedoch nur die Berechnung der effektiven longi-
tudinalen Materialkonstanten sowie des effektiven transversalen Kompressionsmoduls im
Fokus der Betrachtung. Fiir die Berechnung transversaler Konstanten kann im Fall der
Mehrphasigkeit auf eine andere Berechnungsmethode, das verallgemeinerte Selbstkonsis-
tenzschema, zuriickgegriffen werden (siche Abschnitt 3.2.2).

Die Berechnungsgleichungen der effektiven Konstanten im Fall von mehrphasigen Kom-
positzylindern nach der CCA-Modellierung haben eine éhnliche Darstellung wie die Gln.
(3-24)-(3-27), wobei fiir die Herleitung eine Art Rekursionsalgorithmus angewendet wer-
den muss. Fiir die néhere Erlduterung werden die Eigenschaften (3-24)-(3-27) durch die
allgemeinere Bezeichnung P°( P!, P™ Var!, Var™, vf, v™) beschrieben. Die in den Klam-
mern aufgefiihrten Parameter kennzeichnen abhiingige Gréfen. P*f, Pf und P™ sind von
gleicher physikalischer Bedeutung, Var’ und Var™ dienen als Platzhalter in Form von Fel-
dern fiir etwaige zusétzliche Materialkontanten der Faser- beziehungsweise Matrixphase,
die in die Berechnung eingehen. Diese zusétzlichen Felder bestehen aus maximal zwei bezie-
hungsweise drei Komponenten. Die Reihenfolge der Auflistung der abhéngigen Grofen in
PP, P Varf, Var™ of v™) ist von grofer Wichtigkeit, da sich durch das Vertauschen
auch die heterogene Materialphasenanordnung veréndert.
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Abbildung 3-5: Drei-Phasen-Kompositzylinder einer CCA-Modellierung

Fiir das weitere Vorgehen wird ein CCA-Modell mit Kompositzylindern nach Abb. 3-5 an-
genommen. Die Faser Qf ist zentral im Zylinder eingebettet und durch eine Zwischenphase
Q) von der Matrix O™, welche die AuRenschicht bildet, separiert. Die Phaseniiberginge
werden als perfekt angenommen. Die effektive Materialeigenschaft Pfg des CCA-Modells
mit dreiphasigen Kompositzylindern ergibt sich dann aus [46]

Py = P(PR, P™, Var®, Var™, of + o', 0™) (3-32)
wobei i
. o i
P = pf [ P! P Var!, Var', —— ——— (3-33)
of + vi7 of ol

gilt. Das etwaige zusitzliche Feld Var® in Gl. (3-32) besteht aus Komponenten, die sich
ebenfalls durch die Gl (3-33) berechnen lassen.

3.2.2 Verallgemeinertes Selbstkonsistenzschema, GSCS

Das in dieser Arbeit verwendete verallgemeinerte Selbstkonsistenzschema (GSCS) orien-
tiert sich an den Ausfiihrungen von Hashin [46]. Es werden die wichtigsten Aspekte und
Gleichungen noch einmal dargestellt.

Das GSCS ist eine N&herungsmethode und kann zur Berechnung von effektiven Materialei-
genschaften von unidirektionalen Faserverbundwerkstoffen genutzt werden. Die Methode
wird in Kapitel 5 als Referenz- bezichungsweise Validierungsmethode herangezogen.

Das GSCS basiert im Fall eines unidirektionalen Faserverbundwerkstoffes, welcher sich aus
drei isotropen und elastischen Phasen zusammensetzt, auf dem folgenden geometrischen
Modell. Ein Kompositzylinder wie aus Abschnitt 3.2.1 Abb. 3-5, welcher eine Matrixphase
O™ eine Faserphase f und eine Zwischenphase () besitzt, ist in eine vierte homogene,
transversal isotrope Phase Q°, welche durch die noch unbekannten effektiven Materialei-
genschaften des unidirektionalen Faserverbundwerkstoffes charakterisiert ist, eingebettet
(siehe Abb. 3-6). Die Zwischenphase separiert die Matrix- und die Faserphase. Der Kon-
takt zwischen allen Phasen wird als perfekt angenommen. Die vierte transversal isotrope
Phase erstreckt sich ins Unendliche, wobei an dem dufseren Rand spezielle Randbedingun-
gen so angenommen werden, dass sich die gewiinschten effektiven Werkstoffeigenschaften
herleiten lassen.
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Abbildung 3-6: Links: GSCS-Modell (Kompositzylinder eingebettet in eine unendliche,
homogene Phase), rechts: verwendete Koordinatensysteme

>

Im Fall der Bestimmung des transversalen Schubmoduls sehen diese Randbedingungen wie
folgt aus [46]
ui(00) = a’ya,  up(00) = ayr, wy(y)=0 . (3-34)

Hierbei ist a® ein fest vorgegebener Wert. Durch die Gl. (3-34) und das DGL-System

0 .
—o0;=0 mQ=QUQfuOmuUQ (3-35)
81']-
wird ein Randwertproblem formuliert, welches es zu 18sen gilt. Da aus Gl. (3-34) uz(x) =0
gilt, wird das Randwertproblem als ebenes Problem (ebener Verzerrungszustand) behan-
delt.

Unter Verwendung eines zylindrischen Koordinatensystems mit Ursprung im Fasermittel-
punkt (siche Abb. 3-6) ergibt sich fiir Gl. (3-34)

u, = a’sin(20), ug = a’cos(20) . (3-36)

Da zwischen den einzelnen Phasen ein perfekter Kontakt vorherrscht, gelten an den Pha-

seniibergéingen r = 7f, r = ' = ¢ + ! und r = ™ die folgenden Kontinuit#itsbedingungen

f i f i £ i £ i
U - U uB u97 UTT = Opps Ur@ =0
_ m __ ,,m i . m i . m 9 9
u=u uh=ul, ol =M, oy =0" | (3-37)
— 0 — 0 m _ ;0 m _ 0
ul =), Uy =y, Opp =0, Ok =0

Der verwendete phasenweise Losungsansatz hat die Form [46]

uF(r,0) = @¥(r)sin(20), uk(r,0) = @*(r)cos(20) ,k=f,i,m,0 (3-38)

mit ok .
D
ak(r) = A’”+B’“r+7+— .
3-39
VRN LI PV SN TS St Tl i i (39
o 1—(1—2uk) 1+(1—20k) r 8 7
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wobei AF, B¥ C* D* unbekannte und konstante Parameter und v* die Querkontraktions-
zahl der jeweiligen Phase Q* darstellen. Die dazugehorige Darstellung der phasenweisen
Spannungen ergibt
2 C*k D*

2 X 32 )sin(20

1+ (1—2vF) r2 rd sin(26)

1 Cc* D*
—_—— +3— s(26 3-40
1+(1—21/k)r2+ T4>coq( ) (340)
k

6 D
k= 9GH | ———————AFr? — BF 4+ 3= ) sin(2
opy = 2G < (=20 7 +3r4 sin(26)

oty =26 (B

3
or = 26 (1—(1—2uk) R

Die Groke G* ist der Schubmodul der Phase QF.
Mit Hilfe der Verschiebungen und Spannungen nach Gl. (3-38), (3-39) und (3-40) ergeben
sich fiir jede Phase vier unbekannte Konstanten, welche iiber einen hochgestellten Index
(,0¢, ,m“, ,f* oder ,i“) dem jeweiligen Material zugeordnet sind. Vier der insgesamt 16
Konstanten sind aufgrund von Singularitidten beziehungsweise der Randbedingungen vor-
gegeben. Diese sind

A=0, B°=a° C'=0, D'=0 . (3-41)

Die iibrigen 12 Unbekannten formen mit der Gl. (3-37) das Gleichungssystem

Lg=b , (3-42)
wobei
qT:(OO DY Am pm (cm pm Al piooci pi Af Bf) (3_43)
und .
bT:(aO a® aGi O‘Gf 0000000 0) (3-44)

gilt. Dabei sind G° und G™ der effektive Schubmodul der Phase Q° bezichungsweise der
Schubmodul der Phase Q™. Die Eintrdge der reguldren Matrix L kann man dem Anhang
A entnehmen.

Fiir die Konstante C° muss gelten [24], [46]

=0 | (3-45)

um die Gleichheit der Forménderungsenergie des Modells nach Abb. 3-6 mit der eines
dquivalenten homogenen (effektiven) Modells zu gewahrleisten. Fiir genauere Details wird
auf [24] und [46] verwiesen. Unter der Verwendung der CRAMERschen Regel auf die Gl
(3-45) ergibt sich
0 _ dCt(LO)
"~ det(L)
Die Matrix Ly erhélt man durch den Austausch der ersten Spalte von L durch b. Da L
regulér und somit det(L) # 0 ist, muss det(Lo) = 0 sein, damit die Gl. (3-46) erfiillt
wird. Die Berechnung der Determinante det(Lyg) fiithrt auf eine quadratische Gleichung in
Abhiingigkeit des gesuchten effektiven, transversalen Schubmoduls G°. Man erhilt

0\ 2 0
R(%) + 25 (%) +T=0 , (3-47)

=0 . (3-46)
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wobei R, S, T' Konstanten sind, die Material- und Geometrieeigenschaften der Faser, der
Matrix und der Zwischenphase beinhalten. Fiir die explizite Ermittlung der Gl. (3-47) und
die Berechnung der Nullstellen empfiehlt es sich, rechnergestiitzte Methoden zu verwenden,
da die Konstanten durch komplizierte Ausdriicke dargestellt werden.

3.3 Periodische Mikrostruktur

Wie schon im Abschnitt 3.1 erwéhnt, ist es infolge der Periodizitét ausreichend, fiir die
zu ermittelnden mikroskopischen Spannungs- und Verzerrungsfelder als RVE den kleinsten
periodischen Mikrostrukturbereich zu betrachten. Es kann aber auch jeder andere peri-
odische Strukturbereich eines Kompositwerkstoffes genutzt werden. Das RVE wird, da es
in unendlicher Wiederholung im Sinne des Kontinuums den Kompositwerkstoff definiert,
auch sich wiederholende Einheitszelle (RUC) genannt.

Das zu losende DGL-System ist nach Abschnitt 3.1 Gl. (3-2) durch

5}

gegeben. Das verwendete Materialgesetz hat die Form
0i(y) = Ciju(y)en(uly)) . (3-49)
Die Gln. (3-48), (3-49), (3-7), (3-8) und die Randbedingungen (siehe Gl. (3-22))

u; = ey; +ul™ auf

u?® periodisch auf I |

(3-50)
wobei 5% vorgegebenen ist, formulieren das zu betrachtende Randwertproblem.

Bisher wurde nicht erwéihnt, dass die Randbedingungen Gl. (3-50) Starrkérperverschiebun-
gen zulassen, was einen Eindeutigkeitsverlust der Losung u zur Folge hat. Des Weiteren ist
die Darstellung der Randbedingungen Gl. (3-50) in numerischen Rechnungen ungeeignet,
da das periodische Feld uP® nicht bekannt ist. Deshalb wird nachfolgend eine verdnderte
Darstellung der Randbedingungen beschrieben.

A
‘ / A.‘
A, — | A

Y, ho| Q ]

I /
.‘L’}: 4 T >
Y4 Ay v a 1
" >
b
A,

Abbildung 3-7: RUC mit Langenangaben und Randflachen
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Es wird angenommen, dass die betrachtete RUC die Form eines Quaders hat (siehe Abb.
3-7), wobei die Breite, Hohe und Tiefe iiber die Parameter b, h beziehungsweise ¢ definiert
sind, welche auch die Periodizitdt charakterisieren. Schreibt man die Gl. (3-50) jeweils
fir die parallelen Rinder A und A; auf und bildet die Differenz, so erhilt man die
Randbezichung

Af AL o [ Af AL
upt -t =gy (yj by, k) . (3-51)
Die Indizes ,,+¢ und ,,— legen fest, ob der Normalenvektor der Randflache in positiver

beziehungsweise negativer Achsenrichtung verlduft. Mit u®s ist der Verschiebungsvektor
fiir ein y4x € A, und mit ul der entsprechende Vektor fiir ein yAz'r € A} gemeint, wobei
sich y#+ und yAr- nur in einer Komponente y; unterscheiden.

Jede identische Einheitszelle des Kompositwerkstoffes erfiillt diese Form der Randbedin-
gungen. Durch die Darstellung der Randbedingungen nach Gl. (3-51) wird deutlich, dass
Starrkorperverschiebungen auftreten kénnen, wodurch die Eindeutigkeit der Losung des
Vektorfeldes u verloren geht. Dieser Eindeutigkeitsverlust kann durch das Festlegen eines
vorgegebenen Verschiebungsvektors in einem beliebigen materiellen Punkt der RUC besei-
tigt werden.

Zum Bestimmen der effektiven Materialeigenschaften aus der Gl (3-13) werden sechs Pro-
bleme mit speziellen vorgegebenen symmetrischen Tensoren €° betrachtet. Diese Tensoren
sehen wie folgt aus

e, 00 0 0 0 00 0

0 00|, 0 % 0 00 0 ,

0 00 0 0 0 00 &

0 &% 0 00 0 0 0 & (3-52)
e 0 0], o 0o &, 0 0 0 ,

0 0 0 0 &% 0 e 0 0

wobei 9, = &%, €3 = €J; und &3, = £, gilt. Diese speziellen Probleme haben jeweils den
Vorteil, dass auf der rechten Seite des makroskopischen (effektiven) Materialgesetzes (3-13)
nur eine Makroverzerrungskomponente ungleich Null ist, wodurch nach den zugehorigen
makroskopischen Elastizitétskoeffizienten C~’§JH aufgelost werden kann. Beriicksichtigt man
anstatt der Tensoren aus Gl (3-52) die elementaren Verzerrungszustande

100 000 000
000 ], 010 ], 000 |,

000 000 001

0%0 00(1) 00% (3-53)
Lol 222, [ooo ],

2 1 1

so ergeben sich die effektiven Koeffizienten C’f}ﬂ direkt aus den zugehdrigen Makrospannun-
gen. Dies ist dadurch begriindet, dass die Differentialoperatoren des Problems linear sind,
wodurch superpositioniert und normiert werden kann. Fiir ein besseres Verstdndnis wird
im Folgenden néher auf die speziellen Probleme eingegangen.
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Makroverzerrung in y;-Richtung

In Abb. 3-8 ist exemplarisch das skizzierte Verformungsbild einer quaderférmigen RUC
(rechteckige Querschnittsgeometrie) mit einer zentriert eingebetteten zylindrischen Faser-
phase dargestellt, wobei der Tensor €° nur durch die Nicht-Null-Komponente €%, charak-
terisiert ist (siche Gl. (3-52)).

unverformt

T

Yi

/ verformt

Abbildung 3-8: Skizzierte Darstellung der Verformung der RUC infolge einer Makroverzerrung
in y;-Richtung

Mit der Gl. (3-51) und den Geometriedaten der RUC nach Abb. 3-7 lassen sich die folgenden
Randbedingungen gewinnen

Af AT AF Ay AT Ay

uli—ullzaﬁ)lb, uli—uﬁzo, uli—uldzo ,

A AT A Ay Aj Ay =
uy' —uyt =0, Up? — U2 =0, uy® —uy? =0 (3-54)
Af AT AF Ay AT Ay

uz' —uzt =0, Uz? —ug? =0, uz® —uz® =0

Diese Randbedingungen erzeugen einen makroskopischen Verzerrungszustand, wo nur
(e11) = €9, ungleich Null ist. Unter Verwendung des makroskopischen Materialgesetzes
in M-V-Notation nach Gl. (3-13) ergibt sich

~eﬂ_<5—i> i=
G =gy =1L

Damit sind sechs effektive Koeffizienten von Cf bekannt.

6 (3-55)

Makroverzerrung in y,-Richtung

Die quaderférmige RUC wird in diesem Fall durch die Vorgabe von &3, # 0 verformt.
Die restlichen Komponenten des Verzerrungstensors werden zu Null angenommen. Daraus
ergeben sich die folgenden Verschiebungsrandbedingungen

Af AT Af Ay AT Ay

a1 _ a2 p _ 23 3 _
u1+7u1 =0, ul+ uy? =0, u1+ u? =0,

A AT A3 Ay 0 . A3 . Ay r
Uyt~ U =0, Uy’ U =e%h, Uy — =0 , (3-56)
A A7 A A A AL

us' —ugt =0, uz® —uz® =0, uz® —ug? =0

Als einzige Nicht-Null-Komponente der Makroverzerrung bleibt (e20). Die zugehorigen
sechs effektiven Elastizitéitskoeflizienten, die sich daraus berechnen lassen, sind durch

~veff <&’t> -5
iy = &) (3-57)
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gegeben.

Makroverzerrung in y;-Richtung

In den beiden vorangegangenen Betrachtungen wurden Randbedingungen angenommen,
die einen Makroverzerrungszustand in Normalenrichtung beziiglich y; oder yo erzeugen.
Entsprechende Randbedingungen fiir einen Makroverzerrungszustand in ys-Richtung erhélt
man durch die Vorgabe der Nicht-Null-Komponente €5 # 0. Diese lauten

AT AT AF Ay AT Ay
upt —upt =0, uy? —uy? =0, uwt —wt =0,
AT AT AF Ay AT Ay =
Uy' — Uy =0, uy® —uy? =0, uy® —uy® = , (3-58)
AT AT Ay Ay Ay 7
uzgt —uzt =0, uz? —uz? =0, uz® —uy® = et
Aus den Gleichungen
~veff <01> b
Ceff = (3-59)

(&)

lassen sich weitere sechs effektive Elastizititskoeffizienten berechnen.

Makroverzerrung in y;-y»-Richtung

Analog zu Abb. 3-8 wird in Abb. 3-9 exemplarisch das skizzierte Verformungsbild der
quaderféormigen RUC unter Berticksichtigung periodischer Randbedingungen, die durch
einen symmetrischen Tensor €” charakterisiert sind, in dem nur die Komponenten &9, = £%,
ungleich Null sind, dargestellt.

unverformt ____ 4 S~ verformt

L

M

Abbildung 3-9: Skizzierte Darstellung der Verformung der RUC infolge einer Makroverzerrung
in y1-y2-Richtung

Die Randbedingungen sind durch

Af AT AF Ay 0 Af Ay

o= 0, ut ot = elah, U Cow = 0,
A AT A; Ay A A3

uy' —up' = g9, uy? —uy? =0, Uy’ —uy® =0 (3-60)
At AT AF Ay AT Ay

uz' —ugt =0, uz® —uy’ =0, uz® —ug? =0

gegeben. Durch diese Randbedingungen lassen sich die Elastizitatskoeffizienten C’ff der
M-V-Darstellung (M-V-Notation) des Elastizitatstensors aus

SN () .
Gy = A (3-61)
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berechnen, da nur (£;) = 2¢9, ungleich Null ist.

Makroverzerrung in y.-ys-Richtung

Der vorangegangene Randbedingungsfall erzeugt eine Schubbelastung auf Makroebene be-
zliglich der y;-y»-Richtung. Fiir eine Schubbelastung beziiglich der y»-ys-Richtung werden
die folgenden Randbedingungen

AT AT AT AF Af As

ulifull:()7 uljfuﬁ:(), uliful**:O

A AT A Ay A As o
Uyt —uyt =0, up? —wuy? =0, uy® —uy?® =%t (3-62)
AT AT AT AF AT AT

up' —uyt =0, uy? —uy? =ehh, uz® —uy® =0

verwendet, wobei 5, = €3, # 0 die einzigen vorgegebenen Nicht-Null-Komponenten des
Tensors &° sind. Da die Beziehung (g;;) = &) gilt, ist nur (&) = 2, # 0, und die
zugehérigen Elastizititskoeffizienten C& berechnen sich aus

Soff _ (04) i
oF =gy (3-63)

Makroverzerrung in y;-y3-Richtung

Fiir den vorgegebenen Tensor €° mit den Nicht-Null-Komponenten &3 = €3; lassen sich
die folgenden Randbedingungen aus Gl. (3-51) gewinnen

Af AT AF Ay AT Ay

' —ut =0, w? —up? =0, up® —u® = ekt

Af A7 Af Ay Ay A3 .
“2+_“2 =0, U2+_U2 =0, U2+_U2 = ) (3-64)
A AT A Ay A Ay

uzt —uyt =e9b, up? —wuy? =0, uy® —wuz® =0

Die Randbedingungen fiihren dazu, dass auf der Makroebene ein Verzerrungstensor ent-
steht, bei dem die einzigen von Null verschiedenen Komponenten (e13) = (e31) sind. Damit
lassen sich die effektiven Elastizitétskoeffizienten aus
et — <l?z'>
(&)

(3-65)

gewinnen.
Wie man anhand der Gl. (3-13) erkennen kann, kénnen durch die betrachteten sechs Fille
von Randwertproblemen alle effektiven Koeffizienten von C° bestimmt werden.

3.3.1 RUC mit einem parallelogrammférmigen Querschnitt

Bei der bisher betrachteten RUC (sieche Abb. 3-7) sind die Richtungen der Periodizitét
orthogonal zu einander und zusitzlich in Ubereinstimmung mit den Koordinatenrichtun-
gen. Nachfolgend wird eine RUC behandelt, bei der diese Orthogonalitét verletzt ist. Dazu
wird eine RUC nach Abb. 3-10 betrachtet. Die Grofen b, A und t sind, wie in Abb. 3-7
dargestellt, die Breite, die Hohe beziehungsweise die Tiefe der Einheitszelle. Mit w wird die
Lénge der geneigten Kante gekennzeichnet. Die Periodizitét der Zelle in der y;-yo-Ebene
wird durch die Kantenldngen b, w und 0° < a < 90°, welcher der eingeschlossene Winkel
zwischen den zugehorigen Kanten von b und w ist, charakterisiert. Wie man der Abbildung
entnehmen kann, stehen die Kanten im Allgemeinen nicht senkrecht zu einander, wodurch
die Orthogonalitét verletzt ist (o # 90°).
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Abbildung 3-10: RUC mit Geometrieangaben und Begrenzungsflichen

Fiir die Ermittlung der effektiver Elastizitdtskoeffizienten (jfjﬂ sind die Randwertprobleme
mit den speziellen Randbedingungen aus den Gln. (3-54), (3-56), (3-58), (3-60), (3-62) und
(3-64) ungeeignet. Zum Formulieren geeigneter Randbedingungen wird von der Gl. (3-51)
ausgegangen.

Makroverzerrung in y;-Richtung

unverformt

Abbildung 3-11: Skizzierte Darstellung der Verformung der RUC infolge einer
Makroverzerrung in y;-Richtung

In Abb. 3-11 ist das Verformungsbild einer RUC mit einem parallelogrammférmigen Quer-
schnitt dargestellt, in den zentriert eine Faserphase eingebettet ist. Die Abbildung zeigt
die Verformung infolge der Randbedingungen Gl. (3-66). Die Randbedingungen lauten

Af AT AT Ay . AT Ay

uli —uyt =&, uli —up? =% wsin(90 — a), uli —up* =0

A A7 Aj Ay Aj Az

Uy' —uyt =0, Uy® —Uy” =0, Up® —Uy® =0 (3-66)
Af AT AT Ay AT Ay

ug' —uy' =0, uz® —ug® =0, uz® —uz® =0

wobei €9, wie im Fall der quaderférmigen RUC, die einzige von Null verschiedene Kom-
ponente eines vorgegebenen Tensors €° ist. Daraus resultiert eine makroskopische Verzer-
rungskomponente {g11) # 0, fiir die (g11) = €9, gilt. Alle anderen Komponenten sind Null.
Aus Abb. 3-11 erkennt man, dass im Vergleich zur quaderférmigen RUC die Kanten infolge
der Randbelastung nicht eben bleiben. Es bildet sich ein wellenférmiger Verschiebungsrand
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aus, der beziiglich gegeniiberliegender Réander die gleiche Form hat. Die effektiven Elasti-
zititskoeffizienten CT lassen sich aus Gl. (3-55) berechnen.
Makroverzerrung in y,-Richtung

Die Randbedingungen bei einer RUC mit einem parallelogrammférmigen Querschnitt fiir
eine makroskopische Verzerrung in y,-Richtung sind durch

Af AT Af Ay AF Ay
up' —ut =0, uy? —u? =0, up® —upt = )
Af A7 AF Ay AF Ay P
u21+ —uy' =0, u22+ —uy? =eh, uZS+ —uy® =0 (3-67)
Al Al Az Ay A; Ay _
us' —ugt =0, uz® —uz® =0 Uz® —uz’ =

gegeben, wobei der vorgegebene Tensor € als einzige Nicht-Null-Komponente 9, besitzt.
Es ergibt sich, dass (g2) = €3, die einzige Komponente des makroskopischen Verzerrungs-
tensors ist, die ungleich Null ist. Die effektiven Koeffizienten C¢T berechnen sich aus der
Bezichungsgl. (3-57).

Makroverzerrung in y;-Richtung

Der hier vorgegebene Tensor €” hat als einzige Komponente 3, ungleich Null. Die fiir das
DGL-Problem hergeleiteten Randbedingungen

AT AT AF Ay AT A3

w' —ut =0, v —u?* =0, v®—-—u?*®=0

AT A7 Ay Ay AF A

Uy — Uyt =0, uy? —uy? =0, uy® —uy® = , (3-68)

Af AT AF Ay AT AT
uzgt —uzt =0, uz? —uz? =0, uz® —uz® = et

gewéhrleisten eine Makroverzerrungskomponente (e33) = €35, welche als einzige ungleich
Null ist. Die effektiven Koeffizienten C&I berechnen sich dann aus Gl. (3-59).

Makroverzerrung in y;-y»-Richtung

unverformt
verformt

Abbildung 3-12: Skizzierte Darstellung der Verformung der RUC infolge einer
Makroverzerrung in y;-y2-Richtung
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In Abb. 3-12 ist das skizzierte Verformungsbild einer RUC mit einem parallelogramm{6rmi-
gen Querschnitt und zentriert eingebetteter Faserphase zu sehen, welches aus der Vorgabe
eines symmetrischen Tensors €° mit den einzigen Nicht-Null-Komponenten &9, = &9, re-
sultiert. Die Randbedingungen sind dabei durch

Af AT AF Ay AT Ay

ut —ut =0, wp? —uy? =ehh, u? —u? =0

Af AT AF Ay . AT Ay

uy' —uy' =eQb, up? —up? =eqwsin(90 — @), up?® —uy? =0 (3-69)
Af AT AF Ay A; Ay

ug' —uy' =0, uz® —ug® =0, Uz® —uy® =

gegeben. Daraus ergibt sich, dass (£,) = 2(g15) = 2¢9, als einzige Komponente der M-V-
Darstellung (M-V-Notation) der makroskopischen Verzerrungen ungleich Null ist. Somit
lassen sich die effektiven Koeffizienten Cgf aus G1. (3-61) berechnen.

Makroverzerrung in y,-y3-Richtung

Der symmetrische Tensor €° hat als einzige Nicht-Null-Komponenten €3, = £3,. Die dazu-
gehorigen Randbedingungen lauten

Af AT AF Ay Af Ay
u1+—u1 =0, u1+—u1 =0, u1+—u1 =0 ,
Aj Ay Ay Ay _ Ag Az _ 0 -
u2+—u2 =0, u2+—u2 =0, u2+—u2 =gt (3-70)
Aj Ay Ay Ay _ 0 Ay Ay _
us' —ugt =0, uz® —ug® =egh, ug® —uz® =0

Als makroskopische Verzerrungskomponenten, welche ungleich Null sind, ergeben sich
(€93) = (e32) = £9;. Die effektiven Koeffizienten C! lassen sich aus der Gleichung (3-
63) berechnen.

Makroverzerrung in y;-y3-Richtung

Aus der Vorgabe eines symmetrischen Tensors €° mit €9, = £3; # 0 lassen sich die folgenden
Randbedingungen formulieren

Al _ AT Z AL _ AL M 0
th =0, th’ —th =0, th' —th =&t
A AT A Ay A Ay
112171121 =0, u22+7u22 =0, u2i7u23 =0 , (3-71)
A AT A Ay . A Ay
ugt —uyt = b, uy® —ug? =eqwsin(90 — a), uz® —uy® =0
Daraus resultieren makroskopische Verzerrungskomponenten (g13) = (e13) = &J;, wobei

sich die zugehorigen effektiven Elastizitéatskoeffizienten aus der Gl. (3-65) berechnen las-
sen.

Bei einem Vergleich der Randbedingungen der einzelnen Belastungsfille dieser RUC mit
denen der quaderférmigen RUC ist zu erkennen, dass sich in einigen Féllen die Verschie-
bungsdifferenzen unterscheiden und in anderen gleich sind, was eine Folge der unterschied-
lichen Geometrie und der Richtungen der Periodizitéat ist.
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3.4 Imperfekter Phaseniibergang

In der Regel wird fiir die Herleitung eines imperfekten Ubergangs zwischen zwei Phasen
von einem Drei-Phasen-Modell ausgegangen [11], [15], [13], [43], [44], [46], [33]. Die im-
perfekte Phasentibergangsbeschreibung wird dabei in Form von Unstetigkeitsbedingungen
physikalischer Grofen auf dem Phasenrand beschrieben.

Ein imperfekter Phaseniibergang ist dabei nicht auf ein bestimmtes physikalisches Feld-
problem beschrinkt. In [91], [92] und [36] werden piezoelektrische Feldprobleme unter
Beriicksichtigung heterogener Materialstrukturen mit imperfekten Ubergéingen behandelt.
Grundlegende Gleichungen fiir piezoelektrische Feldprobleme mit einem speziellen imper-
fekten Phaseniibergang im Rahmen der Homogenisierung werden im Abschnitt 3.5.1 pré-
sentiert.

Die in der Literatur zu findenden imperfekten Phaseniibergangsmodelle fiir rein elastische
Probleme sind im Allgemeinen nicht einfach in numerischen Modellen zu realisieren, da
in den Unstetigkeitsbedingungen verschiedene physikalische Gréfen gekoppelt auftreten
konnen. Die Umsetzung solcher Modelle in kommerziellen FEM-Programmen ist mit er-
heblichem Aufwand verbunden oder gar unméglich. Im Folgenden wird im Rahmen der
Homogenisierung ein Modell mit einem speziellen imperfekten Phaseniibergang entwickelt,
welches sich mit einem {iberschaubaren Aufwand realisieren lésst.

In der bisherigen Modellbetrachtung wurde ein perfekter Phaseniibergang zwischen den
Phasen des Kompositwerkstoffes angenommen. Damit ist die Giiltigkeit der Gl. (3-7) und
(3-8) gemeint. Dieser perfekte Phaseniibergang wird nun durch einen speziellen imperfek-
ten Ubergang ersetzt.

Abbildung 3-13: Gemeinsamer Rand Ty einer eingebetteten zylinderformigen Phase QF mit
der Matrixphase Q™

Dieser spezielle Phaseniibergang ist charakterisiert durch Gl. (3-8) und unstetige Verschie-
bungen [43], [44] [72]. Der Phaseniibergang lisst sich unter Verwendung der normalen
Komponente (Index ,,n“) und der transversalen Komponenten (Index ,s* und ‘) des

Spannungsvektors t = (¢, ts &) " durch die folgende Beziehung beschreiben [45]

ty, Ke 0 0 [lwn |
o=t )= o & o | ful | =xJul - (3-72)

t 0 0 K; [l |
Die konstanten Grofen K2, KZ und K sind dabei Proportionalitétsfaktoren, durch die
Verschiebungsdifferenzen |ju|| = (u™ — uf) mit Spannungen t = on verkniipft werden.
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Die tiefgestellten Zeichen n,s und ¢ kennzeichnen den Bezug zu einem lokalen kartesi-
schen Koordinatensystem auf dem Rand I'yy¢ (siche Abb. 3-13). Unter der Annahme eines
raumfesten, kartesischen Koordinatensystems {41, s, y3} hat die Gl. (3-72) die Form

ti = Killugll, 4,5=1,2,3 , (3-73)

wobel K, K und K; die Eigenwerte der Matrix K¢ sind. Die Gréfen K7, K; und K7
aus Gl. (3-72) besitzen einen konstanten Wert, wihrend die Koeffizienten K7; in G1. (3-73)
von der Position auf dem Kontaktrand abhéngig sind. Fiir jede Position lasst sich eine
Transformationsmatrix finden, mit der K¢ aus Gl (3-72) in K¢ aus Gl. (3-73) iberfiihrt
werden kann.

Fiir den Fall, dass ein zylinderférmiger Rand T',,,; berticksichtigt wird (siehe Abb. 3-13),
sehen die Bedingungen fiir den imperfekten Phaseniibergang unter Verwendung eines zy-
lindrischen Koordinatensystems r, 6, z wie folgt aus

f _ m f _ m f _ m
Opp = Opps Org = Orp> Opz = Orz

ot = Kl oy = Kol of. = K )
Aus Gl (3-74) lasst sich entnehmen, dass K den Phaseniibergang in radialer Richtung
beeinflusst, wéhrend Kj und K? fiir den Phaseniibergang in transversaler Richtung ver-
antwortlich sind. Die physikalische Einheit der Gréken K¥, i = r, 0, z ist [Kraft/Volumen].
Wie bereits erwéhnt, kann ein imperfekter Phasentibergang im Allgemeinen aus einer Drei-
Phasen-Betrachtung hergeleitet werden. Fiir den speziellen imperfekten Phaseniibergang
aus Gl. (3-74) ist es daher naheliegend, eine Interpretierbarkeit der Grofen K¢, i =1r,6,z
aus den Materialeigenschaften der Zwischenphase einer Drei-Phasen-Modellierung zu fin-
den. Im Fall einer sehr diinnen Zwischenschicht i, welche isotrope und vergleichsweise
sehr niedrige Materialeigenschaften aufweist und eine konstante Phasendicke hat, werden
in [46] die folgenden Beziehungen verwendet

ge= 200
(1 =209 (1 4 v)
m:%7 (3-75)
k-9
z tl

Hierbei bezeichnen die Konstanten E', G' und ¢! den Elastizititsmodul, den Schubmodul
beziehungsweise die Querkontraktionszahl der Zwischenschicht. Durch ¢ ist die Dicke der
Zwischenschicht gekennzeichnet. Fiir die Darstellung der Beziehungen in Gl. (3-75) kénnen
auch Elastizitdtskoeffizienten der Zwischenphase verwendet werden. Aufgrund der Isotro-
pie lassen sich die Koeffizienten Ci,;, = E'(1 — v})/((1 — 201)(1 + ¢/!)) und Cispy = G
nutzen.

Die Art der Beschreibung des Phaseniibergangs aus Gl. (3-74) ist einem Federgesetz ahn-
lich, weshalb die K7 im Englischen auch ,spring constant type parameter oder einfach
Linterface parameter” genannt werden.

Im Fall periodischer Mikrostrukturen werden die Randbedingungen aus Gl. (3-50) auf eine
RUC angewendet. Der effektive Elastizititstensor C°T definiert sich iiber die Gleichung

(o) = Ciflalen) (3-76)
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welche das makroskopische Materialgesetz représentiert. Hier sind die Grofen (o;;) und

(err) durch [11]
1
(035) *ﬁ/ﬁzjdﬂ )

Q
1 1 1
= — Q)+ — dQ + — | v dI
(er) |Q|QZEM + |QQ/5M + 2] /HWH”I‘F [l |72

mf

(3-77)

gegeben. Die makroskopischen Spannungen (o;;) bilden sich aus dem integralen Mittelwert
der Spannungen in der RUC (1. Gleichung in Gl. (3-77)). Die makroskopischen Verzerrun-
gen (ey) ergeben sich aus den integralen Mittelwertanteilen der Phase des Einschlusses ()
und des Fiillmaterials (Q™) sowie aus einem dritten Term. Dieser dritte Term spiegelt den
Verzerrungsanteil des imperfekten Phaseniibergangs infolge der Verschiebungsdifferenzen
auf I'yy wider. Der Term lésst sich auch so interpretieren, dass er den Verzerrungsanteil
der Zwischenphase (! aus einer Drei-Phasen-Modellierung repriisentiert.

Werden in der zweiten Gleichung von Gl. (3-77) die ersten beiden Integralterme mittels
GAUSSschem Integralsatz in Randintegrale tiberfiihrt, ergibt sich die Beziehung

1 1
(ew) = m /ukn;n +wynp dl + m /uknlf + wn dT
Tf

gy ol + i

Tiag
Mit I'f und I'™ wird der duRere Rand von Qf und Q™ bezeichnet. Die Groken n™ und nf
sind die Komponenten des Normalenvektors bezogen auf 2™ beziehungsweise Qf. Mit der
Einbeziehung des Randes der RUC I' (n sei hier der Normalenvektor auf I') ldsst sich die
Gleichung wie folgt umschreiben

(3-78)

(em) = 2‘Q‘/ukm+umkdl“+2|m /“knz +uPn dl
(3-79)
2|Q| /uknl-i-u,ndeJrQ'm /||Uk||”:+HUande
Cing Tt

Da auf dem Rand Ty fiir die Komponenten der Normalenvektoren n* = —n! gilt, ergibt
sich

1 1
(em) = m/ukﬂﬂrumkdrfm/ukmmf+ufnnidl“

Limg
1
2|Q| /ukm-l—u;nkdf—i-mm / llur b + ||w||n dT

S

= PTel /ukm + wyng dl' — 2|Q| [ug||nf + | ||nk, dT (3-80)
T
gy [ Voo + o ar

Cing

1
= m /U}J}l + wng dl’
T
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Somit lassen sich die Grofen (g4;) auch {iber Randintegrale ausdriicken.

Ahnliches ldsst sich auch fiir die makroskopischen Spannungen (o;;) erreichen. Mit Hilfe
der Gl. (3-48) und dy;/dyy = 0,1, (0;x ist das KRONECKER-Delta) gilt in jeder Phase die
Beziehung [35]

0 0 Jao; o
8 (}j lk) iko-zk +1 /] 8 k Uijv 1,) = 17273 . (3_81)

Unter Verwendung der Gl. (3-81) und des GAUSSschen Integralsatzes erhélt man
<O'Z']'> = ‘Q‘ /Oz] dQQ
= — / dQ—i—i / dQ
- \m T
= Q 9]
18] /a (yjoin) dQ + |Q|/a (yjoie) d (3-82)

‘Q‘ /JJ 'Lknk dFJr ‘Q| /yj zknde

= ‘Q‘/yjamndeJr |Q| /yj knk+aknk)dF

Lig

Da im Fall des imperfekten Phaseniibergangs die Gl. (3-8) auf Iy erfiillt ist, ergibt sich
letztendlich

1
<Uij> = ﬁ /Uz-knky]v dl . (3—83)
T

Im Fall von (gy;) ldsst sich infolge vorgegebener Randbedingungen nach Gl. (3-50) zusitz-
lich schlussfolgern, dass
(ew) = €l (3-84)

gilt.

3.5 Piezoelektrische Materialien

Das Prinzip der Homogenisierung kann auch im Fall von piezoelektrischen Materialien
angewandt werden. Es lassen sich Verfahren fiir nichtperiodische als auch fiir periodische
Kompositstrukturen findet. Im Allgemeinen ergeben sich diese Verfahren aus einer Erwei-
terung der bereits bekannten Homogenisierung von elastischen Problemen. In [30] wird die
Methode der ,,diinnen” Verteilung, die MORI-TANAKA-Methode und das Differentialsche-
ma fiir piezoelektrische Kompositwerkstoffe behandelt. Verfahren auf der Basis einer RUC
mit periodischen Randbedingungen sind in [79], [78], [17], [59] zu finden. In den héufigsten
Fillen werden perfekte Uberginge der Materialphasen vorausgesetzt.

Im Rahmen der Homogenisierung wird im Folgenden ein Kompositwerkstoff betrachtet,
welcher sich durch ein RVE beziehungsweise eine RUC (gekennzeichnet mit Q) charakteri-
sieren ldsst. Dazu sei angenommen, dass sich die Kompositstruktur aus zwei unterschiedli-
chen Materialphasen zusammensetzt. Eine Phase ist die Matrixphase 2™, und die andere
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Phase ist eine darin eingebettete ,,Storung” Qf. Der Rand, den beide Phasen gemeinsam
haben, wird mit ['ys = [™ N T bezeichnet. Der #ukere Rand des RVE (der RUC) wird mit
I" bezeichnet.

Unter der Annahme, dass Volumenlasten fehlen, ergibt sich mit Verweis auf Gl. (2-25) fir
den Volumenbereich 2 das folgende DGL-System

oy (3-85)

mit den konstitutiven Gleichungen

0 (y) = Ciju(y)en(uly)) + 6kij(3’)%¢>()’) :

(3-86)
Dyi(y) = ea(y)en(uly)) — Hij()’)fﬂ)’)
Yj
Hierbei sind u(y), ¢(y), Ciju(y), exij(y), £ij(y), 0i;(y) und D;(y) durch
_fut(y), yeaom _ [ omy), yean
U(Y) = { uf(y), y € Of o(y) = (Z5f()’)~, y€ Of s
_ | Ciuly), yeQ® _Joeyly), yem
Cijkl(Y) - { Oik’jl(y)/ y € of C’kij(y) - { eklfc;(y)7 y e Of ’ (3 87)
[ k2(y), yeQm o y), yeQm )
Kig(y) = { oii(y) = { O'ij(y)~, y € Of )

ki (y), ¥y € Q>
_ [ Dy), yeQ®
Dily) = { Di(y), yeq!

definiert. Auf dem gemeinsamen Rand der Phasen I',¢ gelten die folgenden Stetigkeitsbe-
dingungen
uf =u auf e

¢l = 6™ auf Lo (3-88)
f f m, m
oyny = —05n] auf 'y i
Dfng: —D"n  auf Iyt (3-89)

Mit nf = (nd n) nf )7 und n™ = (0P nP 2P )T wird der dufere Normalenvektor
von der Phase Qf beziehungsweise (™ bezeichnet.
Die effektiven Materialeigenschaften von Kompositwerkstoffen bei Beriicksichtigung von

piezoelektrischen Materialphasen lassen sich durch die makroskopische Beziehung

(03j) = Ch(em) — 5T (Bx)

(D) = el (ew) + (B (3-90)

beziehungsweise
(@) =C"(e) (3-91)

definieren, wobei
(@ = ((61) (62) (33) (Ga) (G5) (G6) (D1) (Da) (Ds) )T ; (3-92)

® = (&) @ @& @) (& G (B (B (B)
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und

Cii Oy G G Cf Cf —&1 —é&f —&f
Cif Csf Csi Csf G5 C58 —éf —ésf —égf
Cf Csy Csy Csi G55 C5g —éfy —és) —&5
Cif G5t C5i Cff Cff Cif —&f —&s) —&)

C" = | G G G O O O et e et | (393)
Cig Csg Csf G5t G5 Cef —es8 —esf —est
et el e el et et A R A
EEEEE NN

seff seff seff seff seff seff eff eff eff
€31 €3 €33 €34 €35 €36 K3l K3a  Ka3

sind. Hierbei kennzeichnet der Ausdruck (-) makroskopische Groken, der durch eine inte-
grale Mittelung auf Mikroebene {iber den représentativen Volumenelementbereich gebildet
wird. Die Gl. (3-91) ist eine Darstellung des makroskopischen Materialgesetzes fiir piezo-
elektrische Kompositwerkstoffe in der M-V-Notation.

Im elastischen Fall ist die Interpretierbarkeit der effektiven Elastizitéitskoeffizienten an die
HILL-Bedingung gekniipft, die die Aquivalenz der mittleren Forménderungsenergie der
Mikroebene mit der Formédnderungsenergie der Makroebene beschreibt. Die analoge Be-
schreibung fiir piezoelektrische Materialien lautet 66|

(0ijeij) = (o3 (es) :
(D;E;) = (Di)(E;) . (3-94)

Diese Bedingungen der Gleichheit auf Mikro- und Makroebene gelten dabei als erfiillt,
wenn zuldssige Randbedingungen fiir das zu betrachtende RVE formuliert sind.
Die makroskopischen Groken (o;), (g:5), (D;) und (E;) berechnen sich aus

1
(o) = ﬁ/% Q2

o " (3-95)
(ei) = @/Ezj
Q

und
1
o/

1
o

Fiir die Homogenisierung nichtperiodischer, piezoelektrischer Kompositstrukturen lassen
sich analytische Verfahren nutzen, um die effektiven Materialeigenschaften zu bestimmen.
Dazu werden homogene oder lineare Randbedingungen, dhnlich wie im Abschnitt 3.1 Gl
(3-15) verwendet. In [30] und [74] werden beispielsweise lineare Randbedingungen (fiir die
Verschiebungen und das elektrische Potential) verwendet.

Im Fall von periodischen Mikrostrukturen werden die Randbedingungen aus Abschnitt 3.1

(3-96)
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Gl (3-22) wie folgt erweitert 78], [2]

up = ey, +up” auf T
o= —E]Qyj + P auf I’

ul®  periodisch auf T’

¢P*"  periodisch auf I'

(3-97)

Hier sind 5% und E? vorgegebene Komponenten eines symmetrischen Tensors € bezie-
hungsweise eines Vektors E°.

Durch die Betrachtung piezoelektrischer Probleme erhoht sich die Anzahl der effektiven
Materialeigenschaften. Fiir den allgemeinsten Fall eines anisotropen Kompositwerkstoffes
ergeben sich 45 unabhéngige, effektive Koeffizienten 6?;‘ i, =1,...,9 (siehe Gl (3-91)).

Fiir die Bestimmung aller Koeflizienten 62& sind neun unabhéngige Randwertprobleme
zu 16sen. Dazu werden unter Verwendung der periodischen Randbedingungen Gl. (3-97)
neun spezielle Randwertprobleme formuliert. Fiir jedes Randwertproblem wird ein spezi-
eller Tensor €° und ein spezieller Vektor E° vorgegeben. Fiir die neun Randwertprobleme
sehen diese Grofen wie folgt aus

€90 0 0

Falll: e=| 0 00|, EO=[ 0 (3-98)
0 00 0
0 0 0 0

Fall2: &= |0 &) 0], EO=[ 0 |, (3-99)
0 0 0 0
00 0 0

Fall3: &=[00 0 |, EO=[ 0 |, (3-100)
00 &, 0
0 <% 0 0

Fall4: &= | < 0 0], E0O={ 0 |, (3-101)
0 0 0 0
00 0 0

Fall5: e®=|0 0 £ |, EO=| 0 |, (3-102)
0 ¢ 0 0
0 0 & 0

Fall6: &= | 0 0 0 |, E0O={ 0 |, (3-103)
€20 0 0
000 EY

Fall7: =000 |, E°=[ 0 |, (3-104)
000 0
000 0

Fallg: &°=| 00 0 |, E°= | EY (3-105)
000 0
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000 0
Fall 9: & 000, EO=[ 0 |, (3-106)
000 E?

wobei % = &Y, €, = £9; und &3, = &9, gilt.

Aus den Randwertproblemen lassen sich jeweils ein Vektor (€) und ein Vektor (&) (siehe
GL (3-91)) bestimmen, wobei nur eine Komponente von (€) ungleich Null ist. Dadurch ist
man in der Lage nach einer Spalte von {693) aufzulosen und die effektiven Koeflizienten
zu ermitteln.

In Analogie zu Abschnitt 3.3 werden nachfolgend fiir eine RUC mit einer rechteckigen
Querschnittsgeometriebeschreibung (siehe Abb. 3-7) die Randbedingungen der neun spe-
ziellen Randwertprobleme angegeben, welche in Form von Zwangsbedingungen zwischen
Verschiebungen und zwischen elektrischen Potentialen auf dem Rand I' formuliert sind

AT AT AT AF AT Ag
u b —ut =ehb, ut —up? =0, u® —u? =0
+ A7 AT A5 AF A
Uy — Uy =0, Uy? —Uy? =0, uy® —uy® =0
Fall 1: N _ . _ N _ ’ (3-107)
At A7 Af A; A} A;
uz' —uzt =0, us® —uz® =0, uz® —uz® =0
AT AT AT Ay AT Ay _
¢ b= ¢ L= 07 d) 2 = ¢ 2= 07 ¢ 3= ¢ 3 =0 )
AP AT oAb A; A Ay
u1+—u1 ) u1+—u1 =0, U1+_“1 )
A A ; Ay A Ay
uyt —uyt =0, uy? —us? =eQh, uy? —up® =0
2 2 ;U 2 2010, Ug 2 ;
Fall 2: . _ N _ N _ (3-108)
s s i — e = uls — s =
3+ 3 ’ 3+ 3 T 3+ 3 ’
A AT A Ay A (A5
(/) B ¢ B 07 ¢ 2 ¢ 2 = ’ (b 3 (P 3 O I
AT AT AF Ay A Ay
ut —ut =0, u? —u? =0, v’ —u® =0,
+ T AF Ay AT Ay
Uy — Uyt =0, Uy® —uy® =0, uy® —uy® =0
Fall 3: N _ N _ N _ (3-109)
wll M —0, w0, wl e =20
3 3. =Y Uzt 3” =Y Ut 3" = &35t
¢Al - ¢A1 = Oa ¢Az - ¢A2 = 07 ¢A3 - d)AB = )
AF AT AF Ay AT Ay
uli—ull =0, uli—ulzzs%h., uli—uﬁ:O ,
A AT A] Ay ; by
uyt —uyt =edb, uy? —uy? =0 uy? —uy® =0
2 2 210, Uy 2 ) 2 2 )
Fall 4: N _ N _ N _ (3-110)
s =0 ulr oyl =0 s ol =
'3 3 T Y '3 3T Y '3 '3 )

g —gh =0, @M -t =0, N —¢M =0 ,

Af AT AT AF AT A
uli—ullf uli—ulzfo., u1+—u1“70
Aj n Az Ay 3 A3 _ 0
Fall 5: Uy' — Uy = Uy® — Uy =0, Uy® — Uy = €g3t (3-111)
’ Af A A, A, AT Ay
Uy ' — Uy ' = Uy? —uy? = €Y Ug® — Uy ® =
3, 3 R 37 T Exll, Uzt 30 = )
¢A] d)A] 07 ¢A - ¢A2 - 07 ¢A3 ¢A3 = )
At AT AF A7 AF A7
“/11+_“11 =0, uli—ulz:O, uli—uldzs%t ,
Aj A Ay Ay Ag 3
Uy ' — Uyt =0, Up? —Uy? =0, uy?® —uy?® =
Fan . 2 2 ) 2 2 5 2 2 ) _112
6 Af 10 A Ay _ Af Ay _ 3 )
uz' —ug' =egb, ug® —uz? =0, uz’® —ug® = )

oA oM =0, @M —gM =0, 9% —g% =0
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Af A7 AF Ay AF Ay
u1+fu1 =0, U1+*U1 = u1+7u1 = )
A} h A} Ay AR Ay
Fall 7: Uyt —uyt =0, uy? —uy? =0, up? —up? =0 (3-113)
’ Af AT A Ay AT Ay
Uzt —uyt =0 Uy? —Uy” = Us® — Uy =
3 3 ) 3 3 ;U 3 )
+ - + = + -
(pAl —¢A1 = —[C?b7 ¢A2 —¢A2 =0, ¢A3 —¢A3 =0 ,
Af AT AF Ay AT Ay
u' —uyt =0, u? —u? =0, u? —u® =0
T AT b Ay AT Ay
Fall 8: Uy' — Uy =0, uy® —uy® =0, Uy® —uy® =0 3-114
ale: Af A7 AF Ay Af Ay (3-114)
ug' —ugt =0, uy® —uy® =0, Ug® —uy® = ,
Af AT AT Ay 0 AT Ay
¢1_¢1707 ¢2_¢27_E2h7 ¢3_¢3 0 )
Af AT Ay Ay Af 5
ul+ —u;t =0, u,l+ —u? =0, 11,1+ —u? = ,
A Ay _ As Ay _ A; Ay _
Fall O: upt —ty’ =0, wt —wpt =0, uwpt —wt =0, (3-115)
. + - + - + -
uA' —uA' =0 uAQ —uA2 =0 s s =0
3 3 = Ust 3° =0 U 37 = )
A A7 A Ay _ A; Ay 0
P =gt =0, 9% —9% =0, 9% —¢% = L5t |

Die Formulierungen der ersten sechs Félle (Gl. (3-107) bis (3-112)) enthalten die gleichen
Verschiebungszwangsbedingungen wie die Gln. (3-54), (3-56), (3-58), (3-60), (3-62) und
(3-64). Die iibrigen Zwangsbedingungen in Gl. (3-107) bis (3-112) beziehen sich auf das
elektrische Potential. Sie sind in allen sechs Féllen von gleicher Form und haben als rechte
Seite den Wert Null.
Die Verschiebungszwangsbedingungen der Fille 7, 8 und 9 haben die gleiche Form mit
einer rechten Seite vom Wert Null. Der Unterschied in den Féllen besteht in verschiedenen
Zwangsbedingungen des elektrischen Potentials.
Wie bereits in Abschnitt 3.3.1 erlautert wurde, sind bei einer RUC mit einem parallelo-
grammformigen Querschnitt andere Randbedingungen als bei einer quaderférmigen RUC
(Rechteckquerschnitt) erforderlich. Hierfiir miissen in den Gln. (3-107) bis (3-112) die Ver-
schiebungszwangsbedingungen durch die Gln. (3-66) bis (3-71) und in den Gln. (3-113) bis
(3-115) die Zwangsbedingungen der elektrischen Potentiale durch die Gleichungen

¢ — M = —EDb

)

Fall 7: A — ¢ = —EPwsin(90 — ) | (3-116)
oh —gh =0,
o' — oM =0
Fall 8: oM — A% = —E%h | (3-117)
¢h — g% =0
P — M =0
Fall 9: oM — 2 =0 | (3-118)

(bAfr _ G)A; — —Egt

ersetzt werden.
Wie im elastischen Fall lassen sich infolge der Giiltigkeit der Stetigkeitsbedingungen aus
Gl. (3-88) und (3-89) die Groken (oy;), (€m), (D;), (E;) durch Randintegrale ausdriicken.
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Fiir () und (E;) gelten zusétzlich die Beziehungen

1
<5kl> = m /ukm +ungdl' = 521 )

" . (3-119)

3.5.1 Imperfekter Phaseniibergang

Wie bereits in Abschnitt 3.4 erwdhnt wurde, kann eine Modellierung eines Kompositwerk-
stoffes unter Einbeziehung imperfekter Phasentibergéinge auf piezoelektrische Materialien
erweitert werden [36], [91], [92], [14]. Im Fall eines zweiphasigen, faserverstirkten Kom-
positwerkstoffes kann sowohl die Phase der Faser als auch die der Matrix piezoelektrische
Eigenschaften aufweisen. Der imperfekte Ubergang ist durch Unstetigkeiten in den physi-
kalischen Grofen gekennzeichnet. Wie im elastischen Fall soll hier ein Modell mit einem
speziellen imperfekten Phaseniibergang behandelt werden, der sich unter einem iiberschau-
baren Aufwand realisieren lésst.

Der spezielle imperfekte Ubergang wird durch die Kopplung von Spannungen mit Ver-
schiebungsdifferenzen beziehungsweise von dielektrischen Verschiebungen mit Differenzen
des elektrischen Potentials beschrieben. Zusétzlich erfiillen die Spannungen und die dielek-
trischen Verschiebungen die Bedingungen aus Gl. (3-89). Im Fall einer zylinderférmigen
Oberfliiche lassen sich die imperfekten Ubergangsbedingungen in Zylinderkoordinaten wie
folgt darstellen [92]

fo-f‘r = U:;7 fove = 07?;7 fo'ﬁz = 0;27 fo" = DE:“U ’ (3_120)
Opp :KfHuT ) UTQ:K5||U’9H7 Oz :KzHqu7 Dr =—-K ||¢||
Zur Erinnerung sei hier noch einmal erwéhnt, dass mit || - || die Differenz einer Grofe ,, - ¢

auf T'yr bezeichnet wird (siehe Abschnitt 3.4).

Der Phaseniibergang (Gl. (3-120)) enthélt neben den Bedingungen aus Gl. (3-74) noch zu-
sétzliche Bedingungen fiir das elektrische Potential und die dielektrischen Verschiebungen.
Diese zusiitzlichen Bedingungen kennzeichnen einen stetigen Ubergang der radialen dielek-
trischen Verschiebung und Unstetigkeiten in dem elektrischen Potential. Die Kopplung der
Gréken erfolgt mit Hilfe des skalaren Parameters K ¥, welcher als Proportionalititsfaktor
dient. Dieser Faktor besitzt die physikalische Einheit [Kapazitit/Flache]. Diese Kopplungs-
gleichung dhnelt der Gleichung eines Kondensators (zum Beispiel eines Plattenkondensa-
tor) aus der Elektrostatik. Hier ist der elektrische Verschiebungsfluss mit der elektrischen
Spannung (Differenz elektrischer Potentiale zweier Punkte eines Mediums) tiber die Ka-
pazitit gekoppelt [102], [4]. Durch Variation des Parameters K% lisst sich die elektrische
Isolierung zwischen Faser und Matrix modifizieren.

Zwischen den Kopplungsgleichungen in Gl. (3-120) besteht keine physikalische Verkniip-
fung. Sie setzen sich jeweils aus rein mechanischen oder elektrischen Gréfsen zusammen.
Diese fehlende Verkniipfung der Grofsen ldsst sich auch im Materialgesetz eines nicht-
piezoelektrischen Materials wiederfinden. Daher wird angenommen, dass der imperfekte
Ubergang als eine sehr diinne Zwischenphase interpretiert werden kann. In Analogie zu
Abschnitt 3.4 werden im Fall einer isotropen Drei-Phasen-Modellierung, wobei die sehr
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diinne Zwischenphase nicht-piezoelektrisch ist, die folgenden Beziehungen in dem imper-
fekten Phaseniibergang verwendet

e BO-7)
"I —2) (1)
K=
f (3-121)
k=<
z ti, )
P
tl

Hier wird mit #! (kl;, = ki, = ki3 = &!) die dielektrische Konstante der isotropen Zwi-
schenphase bezeichnet.

Die effektiven materialbeschreibenden Tensoren eines Kompositwerkstoffes mit dem im-
perfekten Phaseniibergang aus Gl. (3-120) ergeben sich aus den Beziehungen

(i) = Cihalem) — e (Bx)

3 i i 3-122
(D) = il () + k(B 122)
wobel (0;;) und (D;), aufgrund der Giiltigkeit der Stetigkeitsbedingungen aus Gl. (3-89),
mit den Ausdriicken aus den Gln. (3-95) bezichungsweise (3-96) iibereinstimmen. (ej;)
stimmt mit dem Ausdruck aus der Gl. (3-77) iiberein

1 1 1
<5kl> = ﬁ /Ekl dQ + ﬁ/skl dQ + m / ||uk||nl + ||ul||nk dF . (3_123)
of Qm

Cing

Das elektrische Potential ¢ ist auf I'y,; unstetig. Die Komponenten der makroskopischen
elektrischen Feldstérke berechnen sich aus

1
B = g /EidQ+/E,~dQ—/||¢>||nidF : (3-124)

om Tt

Die dritten Terme in den Gln. (3-123) und (3-124) spiegeln den Verzerrungsanteil be-
ziehungsweise den elektrischen Feldstirkeanteil des imperfekten Phaseniibergangs infolge
der Verschiebungs- und Potentialdifferenzen auf I'y,; wider. Die Terme lassen sich auch so
interpretieren, dass sie die jeweiligen Anteile der Zwischenphase Q' aus einer Drei-Phasen-
Modellierung repréasentieren.

Die GroRen (oy;), (D;), (ew) und (E;) lassen sich auch iiber Randintegrale auf I' aus-
driicken. Im Fall von (o;;) und (D;) wird dabei in analoger Weise wie in Abschnitt 3.4 fiir
die Herleitung der Gl. (3-83) vorgegangen. Man erhélt die Beziehungen

1
<Uij> = @/Uiknkyj ar
1 r (3-125)
<Di> = @ /Dknkyi dr
T
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Die Vorgehensweise fiir (e;) und (E;) ist analog wie fiir die Herleitung der Gl. (3-80). Es
ergeben sich die Beziehungen

1
g) = —— T, T
<5kl> 2‘£2| ./Ylkﬂl +ulnkd s
r

) (3-126)
T

Werden im Fall periodischer Mikrostrukturen die Randbedingungen aus Gl. (3-97) auf dem
Rand I einer RUC vorgegeben, erhélt man

1
(ew) = m /ukm +ungdl =€y, |

L . (3-127)
(B) =55 / on

Dies bedeutet, dass durch die Wahl von €° und E° in den Randbedingungen die makro-
skopischen Komponenten (e;;) und (F;) bereits bestimmbar sind.

1P 21873.216.38, am 23:55:08, Inhalt,
tersagt, m ‘mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186346186

4 Modellbildung unter Verwendung der
FEM

Fiir das Losen von Differentialgleichungsproblemen stehen die verschiedensten Methoden
zur Verfiigung. Man unterscheidet zwischen analytischen und numerischen Methoden. In
den Ingenieurwissenschaften iiberwiegt die Verwendung von numerischen Methoden, weil
viele Probleme von komplexer Struktur sind, die nicht mehr analytisch gelést werden kon-
nen.

Die am haufigsten genutzte Methode ist die Finite-Elemente-Methode (FEM, auch Metho-
de der finiten Elemente genannt) [109], [57], [9]. Die Idee dieser Methode besteht darin,
ein zu untersuchendes Gebiet in Teilgebicte (finite Elemente) zu unterteilen und in jedem
Teilgebiet die unbekannte ,,wahre* Losung einer physikalischen Problemstellung mittels ei-
nes Funktionsansatzes zu approximieren. Der Funktionsansatz besteht aus Formfunktionen
und unbekannten Koeffizienten, welche in der klassischen FEM einen Stiitzstellencharak-
ter haben. Es wird nicht das eigentliche Differentialgleichungsproblem geldst, sondern eine
schwache Form (integrale Formulierung), welche sich aus der Differentialgleichung ableiten
lasst, zum Beispiel in Form der Methode der gewichteten Residuen (siehe Abschnitt 2.1).
Die resultierende FEM-Losung, die bei statischen Systemen aus dem Losen eines Glei-
chungssystems herriihrt, unterscheidet sich um einen gewissen Fehler von der exakten Lo-
sung des Problems. Dieser Fehler kann durch eine feinere Diskretisierung des Gebietes oder
durch eine Erhohung des Polynomgrads der Formfunktionen reduziert werden.

Die FEM ist nicht auf ein spezielles Gebiet der Physik beschréankt. Mit ihr lassen sich
zum Beispiel Aufgaben aus der Statik oder Dynamik untersuchen. Ebenso ist es moglich,
Mehrfeldprobleme, die durch gekoppelte DGL-Systeme charakterisiert sind, zu 16sen.

Die in dieser Arbeit betrachteten Problemstellungen werden unter Verwendung der FEM
abgehandelt. Als Hilfsmittel wird die FE-Software ANSY'S verwendet, in welcher die Finite-
Elemente-Methode implementiert ist. Fiir die Modellgenerierung der in dieser Arbeit unter-
suchten spezifischen Anwendungsfélle wird die Syntaxsprache APDL (ANSYS Parametric
Design Language) verwendet.

Zunéchst wird nachfolgend ein kurzer Einblick in die FEM gegeben. Im Anschluss dar-
an wird auf die Uberfithrung der periodischen Randbedingungen und des imperfekten
Phaseniibergangs in ein FE-Modell eingegangen. Es ist das Ziel, automatisierte Berech-
nungsmodelle zu erstellen, mit denen eine Homogenisierung der betrachteten heterogenen
Materialsysteme mdoglich ist.

4.1 Grundlagen der FEM

Wie bereits erwahnt, wird bei der FEM das betrachtete Gebiet in finite Teilgebiete unter-
teilt. Es wird angenommen, dass innerhalb eines jeden Teilgebietes die gesuchte Losung
des gestellten Problems durch einen Néherungsansatz beschrieben wird, in dem unbekann-
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te Parameter enthalten sind, welche diskrete physikalische Losungswerte an Stiitzstellen
des Teilgebietes repriisentieren. Die Stiitzstellen des Elementes werden auch als Knoten
bezeichnet. Es gibt zahlreiche weitere Moglichkeiten fiir die Definition des Naherungsan-
satzes (beispielsweise die p-FEM, die isogeometrische FEM), auf die aber hier nicht nédher
eingegangen werden soll.

In Abb. 4-1 ist ein finites Referenzelement dargestellt. Dieses Element besitzt acht Knoten.
Die diskreten physikalischen Losungswerte werden in der FEM Freiheitsgrade genannt. Je
nachdem, ob die gesuchte Losung skalar oder vektorwertig ist, gibt es fiir jeden Knoten
einen oder mehrere Freiheitsgrade. Fiir ein rdumliches elastisches Problem, bei dem ein Ver-
schiebungsvektor als Losung gesucht wird, besitzt jeder Knoten die drei Verschiebungen in
jeder Raumrichtung als Freiheitsgrade. Somit hat das Element insgesamt 24 Freiheitsgrade.

8

2
Abbildung 4-1: Hexaeder-Element mit acht Knoten

Fiir das dargestellte 8-Knoten-Hexaeder-Element ist der Ndherungsansatz der Losung be-
ziehungsweise der Komponenten des Losungsvektors durch eine trilineare Polynomfunktion
(Polynomgrad 1) gegeben.

Es lassen sich auch Elemente mit hoheren Polynomgraden definieren. Eine Erhshung des
Polynomgrads hat im Allgemeinen eine Erhohung der Anzahl der Knoten und somit der
Freiheitsgrade des Elementes zur Folge. Die zusétzlichen Knoten kénnen sich auf den Kan-
ten, den Flachen und auch im Inneren des Elementes befinden. Zu den bekanntesten Ele-
menten in der FEM gehoren die LAGRANGE-Elemente und die Serendipity-Elemente.
Waihrend bei LAGRANGE-Elementen die Knoten eines Polynomansatzes sich auf den Kan-
ten, auf den Seitenflichen und im Inneren des Elementes befinden kénnen, liegen die Kno-
ten bei Serendipity-Elementen grundsétzlich auf den Elementkanten [3]. Die Serendipity-
Elemente sind héufig in kommerzieller FE-Software implementiert.

Im Allgemeinen kann der Verschiebungsansatz eines rdumlichen elastischen Problems (sie-
he Abschnitt 2.1) fiir ein Element mit N Knoten beschrieben werden durch

~i.e

u§ Ne Uy
w=|u | =D N @ | = Noae o, (4-1)
u§ =1 T
wobei gilt
N 0 0 -+ Nye O 0
Ny=| 0 N O -+ 0 Ny O , (4-2)
0 0 N -+ 0 0 Ny
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= . (4-3)

Die Matrix N¢ beinhaltet die Formfunktionen I;, welche spezielle Funktionen sind, die
am Knoten 7 ihren maximalen Funktionswert annehmen. Fiir das in Abb. 4-1 dargestellte
Element haben die Formfunktionen bezogen auf ein lokales Elementkoordinatensystem
{&1,&2,&} die folgende Gestalt [3]

Ni= S+ 6E) 1+ G&)(1 +Euky), i=1 N, (1)

wobei &1;, £9; und &3; die natiirlichen Koordinaten des Knotens ¢ sind.
Der Vektor 4 beinhaltet als Komponenten die Knotenfreiheitsgrade, deren Anzahl im Fall
des Hexaeder-Elementes 24 betrigt.
Setzt man den Ansatz aus Gl. (4-1) in die Gl. (2-23) eines elastischen Variationsproblems
bezogen auf den Volumenbereich des Elementes €2¢ ein und werden fiir die Testfunktionen
der Ansatz

v=Niv® | (4-5)

u

gewahlt, wobei der Vektor v¢ beliebige Werte beinhalten kann, so erhélt man folgende
Gleichung

(V)K= (V)TF, (4-6)
Da die Gl. (4-6) fiir beliebige v gelten soll, ergibt sich daraus das Gleichungssystem
Kfmﬁe = FZu . (4_7)
Hierbei sind
K¢, = / BICB, dQ (4-8)
e
die Elementsteifigkeitsmatrix mit
B, = VN¢ | (4-9)
und
Fe, = / (NS)TFdQ + / (N)Tpdl (4-10)
Qe e

der Elementlastvektor, welcher sich aus dem Anteil der Volumenlasten und dem Anteil
der Oberfldchenlasten zusammensetzt. Mit Hilfe der Gl. (4-6) 1ésst sich fiir das Gebiet €,
welches durch eine endliche Anzahl M an finiten Elementen diskretisiert ist, ein Gesamt-
system assemblieren. Unter der Verwendung einer elementweisen Zuordnungsmatrix L€,

mit

e e

<
I

< =

’ (4-11)

)

L
e Le
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die die lokalen Knotennummern eines jeden Elementes den globalen Knotennummern im
Gesamtsystem zuordnet und als Komponenten die Werte 1 oder Null besitzt, folgt

(N TK it = (V) F,, . (4-12)
Hierbei sind
M
Ku,u, — Z(Le,i)TKiﬁLe,i (4_13)
i=1
und
M
Fo.= Z(Le’i)TFZﬁ (4'14)
i=1

die Gesamtsteifigkeitsmatrix beziehungsweise der Lastvektor des Gesamtsystems.
Infolge der Beliebigkeit der Komponenten von v ergibt sich

Kuuﬁ =Fu . (4—15)

Im Fall einer piezoelektrischen Problemstellung besitzt das Hexaeder-Element aus Abb. 4-1
in jedem Knoten als zusétzlichen Freiheitsgrad das elektrische Potential. Der Losungsansatz
aus Gl. (4-1) wird um den Ansatz fiir das elektrische Potential

1
¢6:N;¢62(N1 NS) s (4—16)
®s
erweitert. Durch Einsetzen der Losungsansitze Gl. (4-1), Gl. (4-16) sowie der Testfunktio-
nen Gl (4-5) und
w® = Ngw* (4-17)

in die Gl. (2-38) fiir ein piezoelektrisches Variationsproblem ergibt sich analog zu Gl. (4-7)
das folgende erweiterte Gleichungssystem

K;u K;q& l;l‘: — Fiu _
(o 5 ) (5 )=(F2) (#18)

Hierbei sind

o= /BZéTB¢ Qe (4-19)

Qe
Kj, = / Bl kB, dQ (4-20)

Qe
o= [Noraar (421)

rs,
wobei

B, = V4N, (4-22)
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ist. Die verbleibenden Teilmatrizen entsprechen denen des rein elastischen Problems. Es
lasst sich wie im elastischen Fall ein piezoelektrisches Gesamtsystem der Form

Kuu Kué a Fuu
N = 4-23
(Kw —K¢¢>(¢> (Fao) (23)
aufstellen, wobei die Teilmatrizen K., K¢, K4y beziehungsweise F,,, F 4, aus der Assem-
blierung der Elementbeitrége analog zu den Gln. (4-13) beziehungsweise (4-14) entstehen.

4.2 Periodische Randbedingungen

In Abschnitt 4.1 sind exemplarisch ausgewéhlte mathematische Modelle aus der Mechanik
in FE-Modelle iiberfiihrt worden. Dabei ist jedoch ein Aspekt bei der Uberfithrung unbe-
riicksichtigt geblieben. Es wurde angenommen, dass die gesuchte Losung die DIRICHLET-
Randbedingungen bereits erfiillt. In dem présentierten Weg, das FE-Gesamtsystem aus
einer Elementassemblierung aufzubauen, sind die DIRICHLET-Randbedingungen noch
nicht eingearbeitet, was dazu fiithrt, dass die Gesamtsteifigkeitsmatrix singulér ist. Erst
nach einer Einarbeitung der Randbedingungen ergibt sich ein Gleichungssystem, bei dem
die Steifigkeitsmatrix regulér wird und das System eine eindeutige Losung besitzt.

Die Einarbeitung von Rand- oder Zwangsbedingungen kann durch verschiedene Me-
thoden erfolgen. Die Methode der LAGRANGEschen Multiplikatoren und die Penalty-
Methode sind zwei weit verbreitete Verfahren. Hierbei werden die schwachen Formulie-
rungen mit zusétzlichen integralen Ausdriicken versehen, die eine Erweiterung des FE-
Gesamtgleichungssystems (Methode der LAGRANGESsche Multiplikatoren) beziehungswei-
se eine Platzierung von Straftermen in der Gesamtsteifigkeitsmatrix und in der dazugeho-
rigen Komponente der rechten Seite des Gleichungssystems (Penalty-Methode) zur Folge
haben. Eine weitere weit verbreitete Technik zum Beriicksichtigen der Randbedingungen
ist die direkte Manipulation im Gesamtgleichungssystem zum Beispiel durch das Strei-
chen von Zeilen und Spalten bei homogenen DIRICHLET-Randbedingungen. Genauere
Informationen iiber die Techniken sind zum Beispiel in [32], [27], [109] und [110] zu finden.

Elastisch

Die periodischen Randbedingungen, welche im Rahmen der Homogenisierung zum Bestim-
men der effektiven Materialeigenschaften verwendet werden, sind in Abschnitt 3.3 aus-
fithrlich dargestellt. Diese Bedingungen spiegeln sowohl einen stetigen und periodischen
Losungsverlauf beim Ubergang von einer RUC zu ihren Nachbarn als auch eine makro-
skopische Belastung wider. Die Randbedingungen aus Gl. (3-50) werden dabei in eine
geeignetere Darstellung fiir eine FE-Modellierung, Gl. (3-51), tiberfiihrt. Diese Darstellung
ist durch die Angabe von Verschiebungsdifferenzen auf sich gegeniiberliegenden Réndern
charakterisiert. Bei der Anwendung der FEM werden die Randbedingungen durch eine
endliche Anzahl von numerischen Zwangsbedingungen ersetzt. Diese Zwangsbedingungen
lassen sich im elastischen Fall durch Verschiebungsdifferenzen an den Knoten der fini-
ten Elemente ausdriicken. Das bedeutet, dass die Differenzen der Verschiebungsfunktionen
durch Differenzen der Verschiebungsfreiheitsgrade auf den Réndern ersetzt werden. Dies
setzt natiirlich voraus, dass die Diskretisierung sich gegeniiberliegender Réander identisch
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ist. Dies ist ein wichtiger Bestandteil bei der Realisierung der Randbedingungen. Die nu-
merischen Zwangsbedingungen haben die Form

n _

it -t = (4-24)

Auf der linken Seite der Gleichung steht die Differenz eines Verschiebungsfreiheitsgrades
+

112-A * | zugehérig zur Randfliche A}, mit dem entsprechenden Freiheitsgrad der gegeniiber-

liegenden Randfléache A, . Der konstante Wert C' auf der rechten Seite entspricht dem Wert,

der sich aus der rechten Seite der Gl. (3-51) ergibt.

Abbildung 4-2: Schematische Darstellung der Knotenpaarungen der Zwangsbedingungen fiir
die Flachen (ohne Kanten- und Eckknoten der RUC)

Abbildung 4-3: Schematische Darstellung der Knotenpaarungen der Zwangsbedingungen fiir
die Kanten
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Pansye

/

Abbildung 4-4: Schematische Darstellung der Knotenpaarungen der Zwangsbedingungen fiir
die Eckknoten

In Abb. 4-2 bis 4-4 ist schematisch die Paarung der Knotenfreiheitsgrade zum Aufstel-
len der Zwangsbedingungen dargestellt. Es ist erkennbar, dass fiir die Generierung der
Zwangsbedingungen eine Einteilung des Randes der RUC durchgefiihrt wird. Diese Eintei-
lung bezieht sich auf die Knoten und die damit verbundenen Verschiebungsfreiheitsgrade.
Der Rand wird in die Mengen Sy, Sg und Sg eingeteilt, die die Eckknoten, die Kanten-
knoten beziehungsweise die Flachenknoten erfassen. Es wird dabei beriicksichtigt, dass die
Mengen Sy, Sk und Sy paarweise disjunkt sind, also das Sy NSg = 0, Sy N Sp = () und
SeNSk = 0 gilt. Die Vereinigung der Knotenmengen Sy, Sg und Sg entspricht dann gerade
der Gesamtanzahl aller Knoten auf dem Rand der RUC.

Wie schon in Abschnitt 3.3 erwdhnt wurde, ist neben den Randbedingungen noch die zu-
sétzliche Fixierung eines materiellen Punktes der RUC erforderlich. Dies kann durch die
Vorgabe aller Verschiebungsfreiheitsgrade eines Knotens aus dem diskretisierten Modell
gewahrleistet werden. Die Wahl des Knotens und die Werte der Fixierung haben keinen
Einfluss auf die Ermittlung der effektiven Eigenschaften. Mit anderen Worten heifst das,
dass die effektiven Eigenschaften invariant gegeniiber der Knotenwahl und der Fixierung
der Freiheitsgrade sind.

Piezoelektrisch

Im Fall einer piezoelektrischen Modellierung werden die periodischen Randbedingungen
analog zum elastischen Fall nach den dargestellten Schemata in Abb. 4-2 bis 4-4 definiert.
Somit erhélt man fiir alle Knotenpaarungen auf dem Rand der RUC jeweils vier Typen
von Zwangsbedingungen. Durch den zusétzlichen Freiheitsgrad des elektrischen Potentials
in der Modellierung ist darauf zu achten, dass die Fixierung eines beliebigen Knotens der
RUC ebenfalls um diesen Freiheitsgrad erweitert werden muss.

4.3 Bestimmen der makroskopischen Grofsen

Um die effektiven Materialeigenschaften berechnen zu kénnen, werden im elastischen Fall
die makroskopischen Spannungen und Verzerrungen benétigt (siehe Gl. (3-11) oder (3-13)).
Infolge der FE-Modellierung werden diese Gréfen numerisch berechnet. Im Fall eines Mo-
dells mit einem perfekten Phaseniibergang ergeben sich die makroskopischen Spannungen
und Verzerrungen aus

M
1 I
(Or)e = 57— D001, k=16 , (4-25)
Zl |Qeid| =1

1P 21873.216.38, am 23:55:08, Inhalt,
tersagt, m ‘mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186346186

60 Modellbildung unter Verwendung der FEM

M
<5k>*=%25;vi|96>i|., k=1,---,6 . (4-26)
Z ‘Qe,i‘ i=1
i=1
Hierbei sind 6,?, 521 (in M-V-Notation) und |Q¢¢| die abgeleiteten Elementspannungen,
die Elementverzerrungen beziehungsweise das Elementvolumen. In Worten heifit das zu-
sammengefasst, dass sich die makroskopischen Grofsen aus der Summe der einzelnen ge-
wichteten Elementgrofen ergeben. Die Wichtungsfaktoren sind durch die jeweiligen Ele-
mentvolumenanteile gegeben. Die Elementspannungen und -verzerrungen werden aus den
jeweiligen Grofien der beteiligten Knoten des Elements gemittelt.

Piezoelektrisch

In Analogie zu einem elastischen Modell werden bei einem piezoelektrischen Modell die
zusétzlichen makroskopischen Grofen der dielektrischen Verschiebung und der elektrischen
Feldstéarke wie folgt berechnet

M
1 i e
<Dk‘>* = ™ § D}?’L|Szeyt|7 k= 17 21 3 I (4_27)
; |Qei| =1

M
1 e,i|ye,i
(Biye = ——— > BQ%, k=1,2,3 . (4-28)
> Qo] =1
i=1

4.4 Imperfekter Phaseniibergang

In Abschnitt 3.4 ist ein mathematisches Modell fiir den imperfekten Phaseniibergang be-
schrieben worden. Dieser Phaseniibergang wird im Folgenden in ein geeignetes FE-Modell
iiberfiihrt. Da auf eine FE-Software (ANSYS) zuriickgegriffen wird, ist man hinsichtlich
der Nutzung eingeschriinkt. Im idealen Fall wird der imperfekte Ubergang durch ein fini-
tes Element beschrieben. In [76] wird fiir den zweidimensionalen Fall eine Elementmatrix
abgeleitet, die den imperfekten Ubergang beschreibt. Diese Matrix wird im Rahmen der
FEM beim Aufstellen des globalen Gesamtsystems beriicksichtigt. Fiir detaillierte Infor-
mationen wird auf den Artikel [76] verwiesen.

Die FE-Beschreibung des imperfekten Phaseniibergangs bei einer rein elastischen Problem-
stellung erfolgt in dieser Arbeit durch Federelemente. Bezogen auf die FE-Software ANSYS
wird der Elementtyp COMBIN14 verwendet. Die Phasen werden mit Hilfe von linearen
Hexaeder- und Pentaeder-Elementen (Abb. 4-1, Formfunktionen haben den Polynomgrad
1) diskretisiert. Des Weiteren wird vorausgesetzt, dass auf den Randflachen der Phasen,
die fiir die Ubergangsbeschreibung relevant sind, eine Knotenanordnung der diskretisier-
ten Matrix- und Faserphase derart realisiert wird, dass sich zu jedem Knoten der Matrix-
ein Knoten der Faserphase finden lasst, der die gleiche geometrische Position besitzt. Das
verwendete Federelement ist durch die folgende eindimensionale Gleichung charakterisiert

F =K@ —4') (4-29)
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wobei j ein Knoten der Matrixphase und ¢ der entsprechende Faserknoten sind. Mit F' und
K*¢ werden die Federkraft beziehungsweise die Federsteifigkeit bezeichnet. In Anlehnung
an die Gl. (3-74) werden pro Knotenpaar im dreidimensionalen Fall drei Federelemente
verwendet, die jeweils durch ein Kraftgesetz beschrieben sind. Diese sind durch

o= K" u .,
Fy = K5 ||ugll, (4-30)
F, = K7*|Ju.||«
gegeben. Mit || - ||, wird in Analogie zu || || (siche Abschnitt 3.4) die Differenz von Verschie-

bungsfreiheitsgraden bezeichnet. Die Parameter K%, i = r, 0, z sind die Federsteifigkeiten,
welche iiber die Beziehungen [105]

K =K:A" i=r0,z (4-31)

mit den imperfekten Kontaktparametern aus Gl. (3-74) in Relation stehen. Die Grofe A™
bezeichnet den auf den Knoten n bezogenen resultierenden Flécheninhalt aus der Diskre-
tisierung der Kontaktoberfliche einer der beiden Phasen (siche Abb. 4-5). Der Knoten n
ist sowohl einem Volumenelement als auch einem Federelement zugeordnet.

n

Abbildung 4-5: Ausschnitt der diskretisierten Kontaktoberflache der Faser mit linearen
Elementen (ein Element in Faserlangsrichtung) mit Markierung des Flicheninhalts A™

Unter der Annahme, dass die FE-Diskretisierung der Faserphase geometrisch durch ein
Prisma mit der Grundfldche eines gleichseitigen Polygons reprasentiert wird und in Faser-
langsrichtung die Elementunterteilung 1 betrédgt, ist der Fliacheninhalt A™ durch

A" = rftsin <1> (4-32)

Ces

gegeben, wobei die Groken rf, ¢ und c.; den Faserradius, die Faserlinge beziehungsweise die
Anzahl der Eckknoten des Polygons beschreiben. Zur Herleitung der Gleichung kann die
Abb. 4-6, in der ein exemplarischer Querschnitt eines Prismas dargestellt ist, verwendet
werden. Es ist zu bemerken, dass fiir die Giiltigkeit der Gleichung vorausgesetzt wird, dass
sich der diskretisierte Faserquerschnitt komplett innerhalb des RUC-Querschnitts befindet.
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a=180%c,,

>
al2

Abbildung 4-6: Querschnitt eines Prismas (gleichseitiges Hexagon) mit Kantenlinge a und
Ces =6

Dies gilt zum Beispiel fiir eine RUC, bei der sich der Faserquerschnitt zentriert im RUC-
Querschnitt befindet (siche Abb. 4-7). Wird stattdessen eine RUC betrachtet, bei der
die Fasergeometrie geteilt ist, so ist die Gl. (4-32) nicht uneingeschrinkt auf alle Kno-
ten anwendbar. Knoten, die sich auf dem Querschnittsrand der RUC befinden, wird ein
Fléacheninhalt zugeordnet, der durch

At = %rft sin (1) (4-33)

cCS
gegeben ist. Den restlichen Knoten wird der Flécheninhalt nach Gl. (4-32) zugeordnet. Fiir
die Berechnung der gemittelten Spannungen und Verzerrungen wird wie im vorherigen
Abschnitt 4.3 vorgegangen. Die makroskopischen Grofsen werden numerisch berechnet.
Fiir die makroskopischen Spannungen (siche Abschnitt 3.4 Gl. (3-77)) wird die Gl (4-25)
verwendet. Die makroskopischen Verzerrungen ergeben sich aus

Mt Mm
1 i i ~e,m,i|ye,m,i
Er)e= o [ oMot + Y s+ R, k=1, .6 (4-34)
S Qe \i=t i=1
i=1
mit
2¢es
> lugllneA®,  falls k=1,2,3
Sees
D Ugllns + fusllonn) A%, falls k=4,
R=q % (4-35)
Z (luglleng + ||ugllxne) A°, falls k=5
e
D (ugllens + [[ugllona) A°, - falls k =6
o=1

Die Grofen MY, M, |Qeb| |Qemi| | |lug]l, und ng, k = 1,2, 3 bezeichnen die Elementanzahl
der jeweiligen Phase (Faser oder Matrix), das Elementvolumen der jeweiligen Phase, die
Differenzen der kartesischen Verschiebungsfreiheitsgrade der Knotenpaarung, welche den
Knoten o beinhaltet, und die Komponenten des dufseren Normalenvektors der Faser. Mit
M wird die Summe von M und M™ bezeichnet.
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L/ N

O O

D (]

Abbildung 4-7: Unterschiedliche RUC-Querschnitte, links: Faser zentriert in der RUC, rechts:
geteilte Fasergeometrien an den RUC-Ecken

Piezoelektrisch

In Abschnitt 3.5.1 sind die Modellierungsbedingungen fiir den imperfekten Phaseniibergang
unter Beriicksichtigung piezoelektrischer Materialien beschrieben worden. Dieser Ubergang
ist gekennzeichnet durch unstetige Verldufe der Verschiebungen und des elektrischen Po-
tentials. Fiir eine Uberfithrung des Phaseniibergangs in eine FE-Beschreibung werden Fe-
derelemente verwendet, die den elastischen Anteil des Ubergangs widerspiegeln. Fiir den
elektrischen Anteil werden die Phasen durch Elemente gekoppelt, die Kondensatorcha-
rakter haben [82]. Fiir die numerische Modellierung werden die Phasengeometrien durch
lineare Hexaeder- und Pentaeder-Elemente diskretisiert. Die Kontaktflichen der Phasen
besitzen eine identische Knotenverteilung.

Die Umsetzung des imperfekten Phaseniibergangs bei einer piezoelektrischen Problemstel-
lung erfolgt bezogen auf die Softwareanwendung ANSYS durch COMBIN14-Elemente und
CIRCU94-Elemente. Der Elementtyp COMBIN14 spiegelt den elastischen Anteil des im-
perfekten Phaseniibergangs wider. Der Elementtyp CIRCU94, welcher ein Zwei-Knoten-
Element beschreibt, spiegelt den elektrischen Anteil des Phaseniibergangs wider. Dieses
Element besitzt die Moglichkeit, ein kondensatordhnliches Verhalten zu simulieren

Q=K ('~ ) . (4-36)
Hiebei sind Q, K** und (q;’ — ¢ ) die elektrische Ladung, die Kapazitdt beziehungsweise
die Differenz der elektrischen Knotenfreiheitsgrade, die das elektrische Potential représen-
tieren. In Anlehnung an die Gl. (3-120) werden pro Knotenpaarung drei Federlemente und
ein Kondensatorelement verwendet. Diese werden beschrieben durch

Fo= K ulls

By = K; ). f
*e 4-37

F. = K2 . ol

Q= Kol

Wiahrend ||u;||«, @ = 7,0, z die Verschiebungsdifferenz von Matrix zu Faser widerspiegelt,
kennzeichnet [|¢||« die elektrische Potentialdifferenz von Faser zu Matrix. Die Parameter
K}* sind die Federsteifigkeiten, die iiber die G1.(3-74) gegeben sind. Fiir den Parameter
K*F gilt die Beziehung

K~P = KFAr (4-38)

Die Grofe A" ist der Flicheninhalt der zum Knoten n gehérenden Kontaktoberflache (siehe
Abb. 4-5).
Fiir die Bestimmung der makroskopischen Grofsen, die fiir die Berechnung der effektiven
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Materialeigenschaften benotigt werden, wird wie in den vorherigen Abschnitten vorgegan-
gen. Die Integrale werden numerisch ermittelt. Die makroskopischen Spannungen und die
dielektrischen Verschiebungen ergeben sich aus den Gln. (4-25) und (4-27). Die makro-
skopischen Verzerrungen (&), bei denen die Verschiebungsunstetigkeit beachtet werden
muss, berechnen sich aus Gl. (4-34). Fiir die makroskopischen Komponenten der elektri-
schen Feldstarke, welche aus Gl. (3-124) folgen, wird die folgende Gleichung verwendet

va Mm
1 efi|ye,f,i e,m,i | ye,m,i
(Ek%:Mi_ D BRI Y T Ept|aemi| + RP (4-39)
Z |Qe,1,| =1 i=1
i=1
mit
2ces
RE =3 |6l . (4-40)
o=1
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5 Berechnung effektiver
Materialeigenschaften

Dieses Kapitel befasst sich mit der Berechnung und der Auswertung der effektiven Materia-
leigenschaften von Faserverbundwerkstoffen mit Hilfe der in Kapitel 3 néher beschriebenen
Homogenisierungsmodelle unter Nutzung einer RUC. Es werden der Einfluss der Faserver-
teilung und der Einfluss des imperfekten Phaseniibergangs auf die effektiven Koeflizienten
untersucht.

Die Homogenisierungsmodelle werden mit anderen Modellen aus der Literatur hinsichtlich
der berechneten Koeffizienten verglichen und bewertet. Die verwendeten Materialkompo-
nenten fiir die betrachteten Verbundwerkstoffe werden dabei Literaturquellen entnommen.
In einigen Fillen basiert die Beschreibung auf fiktiven Ausgangsstoffen oder lediglich auf
Verhéltnisangaben von Materialeigenschaften von Faser zu Matrix.

In [7], [22], [49] und [31] sind fiir verschiedene Werkstoffe Materialkonstanten angegeben.
Beispielsweise liegt der Wert des Elastizitatsmoduls fiir einige Metalle/Metalllegierungen
im zwei- bis dreistelligen GPa-Bereich. Fiir Epoxidharze liegt der Wert im einstelligen GPa-~
Bereich. Die Elastizitatsmoduln fiir Kohlenstofffasern kénnen je nach Herstellungsprozess
Werte im zweistelligen bis hohen dreistelligen GPa-Bereich annehmen [77]. Das bedeutet,
dass sich Materialkennwerte von Phasen um das Hundertfache oder héher unterscheiden
koénnen. In den nachfolgenden Berechnungsmodellen kann es vorkommen, dass die verwen-
deten fiktiven Phasen des Verbundwerkstoffes in einigen Fillen durch einen Unterschied
des Schubmoduls von bis zu 120 charakterisiert werden. Da die physikalische Beschreibung
der Berechnungsmodelle linear ist, lassen sich trotzdem grundlegende Aussagen aus den
Berechnungsmodellen auf heterogene Werkstoffmodelle mit realen Ausgangsstoffen iiber-
tragen.

Zum Anfang des Kapitels wird der Einfluss unterschiedlicher Randbedingungsarten auf
die effektiven Materialeigenschaften untersucht. Im ersten Abschnitt werden Berechnungs-
modelle fiir rein elastische Faserverbundmaterialien behandelt. Die periodische heterogene
Mikrostruktur wird so verdndert, dass Verbundwerkstoffe mit verschiedenen Faservertei-
lungen entstehen, die Periodizitdt der RUC aber dennoch gewahrleistet bleibt. Es werden
RUC-Modelle mit einem rhombus- beziehungsweise parallelogrammférmigen Querschnitt
verwendet. Des Weiteren werden die Eigenschaften des Phasenkontaktes variiert und de-
ren Einfluss auf die effektiven Koeffizienten untersucht. Im letzten Abschnitt werden Be-
rechnungsmodelle fiir Verbundwerkstoffe behandelt, bei denen die Fasern piezoelektrische
Eigenschaften besitzen.

Ein Einblick in den Einfluss der Netzfeinheit auf die Berechnung der effektiven Materialei-
genschaften ist im Anhang B zu finden.
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Einfluss der Randbedingungen auf die Ergebnisse

Im Allgemeinen wird in Homogenisierungsmodellen Bezug auf ein RVE genommen. Dabei
sollte das RVE eine ausreichende Anzahl an heterogenen Einschliissen beinhalten, damit es
als repriisentativ gilt, weil reale Kompositwerkstoffe in der Regel eine zuféllige heterogene
Einschlussverteilung aufweisen.

Die in dieser Arbeit entwickelten Berechnungsmodelle zum Bestimmen der effektiven Ma-
terialeigenschaften von Verbundwerkstoffen basieren auf der Annahme, dass der heterogene
Strukturaufbau des Kompositwerkstoffes periodisch ist. Das bedeutet, dass das RVE durch
eine RUC beschrieben werden kann.

Im Folgenden wird fiir den elastischen Fall der Einfluss unterschiedlicher Randbedingungen
in Kombination mit einer variierenden RVE-Grofe auf die berechneten effektiven Materi-
aleigenschaften exemplarisch an C¢f, niiher untersucht. Dies gibt einen Einblick, ab wann
ein RVE mit den linearen Verschiebungsrandbedingungen oder den homogenen Spannungs-
randbedingungen als reprisentativ gelten kann.

Es wird ein unidirektionaler Faserverbundwerkstoff betrachtet, dessen periodische Mi-
krostruktur durch eine RUC mit einem quadratischen Querschnitt widergespiegelt wird
(siehe Abb. 5-1). Die Faser ist zentral in die RUC eingebettet. Um die Rechenzeit und den
Modellierungsaufwand gering zu halten, werden 2-D-Berechnungsmodelle verwendet.

Die verwendeten Randbedingungen sind die linearen Verschiebungsrandbedingungen und
die homogenen Spannungsrandbedingungen entsprechend Gl. (3-15) sowie die periodischen
Randbedingungen nach Gl. (3-22).

Abbildung 5-1: RUC (a = 90°) mit einem quadratischen Querschnitt und einer zentriert
eingebetteten Faser

Fiir die Phasen des Kompositwerkstoffes werden fiktive isotrope Materialien benutzt, wobei
deren Eigenschaften durch den Schubmodul G und die Querkontraktionszahl v gegeben
sind (siehe Tabelle 5-1). Es werden zwei unterschiedliche Faservolumenanteile betrachtet,
0.4 und 0.7.

Tabelle 5-1: Materialtabellen mit (a) kleinem Schubmodulverhéltnis, (b) grofem
Schubmodulverh&ltnis

Phase | Gin [GPa] | v Phase | Gin [GPa] | v

Matrix 1 0.35 Matrix 1 0.35

Faser 10 0.2 Faser 120 0.2
(a) (b)
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Abbildung 5-2: Unterschiedliche RVE-Grofen: links: RVE besteht aus einer RUC, mitte: RVE
besteht aus 3 x 3 RUCs, rechts: RVE besteht aus 5 x 5 RUCs

Es wird angenommen, dass entweder ein ebener Verzerrungszustand oder ein ebener Span-
nungszustand vorliegt. Im Fall der ebenen Verzerrung werden die linearen Verschiebungs-
randbedingungen oder die periodischen Randbedingungen verwendet. Im Fall der ebenen
Spannung werden die homogenen Spannungsrandbedingungen genutzt. Diese unterschied-
lichen Zustinde gewéhrleisten nur eine makroskopische Nicht-Null-Komponente der Ver-
zerrungen (ebener Verzerrungszustand) beziehungsweise eine makroskopische Nicht-Null-
Komponente der Spannungen (ebener Spannungszustand). Die effektiven Materialeigen-
schaften lassen sich dann aus einer zweidimensionalen Formulierung der Gl. (3-13) oder
GL. (3-14) ableiten.

Die entwickelten Berechnungsmodelle lassen sich unter Verwendung der FEM so veréndern,
dass die Grofke des RVE-Bereiches erhéht werden kann. Angefangen wird mit einem RVE
mit einem Fasereinschluss, was der kleinsten RUC entspricht. Die RVE-Betrachtung wird
dann in y;- und y»-Richtung um jeweils eine weitere RUC erweitert. Das bedeutet, dass
sich das RVE nach der ersten Erweiterung aus vier RUCs zusammensetzt. Der betrachtete
Verbundwerkstoff veréndert sich dadurch nicht. In Abb. 5-2 sind exemplarisch verschiedene
RVE-Grofen dargestellt.

00 09 OO0
950 950 OO0
OS5 Pso
00 OO0 OO0

Abbildung 5-3: Skizziertes Verformungsbild eines RVE bestehend aus 3 x 3 RUCs, links:
Periodische Randbedingungen, mitte: Lineare Verschiebungsrandbedingungen, rechts: Homogene
Spannungsrandbedingungen

Fiir die FE-Diskretisierung werden lineare Viereck- und Dreieck-Elemente verwendet. Die
Elementkantenldnge wird auf ein Zehntel der Breite der RUC festgelegt, da nicht die Ge-
nauigkeit, sondern der Vergleich der effektiven Elastizitdtskoeffizienten der unterschiedli-
chen Randbedingungsmodellierungen im Vordergrund steht. Des Weiteren bleibt zusétzlich
der Berechnungsaufwand, der sich mit jeder RUC-Erweiterung erhoht, {iberschaubar. Die
FE-Diskretisierung eines aus mehreren RUCs bestehenden RVE erfolgt durch das Kopie-
ren des FE-Netzes einer einzigen RUC. Die linearen Verschiebungsrandbedingungen, die
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homogenen Spannungsrandbedingungen und die periodischen Randbedingungen werden
durch das Festlegen von Verschiebungsfreiheitsgraden, das Aufbringen von Knotenlasten
beziehungsweise durch Zwangsbedingungen realisiert.

In Abb. 5-4 und 5-5 sind die normierten Koeffizienten Cfl, beziiglich unterschiedlicher
Randbedingungen und Phaseneigenschaften dargestellt. Die effektiven Koeffizienten sind
im Fall der linearen Verschiebungsrandbedingungen mit ,LVRB®, im Fall der homogenen
Spannungsrandbedingungen mit ,,USRB“ und im Fall der periodischen Randbedingungen
mit ,per. RB* gekennzeichnet. Die Normierung erfolgt anhand der Koeffizienten bei peri-
odischen Randbedingungen. Im Fall der periodischen Randbedingungen hat die Grofe der
RVE (Anzahl der RUCs) keinen Einfluss auf die effektiven Elastizititskoeffizienten.

Aus den Abbildungen erkennt man, dass die Werte bei linearen Verschiebungsrandbedin-
gungen grofker sind im Vergleich zu den Werten bei periodischen Randbedingungen. Die
linearen Verschiebungsrandbedingungen verformen das RVE derart, dass die Randflichen
eben bleiben (sieche Abb. 5-3). Dieser Zwang ist verantwortlich dafiir, dass die effektiven
Koeffizienten ein ,steiferes* Materialverhalten charakterisieren. Mit einer zunehmenden
Anzahl an Einheitszellen innerhalb des RVE ist eine Tendenz zu den Ergebnissen bei pe-
riodischen Randbedingungen erkennbar. Dies ist dadurch erkldrbar, dass sich durch die
RVE-Vergroferung (Erhohung der Anzahl der RUC) der Einfluss der Randbedingungen
auf die Spannungen und Verzerrungen im Inneren des RVE reduziert. RUCs, welche im
ausreichenden Abstand zum Rand liegen, besitzen eine fast identische Spannungs- und
Verzerrungsverteilung.

1.35 ‘
—~©—per. RB, V=0.4
1308 -O-per. RB, V=0.7 |
) —~B-LVRB, V=04
1.25¢ " -B-LVRB, V=07 ]
\ ——USRB, v'=0.4
o 120 \ -9-USRB, v’=0.7 ||
RS '
[@]
. 1.15¢
3
2
1.4F
1.05¢
1F
0.95 : ‘ : :
0 2 4 6 8 10

Abbildung 5-4: Vergleich von C$f, zu unterschiedlichen Randbedingungen mit variierendem
RVE, bestehend aus N x N RUCs, verwendetes Koordinatensystem {y1,y2, s},
Schubmodulverhiltnis Gf/G™ = 10
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Abbildung 5-5: Vergleich von C{f}, zu unterschiedlichen Randbedingungen mit variierendem
RVE, bestehend aus N x N RUCs, verwendetes Koordinatensystem {y1,y2,y3},
Schubmodulverhiltnis Gf/G™ = 120

Bei homogenen Spannungsrandbedingungen kann sich der RVE-Rand frei verformen. Durch
den Zwang der homogenen Randspannungen werden im Vergleich zu den periodischen
Randbedingungen effektive Koeffizienten ermittelt, die ein ,weicheres* Materialverhalten
charakterisieren. Mit einer zunehmenden RVE-Grofe wird auch hier der Einfluss der Rand-
bedingungen auf die inneren RUCs kleiner. Es stellen sich fast identische Spannungs- und
Verzerrungsfelder ein. Die effektiven Koeffizienten nahern sich daher asymptotisch den Er-
gebnissen bei periodischen Randbedingungen an.

Die Hohe der Abweichung der effektiven Koeffizienten bei linearen Verschiebungsrandbe-
dingungen beziehungsweise bei homogenen Spannungsrandbedingungen zu den Koeffizien-
ten bei periodischen Randbedingungen ist abhéngig vom betrachteten Faservolumenanteil
und dem Materialverhiltnis der Phasen (siehe dazu Tab. 5-2). Die in der Tab. 5-2 présen-
tierten prozentualen Abweichungen ergeben sich aus der Formel

Ciaiy — Chap 8

diffl = — oy 100% =, IVRB*, USRB" . (5-1)

1212

Dic Grogen CSIELVEE  GelLUSRE g oefhber BB onngeichnen die berechneten Koeffizienten
zu den drei verschiedenen Randbedingungen. Es wurde ein RVE verwendet, das sich aus
100 (10 x 10) RUCs zusammensetzt.

Auf Grundlage der Berechnung von Cflj, und der realisierten FE-Modellierung kann ge-
schlussfolgert werden, dass eine Berechnung der effektiven Elastizitdtskoeffizienten fiir
Kompositwerkstoffe mit periodischer Mikrostruktur ndherungsweise auch tiber die Rand-
bedingungen aus Gl. (3-15) erfolgen kann. Dabei muss das zur Berechnung verwendete
RVE eine hinreichende Grofe aufweisen (Anzahl an RUCs). Ein Vorteil ist, dass sich die
Randbedingungen einfacher in einem FE-Modell realisieren lassen. Ein Nachteil ergibt sich
durch den erhohten Rechenaufwand infolge der RVE-Grofe. Aufgrund der besseren Ge-
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nauigkeit und des reduzierten Zeitaufwands werden daher in dieser Arbeit die periodischen
Randbedingungen verwendet.

Tabelle 5-2: Prozentuale Abweichung (gerundet auf eine Stelle nach dem Komma) von Clegl’g zu
dem Referenzwert CSb BB i einem RVE, bestehend aus 10 x 10 RUCS; siehe Gl (5-1);
verwendete Faservolumenanteile vf = 0.4 und »f = 0.7

GuGn| o | oy
0.4 0.7 0.4 0.7
10 1.61 % | 2.62 % | 0.09 % | 1.08 %
120 | 230 % | 453 % | 1.23 % | 2.02 %

5.1 Elastische unidirektionale Faserverbundstrukturen

5.1.1 Rhombischer RUC-Querschnitt mit perfektem
Phaseniibergang

In der Literatur werden héufig unter der Annahme von periodischen Mikrostrukturen uni-
direktionaler Faserverbundwerkstoffe hexagonale oder quadratische Verteilungen der Fa-
serquerschnittsgeometrie betrachtet. Charakteristisch fiir solche Strukturen ist, dass die
benachbarten Fasern in einem Winkel o von 60° (Abb. 5-6) bezichungsweise 90° (Abb. 5-
1) zueinander orientiert sind. Eine Verallgemeinerung der Faseranordnung lasst sich durch
die Annahme eines variablen Winkels erreichen. Der Querschnitt der Kompositstruktur,
der aus einer solchen Annahme entsteht, kann im Allgemeinen durch eine Aneinanderrei-
hung von Rhomben beschrieben werden.

In Abb. 5-7 ist eine solche rhombische Anordnung dargestellt. Der Winkel « betrigt hier
45°. Aus der Abbildung kann man erkennen, dass die periodische Faseranordnung auch tiber
einen rechteckigen Strukturbereich beschreibbar ist. Anstelle einer rhombischen periodi-
schen Mikrozelle wird, wie in [104] verdffentlicht, eine RUC mit einem Rechteckquerschnitt
gewéhlt. Eine entsprechende physikalische Modellbeschreibung fiir diese RUC-Geometrie
ist in Abschnitt 3.3 zu finden.

Abbildung 5-6: Hexagonale Faseranordnung, a = 60°

Es ist zu beachten, dass fiir die Modellbetrachtung anstelle des Koordinatensystems
{y1,y2,y3} ein gedrehtes System {yi,vh,y4} genutzt wird. Das bedeutet, dass effektive
Materialeigenschaften beziiglich {y},v5,y4} berechnet werden und im Anschluss daran auf
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das urspriinglichen Koordinatensystem transformiert werden konnen (siche dazu Gl. (2-
42)), wobei fiir die Richtungskosinus in Gl. (2-40) der Winkel o/ = a/2 verwendet wird.
Im weiteren Verlauf werden das urspriingliche und das gedrehte Koordinatensystem als
globales Koordinatensystem beziehungsweise lokales Koordinatensystem bezeichnet. Unter
der Annahme, dass die rhombische Querschnittsgeometrie eine (normierte) Einheitskan-
tenldnge besitzt, ergeben sich die Abmessungen des neuen RUC-Querschnitts aus [104]

b = 2cos (%) , (5:2)

h = 2sin (g)

Dabei ist b die Breite und h die Hohe der quaderférmigen RUC. Bei der Entwicklung eines
FE-Berechnungsmodells ist darauf zu achten, dass der Faservolumenanteil geometrische
Restriktionen erfiillen muss, da es ansonsten zu einer topologischen Uberlappung der Pha-
sen beim periodischen Fortsetzen der Struktur kommt. Daher wird bei der Berechnung die
Abbruchbedingung [104]

I
rf > min {é, 0.5} (5-3)

genutzt.

Abbildung 5-7: Rhombische Faseranordnung (links) und Darstellung der verwendeten RUC
mit Rechteckquerschnitt (rechts)

Fiir die Berechnung der effektiven Eigenschaften wird das FE-Modell der betrachteten
RUC mittels Hexaeder- und Pentaeder-Elementen diskretisiert, welche durch Ansatzfunk-
tionen mit dem Polynomgrad 2 charakterisiert sind. Durch die Symmetrie des RUC in
der Querschnittsebene wird zuerst ein Viertel der Geometrie diskretisiert. Im Anschluss
werden das FE-Modell und die dazugehorigen Modelldaten beziiglich der Symmetrieach-
sen gespiegelt, um das gesamte FE-Modell zu erhalten. Fiir die Berechnung der effektiven
Elastizitédtskoeffizienten werden die Randbedingungen aus den Gln. (3-54), (3-56), (3-58),
(3-60), (3-62) und (3-64) verwendet. Zum Verhindern der Starrkérperbewegungen werden
die Verschiebungsfreiheitsgrade im Querschnittsmittelpunkt einer der Randfldchen der zen-
trierten Faser zu Null gesetzt.

Das effektive Materialverhalten eines Verbundwerkstoffes aus isotropen Phasen, dessen
Faserverteilung durch eine RUC nach Abb. 5-7 beschrieben wird, ist im Allgemeinen or-
thotrop. Der dazugehérige Elastizitdtstensor in M-V-Notation ist in Gl. (2-44) dargestellt.
Diese Darstellung bezieht sich dabei auf das lokale Koordinatensystem. Bei einer Transfor-
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mation auf globale Koordinaten veréndert sich die Darstellung des Tensors zu Gl. (2-43).
Das Materialverhalten éndert sich nicht durch die Transformation.

Validierung der Berechnungsmodelle

Zum Validieren der entwickelten Berechnungsmodelle werden die effektiven Materialeigen-
schaften mit Ergebnissen aus der Literatur verglichen [104]. Im Fall von Faserverbund-
werkstoffen mit rhombischer Faseranordnung lassen sich nur wenige Artikel finden, die
sich mit der Herleitung effektiver Materialeigenschaften beschéftigen und dazu Werte pra-
sentieren. Aufserdem beziehen sich diese Werte meistens nur auf wenige Komponenten
des Materialtensors. In [56], [34], [86] und [38] sind effektive Werte fiir die longitudinalen
Schubkoeffizienten angegeben.

In [38] wird die Methode AHM (,,asymptotic homogenization method) verwendet, bei
der basierend auf einer asymptotischen Reihenentwicklung Differentialgleichungsproble-
me hergeleitet werden, aus deren periodischer Losung die effektiven Materialeigenschaften
gewonnen werden. Diese Probleme werden mittels harmonischer, komplexwertiger Funk-
tionsansétze und Taylor- und Laurent-Reihenentwicklungen gelost. Die Methode in [56]
(in Tabellen abgekiirzt mit ,,Jiang“) kombiniert das Konzept des dquivalenten Einschlusses
mit der Verwendung von Reihenentwicklungen komplexwertiger Potentiale.

In [34] wird eine weitere Methode (in Tabellen abgekiirzt mit ,,G&N“) zum Losen eines
Schubproblems eines faserverstiarkten Materials prasentiert. In [86] werden zwei Methoden
zur Ermittlung effektiver Schubkoeffizienten fiir unterschiedliche periodische Mikrostruk-
turen behandelt. Eine Methode ist die AHM, die schon weiter oben erlautert worden ist.
Die andere Methode ist die EEVM (,,eigenfunction expansion-variational method®). Diese
Methode wird auch in [107] genutzt und basiert auf der Kombination einer Reihenentwick-
lung komplexwertiger Potentiale mit einem variationellen Funktional.

Fiir den Fall, dass die Faserlingsrichtung in y4-Richtung zeigt und der Faserquerschnitt
in der y}-y5-Ebene liegt, sind die longitudinalen Schubkoeffizienten die Koeffizienten C$L,,
und C$ .. Fiir die Berechnung dieser Koeffizienten werden auf dem Rand der RUC aus
Abb. 5-7 die periodischen Randbedingungen Gl. (3-62) beziehungsweise (3-64) verwendet.
In [56] und [38] werden unidirektional faserverstirkte Verbundmaterialien aus isotropen
Phasen untersucht, wobei die zugrundeliegende rhombische Faseranordnung durch den
Winkel o € {45,60,90} charakterisiert ist. Der Volumenanteil der Fasern variiert dabei
von 0.1 bis 0.6. Fiir den Verbundwerkstoff wird ein Schubmodulverhé&ltnis

Gt
G m

=120 (5-4)

zwischen Faser und Matrix angenommen. Da eine solche Materialbeschreibung fiir eine
dreidimensionale FE-Analyse unzureichend ist, werden zusitzlich die Querkontraktions-
zahlen

=" =03 (5-5)

fiir beide Phasen angenommen. Durch das Festlegen eines der Schubmoduln aus Gl. (5-4)
und der Annahme der Isotropie ist die Materialbeschreibung der Phasen eindeutig.

1P 21873.216.38, am 23:55:08, Inhalt,
tersagt, m ‘mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186346186

Elastische unidirektionale Faserverbundstrukturen 73

Tabelle 5-3: Normierte effektive Elastizititskoeflizienten (drei Nachkommastellen), verwendetes
Koordinatensystem {y},v5,y4}, o € {60°,90°}
o | Cak” _ Ciuiy” | Chai” _ Claly”
Gm Gm Gm Gm
FEM Jiang FEM Jiang
0.1]1.218 1.218 1.218 1.218
0.2 ] 1.489 1.489 1.490 1.490
0.3 | 1.837 1.837 1.840 1.839
0.4 | 2297 2.297 2.313 2.313
0.5 2.939 2.939 3.009 3.008
0.6 | 3.904 3.903 4.187 4.186

In Tab. 5-3 sind normierte effektive Koeffizienten, die mittels der FEM berechnet wur-
den, Ergebnissen aus [56] gegeniibergestellt. Die Tabelle beinhaltet Werte fiir Modelle von
Kompositwerkstoffen mit einer Faseranordnung von 60° und 90°. Man erkennt eine sehr
gute Ubereinstimmung der Koeffizienten. Dies gilt auch fiir héhere Faservolumenantei-
le. Des Weiteren ergibt sich, dass die Schubkoeffizienten CsfL,; und C{f; identisch sind,
weshalb nur ein Schubkoeffizient aufgelistet wird. Dies ist dadurch begriindet, dass ein
Kompositwerkstoff mit hexagonaler Faseranordnung im homogenisierten Sinn ein trans-
versal isotropes Materialverhalten aufweist. Im Fall der 90°-Anordnung der Fasern ist das
Materialverhalten tetragonal [85], [97], [39]. Die Gleichheit der Koeffizienten bei 90° kann
man sich dadurch veranschaulichen, dass die y4-y4-Beanspruchung einer um 90° gedrehten
y1-y5-Beanspruchung entspricht.

Tabelle 5-4: Normierte effektive Elastizitdtskoeffizienten (drei Nachkommastellen), verwendetes
Koordinatensystem {y},vh,y5}, o = 45°

eff,45° eff,45°
’Uf C'2323 CV1313
Gm Gm

FEM | Jiang | FEM | Jiang
0.1 1.225 | 1.225 | L.211 | 1.211
0.2 | 1.526 | 1.525 | 1.458 | 1.458
0.3 ] 1.951 | 1.950 | 1.751 | 1.751
0.4 | 2.606 | 2.606 | 2.107 | 2.106
0.5 | 3.803 | 3.803 | 2.555 | 2.554

In Tabelle 5-4 und 5-5 werden die mittels FEM berechneten effektiven Schubkoeffizienten
fiir Modelle von Kompositwerkstoffen mit einer 45° Faseranordnung Vergleichsergebnissen
aus [38] und [56] gegeniibergestellt.

Die Koeffizienten werden wie in den Modellen zuvor aus longitudinalen Schubbelastungen
abgeleitet und sind beztiglich lokaler (siche Tab. 5-4) und globaler Koordinaten (siche Tab.
5-5) dargestellt. In Tab. 5-5 taucht neben den Koeffizienten C§h, und C¢¥, ein weiterer
Koeffizient CSff, auf, welcher sich aus der Koordinatentransformation auf globale Koordi-
naten nach Gl. (2-42) ergibt. Man erkennt in den Tabellen eine sehr gute Ubereinstimmung
der Ergebnisse der unterschiedlichen Methoden; die Werte der beiden Methoden aus der
Literatur (,,Jiang* und ,,AHM") sind identisch.
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Tabelle 5-5: Normierte effektive Elastizitétskoeflizienten (vier Nachkommastellen), verwendetes
Koordinatensystem {y1,y2,ys3}, @ = 45°
vf 0.1 0.2 0.3 0.4 0.5
FEM 1.2231 1.5162 1.9220 2.5337 3.6210

eff,45°
CQ-LD? Jiang 1.2230 1.5160 1.9217 2.5334 3.6206
G AHM 1.2230 1.5160 1.9217 2.5334 3.6206
censse | FEM | -0.0047 [ -0.0238 | -0.0706 | -0.1767 [ -0.4414
2313 Jiang | -0.0047 | -0.0238 | -0.0706 | -0.1767 | -0.4414

G™ 1 AHM | -0.0047 | -0.0238 | -0.0706 | -0.1767 | -0.4414
ceti | FEM | 12137 | 14685 | 17806 | 2802 | 2.7382
= Jiang 1.2136 1.4684 1.7804 2.1800 2.7378
G AHM | 12136 | 14684 | 1.7804 | 21800 | 2.7378

Tabelle 5-6: Normierte effektive Elastizitatskoeffizienten, verwendetes Koordinatensystem
{y1,92,93}, a = arccos(1/4), GI/G™ = 20
of 0.3 0.5 0.7
FEM 1.74 2.66 4.83
C§§23 G&N 1.74 2.66 4.83
Gm AHM 1.74 2.66 4.83
EEVM 1.74 2.66 4.83
FEM 0.02 0.08 0.34
C;glg G&N 0.02 0.08 0.34
Gm AHM 0.02 0.08 0.34
EEVM 0.02 0.08 0.34
FEM 1.75 2.70 5.00
Cfglg G&N 1.75 2.70 5.00
Gm AHM 1.75 2.70 5.00
EEVM 1.75 2.70 5.00

Fiir eine weitere Validierung werden die Modelle aus [86] und [34] benutzt. Die Validie-
rung bezieht sich ebenfalls auf die longitudinalen Schubkoeffizienten. Die in Tab. 5-6 und
5-7 dargestellten normierten Koeffizienten, welche auf das globale Koordinatensystem be-
zogen sind, charakterisieren das effektive Materialverhalten von Kompositwerkstoffen mit
einer Faseranordnung, die durch den Winkel o = arccos(1/4) beschrieben wird. Dies ist
ca. 75.5°. Die Phasen der Verbundwerkstoffe sind in der Literatur iiber ein Schubmodul-
verhéltnis von 20 und 120 angegeben. Der Faservolumenanteil variiert von 0.3 bis 0.7 mit
einem Inkrement von 0.2. Fiir eine FE-Analyse werden die Querkontraktionszahlen aus Gl.
(5-5) verwendet.

Die dargestellten Koeffizienten der in dieser Arbeit entwickelten Berechnungsmodelle (Tab.
5-6 und 5-7) sind auf die zweite Nachkommastelle gerundet. Die Ergebnisse der drei Metho-
den (,G&N*, ,AHM*, EEVM) aus der Literatur stimmen sehr gut mit den berechneten
Werten (,FEM) tiberein. Dies gilt auch im Fall hoher Faservolumenanteile.
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Tabelle 5-7: Normierte effektive Elastizitatskoeflizienten, verwendetes Koordinatensystem
{y1,92, 43}, a = arccos(1/4), G'/G™ =120

of 0.3 0.5 0.7
FEM 1.83 [ 296 | 6.16
Cshs | G&N 1.83 | 296 | 6.16
Gm AHM 1.83 | 296 | 6.16
EEVM | 1.83 | 296 | 6.16
FEM 0.02 | 0.11 [ 0.60
Csts | G&N 0.02 | 0.11 | 0.60
Gm AHM 0.02 | 0.11 | 0.60
EEVM | 0.02 | 0.11 | 0.60
FEM 1.84 [ 3.01 | 6.47
Csly | G&N 1.84 | 3.01 | 647
Gm AHM 1.84 | 3.01 | 6.47
EEVM | 1.84 | 3.01 | 6.47

Diese gute Ubereinstimmung mit Homogenisierungsmethoden aus der Literatur zeigt, dass
sich die entwickelten Berechnungsmodelle fiir die Bestimmung der effektiven longitudinalen
Schubkoeffizienten eignen.

Tabelle 5-8: Materialeigenschaften der Faser und Matrix nach [42]

Matrix Faser
Epoxid Kohlenstoff
E™ [GPa] | v™ | Ef [GPa| | vf | ET[GPa] | vf | GF [GPa]
3.45 0.35 345 0.2 9.66 0.3 2.07

Da sich mit dem in dieser Arbeit entwickelten Berechnungskonzept alle Koeffizienten ei-
nes Elastizitatstensors ermitteln lassen, ist die oben angegebene Validierung noch nicht
vollsténdig, weil nur die Schubkoeffizienten betrachtet wurden. Daher wird das entwickelte
Berechnungskonzept mit einer weiteren Methode validiert [104]. In [42] werden unidirektio-
nal faserverstirkte Verbundwerkstoffe (zwei Phasen), welche durch ein transversal isotropes
Materialverhalten charakterisiert werden, betrachtet und die dafiir effektiven Materialei-
genschaften angegeben. Fiir die Berechnung der Eigenschaften wurde in [42] die CCA-
Modellierung genutzt, welche in Abschnitt 3.2.1 ndher dargestellt ist. Durch sie lassen
sich explizite Formeln fiir longitudinale Materialkonstanten und Schranken fiir transver-
sale Konstanten herleiten. Eine Ausnahme bildet der transversale Kompressionsmodul.
Ein dquivalentes transversal isotropes Modell eines Kompositwerkstoffes kann in der FEM
durch eine geeignete RUC gebildet werden. Fiir den folgenden Vergleich wird eine hexago-
nale Faseranordnung (o = 60°) genutzt. Die Materialeigenschaften der Faser- und Matrix-
phase sind der Tab. 5-8 zu entnehmen. Die Phasen besitzen ein isotropes beziehungsweise
ein transversal isotropes Materialverhalten. Zur Beschreibung des Phasenmaterials reichen
daher zwei bezichungsweise fiinf unabhéngige Materialkonstanten (sieche Abschnitt 2.3)
aus, um den jeweiligen Elastizitédtstensor bilden zu kénnen.

1P 21873.216.38, am 23:55:08, Inhalt,
tersagt, m ‘mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186346186

76 Berechnung effektiver Materialeigenschaften

50, —~FEM I 1.3} —FEM
-©-Hashin1979 --Hashin1979
002 04 0.6 08 0.2 0.4 0.6 0.8
Vf Vf

Abbildung 5-8: Longitudinale Moduli, links: Elastizitatsmodul, rechts: Schubmodul, o = 60°

In den Abb. 5-8 bis 5-10 sind die berechneten effektiven Materialkonstanten in Abhén-
gigkeit vom Faservolumenanteil dargestellt. Mit ,,Hashin1979“ sind die Koeffizienten aus
der CCA-Modellierung nach [42] gekennzeichnet. Ein hochgestellter Index ,,— oder ,,+*
kennzeichnet die Ergebnisse als untere beziechungsweise obere Schranke. Infolge des trans-
versal isotropen effektiven Materialverhaltens ldsst sich der zugehorige Elastizitétstensor
aus fiinf voneinander unabhéngigen Materialkonstanten bilden. Diese sind zum Beispiel
der Elastizititsmodul Eff, der Schubmodul G§¥ und die Querkontraktionszahl v£% in lon-
gitudinaler Richtung sowie der Elastizitidtsmodul E¢f und die Querkontraktionszahl v¢f in
transversaler Richtung (siche Abschnitt 2.3).
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Abbildung 5-9: Elastizitétskonstanten, links: longitudinale Querkontraktionszahl, rechts:
transversaler Elastizitdtsmodul, o = 60°

Die Abb. 5-8 und 5-9 zeigen die longitudinalen Konstanten in Abhéngigkeit vom Faservo-
lumenanteil. Es ist zu erkennen, dass sich die Querkontraktionszahl in umgekehrter Weise
wie der Elastizitdtsmodul und der Schubmodul verhélt. Wahrend mit einem zunehmen-
den Volumenanteil die Elastizitdtsmoduln ansteigen, sinkt die Querkontraktionszahl ab.
Ebenso ist zu erkennen, dass der longitudinale Elastizitdtsmodul und die longitudinale
Querkontraktionszahl einen ausgeprigten linearen Verlauf aufweisen. Betrachtet man die
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Berechnungsformeln der CCA-Modellierung Gl. (3-25) und (3-26) fiir diese Grofen, wird
dies aus den ersten beiden Termen der jeweiligen Formel offensichtlich. Ohne Beriicksichti-
gung des dritten Terms wiirde man als Formel den arithmetischen Mittelwert bekommen.
Dies wiirde der Mischungsregel nach VOIGT entsprechen. Hinsichtlich des Vergleichs mit
der CCA-Modellierung nach Hashin ist eine gute Ubereinstimmung fiir alle Faservolumen-
anteile zu erkennen.

In Abb. 5-9 und 5-10 sind transversale Konstanten (FE-Modell) bezichungsweise Schran-
ken (nach [42]) dargestellt. Die Berechnungsformeln fiir die Schranken sind den Gln. (3-
28) bis (3-31) zu entnehmen. Wie im longitudinalen Fall ist ein umgekehrtes Verhalten
der Kurven der Elastizitdtsmoduln/Schubmoduln (steigend) und der Querkontraktions-
zahl (fallend) bei einem zunehmenden Faservolumenanteil zu erkennen. Die Ergebnisse fiir
den Schubmodul aus der FE-Modellierung verlaufen anfangs nahe der unteren Schranke
und ndhern sich mit zunehmendem Faservolumenanteil der oberen Schranke an. Im Fall
der Querkontraktionszahl ist dies gerade anders herum. Die Kurven der FEM-Rechnung
liegen innerhalb der analytischen Schranken.

Es lésst sich zusammenfassen, dass sich die entwickelten Berechnungsmodelle im Grofen
und Ganzen zum Ermitteln der effektiven Materialeigenschaften eignen.

0.55
—~—FEM
| -©-Hashin" 1979
0.3 -8 Hashin*1979

t

G [GPa]

-©-Hashin" 1979

“Hashin*1979

! 0.2 0.4 0.6 0.8 0.35 0.2 0.4 0.6 0.8

Vf \

Abbildung 5-10: Elastizitdtskonstanten, links: transversaler Schubmodul, rechts: transversale
Querkontraktionszahl, a = 60°

‘Weitere Untersuchungen

Nachdem die Berechnungsmodelle validiert worden sind, wird im Folgenden der Einfluss der
Faseranordnung auf die effektiven Koeffizienten fiir unterschiedliche Faservolumenanteile
untersucht. Dazu wird eine Parameterstudie durchgefiihrt, wobei der Winkel « und der
Faservolumenanteil v! variiert werden [104]. Die Faservolumenanteile wurden exemplarisch
gewéhlt. Es werden Volumenanteile von 0.1 bis 0.7 genutzt. Die verwendeten Materialdaten
sind der Tabelle 5-8 zu entnehmen.

In den Abb. 5-11 bis 5-13 sind die effektiven Materialkonstanten in Abhéngigkeit vom Win-
kel o angegeben. Die Konstanten werden aus den Komponenten CZ“ der Elastizitdtsmatrix
abgeleitet, welche beziiglich des lokalen Koordinatensystems berechnet wurden. Da ein un-
idirektional faserverstarkter Verbundwerkstoff mit einer rhombischen Faseranordnung im
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Allgemeinen orthotrope Eigenschaften hat, und da die Achsen des lokalen Koordinatensys-
tems Symmetrieachse sind, lassen sich die Konstanten aus der Gl. (2-45) bestimmen.
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Abbildung 5-11: Effektive transversale Elastizitdtsmoduln unterschiedlicher
Faservolumenanteile vf in Abhéngigkeit von o
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Abbildung 5-12: Effektive longitudinale Schubmoduln unterschiedlicher Faservolumenanteile
v in Abhéngigkeit von a

In Abb. 5-11 und 5-12 sind die effektiven transversalen Elastizitatsmoduln in der y}-y-
Ebene beziehungsweise die longitudinalen Schubmoduln in Faserldngsrichtung dargestellt.
Man erkennt, dass bei einer Faseranordnung von 60° und 90° eine Ubereinstimmung der
Werte von E5T und E5T im numerischen Sinn vorliegt, was plausibel ist, da bei 60° und 90°
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ein transversal isotropes beziehungsweise tetragonales Materialverhalten vorliegt. Fiir den
Winkelbereich zwischen 60° bis 90° ist zu erkennen, dass sich die transversalen Moduln
mit einem hoheren Faservolumenanteil zunehmend voneinander unterscheiden. Ab einem
Winkel von 60° ist ein Wechsel des grokten Elastizitats- beziehungsweise Schubmoduls zu
beobachten.
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Abbildung 5-13: Effektive transversale Querkontraktionszahlen unterschiedlicher
Faservolumenanteile vf in Abhingigkeit von a
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Abbildung 5-14: Effektive longitudinale Querkontraktionszahlen unterschiedlicher
Faservolumenanteile vf in Abhéingigkeit von a
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Der gréfte Unterschied zwischen EST und EST oder GST und GSE herrscht vor, wenn der
Winkel o am kleinsten ist. Des Weiteren erkennt man, dass die Elastizitdtsmoduln mit
zunehmendem Winkel eher fallen.

In Abb. 5-13 und 5-14 sind die transversalen und longitudinalen Querkontraktionszahlen
dargestellt. Wie im Fall der Moduln sind die paarweise dargestellten Querkontraktionszah-
len fiir 60° und 90° von gleicher Grofsenordnung. Ebenso ist der Einfluss des zunehmenden
Faservolumenanteils auf die Konstanten und der Wechsel der dominierenden Querkontrak-
tionszahl erkennbar.

Tabelle 5-9: Prozentuale Abweichung (gerundet auf eine Stelle nach dem Komma) vom
Minimum zum Maximum fiir ausgewahlte Materialkonstanten

Vol.-anteil ‘ Est ‘ Est ‘ G ‘ & ‘ vt ‘ vl
0.5 6.0% 102% [102% | 1.5% [51% | 121 %
0.7 36% | 69% | 72% | 12% |44% | 96 %

Dass die Berechnungsmodelle bei den verschiedenen Volumenanteilen unterschiedliche
Winkelbereiche durchlaufen, liegt an der Abbruchbedingung Gl. (5-3) fiir die Geometrie-
erstellung, da sich ansonsten die Randfasergeometrien iiberschneiden oder die zentrierte
Faser aus der Rechteckgeometrie herausragen wiirden.

Die Elastizitdtsmoduln/Schubmoduln steigen und die Querkontraktionszahlen fallen mit
einem zunehmenden Faservolumenanteil.
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Abbildung 5-15: Effektiver Elastizitdtsmodul E§‘Ef unterschiedlicher Faservolumenanteile vf in
Abhéngigkeit von a

Aus den Abbildungen ist erkennbar, dass der Faservolumenanteil einen groferen Einfluss
auf die Materialkonstanten besitzt als die Faseranordnung. Dennoch darf der Einfluss der
Faseranordnung nicht vernachléssigt werden. In Tab. 5-9 ist exemplarisch fiir ausgewéhlte
Konstanten zu einem festen Faservolumenanteil die prozentuale Abweichung des Minimums
zum Maximum einer Konstante iiber alle Faseranordnungen dargestellt. Die Formel, welche
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zur Berechnung des Unterschieds benutzt wurde, wird am Beispiel des Elastizitdtsmoduls
Et erliutert. Sie lautet

eff, max eff,;min
El - El

diff2 = - 1100% . (5-6)
BT

Die Grofen ES™™ und ES™™® sind der maximale bezichungsweise der minimale effektive
Elastizititsmodul E5? fiir alle Faseranordnungen zu einem konkreten Faservolumenanteil.
Die Unterschiede der anderen Konstanten werden analog zu Gl. (5-6) berechnet.

Die Faseranordnung beeinflusst die effektiven Konstanten unterschiedlich. Eine Konstante,
auf die die Faseranordnung keinen erkennbaren Einfluss ausiibt, ist der effektive Elastizi-
titsmodul EST (siehe Abb. 5-15).

5.1.2 Rhombischer RUC-Querschnitt mit imperfektem
Phaseniibergang

Die bisherigen Ergebnisse resultieren aus einem RUC-Modell mit Rechteckquerschnitt und
einem perfekten Phaseniibergang zwischen Matrix und Faser. Dieser Phaseniibergang wird
nun durch den in Abschnitt 3.4 beschriebenen imperfekten Phaseniibergang ersetzt. Im
Rahmen der FE-Modellierung ist die imperfekte Phasentiibergangsbeschreibung, welche
auch in [105] verwendet wurde, in Abschnitt 4.4 zu finden.

Fiir eine Validierung der in diesem Teilabschnitt entwickelten Berechnungsmodelle wird auf
die in Abschnitt 3.2 beschriebenen Methoden (CCA, GSCS) zuriickgegriffen. Im Anschluss
daran wird der Einfluss von Materialverdnderungen auf die effektiven Elastizitétskoeftizi-
enten untersucht.

Validierung der Berechnungsmodelle

Die Berechnungsmodelle mit einem imperfekten Phaseniibergang werden anhand von Mo-
dellen aus dem Artikel von Hashin [46] validiert [105]. Diese Modelle wurden bereits im
Abschnitt 3.2 beschrieben. Dabei handelt es sich um das CCA-Modell und das verallge-
meinerte Selbstkonsistenzschema (GSCS). Die Modelle aus der Literatur basieren auf Drei-
Phasen-Beschreibungen des Kompositwerkstoffes, die einen perfekten Ubergang von einer
Phase zur néchsten besitzen. Der Verbundwerkstoff setzt sich aus einer Matrix-, einer Faser-
und einer Zwischenphase, welche Matrix und Faser voneinander trennt, zusammen. Die
Materialeigenschaften der Phasen werden als elastisch und isotrop angenommen. Das re-
sultierende effektive Materialverhalten des Verbundwerkstoffes aus der CCA-Modellierung
und der GSCS-Modellierung ist transversal isotrop.

Die elastischen Materialeigenschaften der Matrix und der Faser, die hier zur Validierung
genutzt werden, wurden dem Artikel [46] entnommen. Diese Eigenschaften sind durch ein
Schubmodulverhiltnis von Gf/G™ = 10 und die Querkontraktionszahlen »™ = 0.35 und
v = 0.2 angegeben. Die Zwischenphase besitzt eine Querkontraktionszahl von v' = 0.3.
Der Schubmodul G' der Zwischenphase wird variiert.
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Abbildung 5-16: Diskretisierung des Drei-Phasen-Modells mit separater Darstellung der
Zwischenphase, a = 60° und of = 0.4

Der Faservolumenanteil betrigt o' = 0.4. Die Zwischenphase, welche die zylinderférmi-
ge Faser von der Matrix trennt, besitzt eine konstante Dicke #. Die Dicke ist durch die
Bezichung [46]

t=nt (5-7)

gegeben, wobei 7 ein vorgegebener Parameter und rf der Faserradius sind.

Fiir die Validierung werden zusétzlich FE-Berechnungsmodelle entwickelt, welche ebenfalls
drei Phasen aufweisen. Die Zwischenphase wird durch einen Ring aus finiten Elementen
diskretisiert. Da die Geometrie dieser Phase einen sehr diinnen Ring bildet, erfolgt die
Diskretisierung in radialer Richtung mit einem finiten Element (sieche Abb. 5-16). Das
in Abb. 5-16 dargestellte, diskretisierte Modell einer RUC représentiert einen unidirek-
tionalen Faserverbundwerkstoff mit einer hexagonalen Faseranordnung, dessen effektives
Materialverhalten transversal isotrop ist.

Abbildung 5-17: Diskretisierung des imperfekten Modells mit separater Darstellung der
Knoten der Federelemente (imperfekter Phaseniibergang), a = 60° und of = 0.4

1P 21873.216.38, am 23:55:08,
tersagt, m ‘mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186346186

Elastische unidirektionale Faserverbundstrukturen 83

In Abb. 5-17 ist das disketisierte RUC-Modell dargestellt, welches sich aus einer Matrixpha-
se, einer Faserphase und einer imperfekten Phaseniibergangsbeschreibung zusammensetzt.
Fiir die Volumendiskretisierung werden Hexaeder- und Pentaeder-Elemente mit einem Po-
lynomgrad von 1 verwendet. Der imperfekte Phaseniibergang wird durch Federelemente
beschrieben (siehe Abschnitt 4.4). Zur Erinnerung, die Matrix und die Faser besitzen eine
identische Knotenverteilung an den jeweiligen Phasenrandflichen, die zu I'y¢ gehoren. Die
Federelemente verkniipfen die Knotenpaarungen miteinander (siehe Abb. 5-17).

Um einen Vergleich des imperfekten RUC-Modells mit einem Drei-Phasen-Modell zu ge-
wiahrleisten, miissen die Steifigkeiten der Federelemente entsprechend gewahlt werden. Da
die Zwischenphase der Drei-Phasen-Modellierung isotrop ist, lassen sich die Beziehungen
aus den Gln. (3-75) und (4-31) nutzen.

In den Abb. 5-18 bis 5-23 sind die Ergebnisse der Berechnung in Form normierter effekti-
ver Materialkonstanten dargestellt. Die Ergebnisse aus den in dieser Arbeit entwickelten
FE-Modellierungen sind durch den Zusatz ,FEM*“ gekennzeichnet. Die dargestellten Kon-
stanten sind der transversale Kompressionsmodul, der longitudinale Schubmodul und der
transversale Schubmodul. Alle weiteren Konstanten lassen sich ebenfalls berechnen, wer-
den aber hier nicht angegeben. Fiir die Validierung sind die ausgewéhlten Konstanten
ausreichend.

1.8

1.2 —©—3P-Modell, FEM

0 66 ——Feder-Modell, FEM ||
’ —k—3P-Modell, CCA

$ 2 3 2 - 0o 1 2 3 4 5
log, (G/G™)

Abbildung 5-18: Normierter effektiver transversaler Kompressionsmodul bei n = 0.001 in
Abhingigkeit von GI/G™

Fiir die dargestellten Konstanten wurde eine Zwischenphasendicke von einem Tausends-
tel des Faserradius verwendet. Der transversale Kompressionsmodul und der longitudinale
Schubmodul stimmen bis zu einem Wert von log;,(G!/G™) < 2 sehr gut mit den Vergleichs-
ergebnissen (,CCA“,  3P-Modell FEM") iiberein. Fiir sehr kleine G wird im Fall der Drei-
Phasen-Modellierung infolge der Randbedingungen der Lasttransfer zwischen Matrix- und
Faserphase reduziert. Ahnlich verhilt es sich bei der Modellierung mit dem imperfekten
Phaseniibergang. Die versteifende Wirkung der Fasern kommt somit kaum zum Tragen.
Fiir log,o(G'/G™) > 2 zeigt sich zwischen den Drei-Phasen-Modellierungen und dem Fe-
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dermodell eine immer grofer werdende Abweichung. Die imperfekte Phaseniibergangsmo-
dellierung fiihrt im Grenzfall G' = oo zu Ergebnissen eines aus zwei Phasen bestehenden
Verbundwerkstoffes mit einem perfekten Kontakt. Bei der Drei-Phasen-Modellierung wird
die Zwischenphase nahezu ein starres Medium im Vergleich zu den anderen beiden beteilig-
ten Phasen. Dadurch ergibt sich ein nicht zu vernachldssigender Anteil bei der Ermittlung
der gemittelten Spannungen, welcher in die Berechnung der effektiven Materialeigenschaf-
ten eingeht. Werden nur die Ergebnisse der Drei-Phasen-Modellierungen miteinander ver-
glichen, erkennt man, dass iiber den gesamten dargestellten Bereich von G'/G™ eine gute
Ubereinstimmung der Ergebnisse vorliegt. Bei allen drei Abbildungen der Materialkon-
stanten liegt der Bereich, bei dem sich die Werte der effektiven Werkstoffeigenschaften
signifikant d&ndern, zwischen ca. log,o(G'/G™) = —4 und log,((G'/G™) = —1. Die Ursache
dafiir ist die Isotropie der Zwischenphase.

In Abb. 5-20 sind die transversalen Schubmoduln zu sehen. Anstelle einer CCA-
Modellierung wird zur Validierung das verallgemeinerte Selbstkonsistenzschema (GSCS)
aus Abschnitt 3.2.2 verwendet, welches in [46] néher erldutert ist. Zur Erinnerung, dies
war dadurch begriindet, dass fiir transversale Konstanten (Ausnahme: transversaler Kom-
pressionsmodul) keine Losung nach einer CCA-Modellierung existiert.

0.4 ® —5-3P-Modell, FEM ||

—=—Feder-Modell, FEM

——3P-Modell, CCA

-% 4 -3 2 A 0o 1 2 3 4 5
log, ,(G/G™)

Abbildung 5-19: Normierter effektiver longitudinaler Schubmodul bei n = 0.001 in
Abhingigkeit von G1/G™

Vergleicht man die Ergebnisse der Drei-Phasen-Modellierungen miteinander, so ist eine
Abweichung zwischen den berechneten Werten erkennbar. Da die Ergebnisse aus den FE-
Modellierungen in Abb. 5-18, 5-19 sowie in Abb. 5-20 fiir weite Teile eine gute Uberein-
stimmung zeigen, wird ein Modellierungsfehler ausgeschlossen. In [46] wird festgehalten,
dass das GSCS im Allgemeinen als Naherungsmethode aufzufassen ist, was als Ursache fiir
die Abweichung zu deuten ist. Dies wird bestérkt durch einen annéhernd parallelen Verlauf
der Drei-Phasen-Modellierungen im Bereich —1 < log,,(G'/G™) < —5.
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Abbildung 5-20: Normierter effektiver transversaler Schubmodul bei 1 = 0.001 beziiglich
Gi /Gm

1.8+

1.2F —©—3P-Modell, FEM H

0 6‘1 ——Feder-Modell, FEM ||
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Abbildung 5-21: Normierter effektiver transversaler Kompressionsmodul bei n = 0.01 in
Abhingigkeit von Gi/G™

Die Abweichungen der Ergebnisse zwischen den Drei-Phasen-Modellierungen betragen ca.
23.3% bei log,(G'/G™) = —5 beziehungsweise ca. 2.2% bei log,o(G'/G™) = 5. Werden die
Ergebnisse der FE-Berechnungsmodelle miteinander verglichen, so ist eine gute Uberein-
stimmung bis ca. log;(G'/G™) < 2.5 zu erkennen.

Eine Erhohung der Dicke der Zwischenphase fiihrt zu einem héheren Phasenvolumenanteil.
Dadurch nimmt der Einfluss der Zwischenphase in der Berechnung der makroskopischen
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Spannungen zu und die Ergebnisse der Drei-Phasen-Modelle und des Federmodells weichen
stérker von einander ab (sieche Abb. 5-21 bis 5-23).

24¢
2.2
2,
1.8¢
1.6¢
1.4r

£
Q
5 _1.2p

[¢]

0.4%—8—& —©—-3P-Modell, FEM |

—»—Feder-Modell, FEM

——3P-Modell, CCA

-% 4 -3 -2 - 0o 1 2 3 4 5
log, 0(G'/Gm)

Abbildung 5-22: Normierter effektiver longitudinaler Schubmodul bei n = 0.01 in
Abhingigkeit von Gi/G™

—©-3P-Modell, FEM

——Feder-Modell, FEM {

—— 3P-Modell, GSCS

5 4 3 2 414 0 1 2 3 4 5
Iogm(G'/Gm)

Abbildung 5-23: Normierter effektiver transversaler Schubmodul bei n = 0.01 in Abhéngigkeit
von G1/G™

Materialkennwerte (Elastizitdtsmodul, Schubmodul, Querkontraktionszahl) von realen Ma-
terialien konnen sich um das Hundertfache unterscheiden. Somit ist ein Schubmodulver-
hiltnis von (Gf/G™) = 10 fiir die Phasen eines Kompositwerkstoffes aus Sicht der Pra-
xis durchaus realistisch. Im Fall einer Zwischenphase ist es naheliegend, den Bereich des
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Zwischenphasenschubmoduls auf —1 < log;o(G'/G™) < 1 (=2 < log;o(G/GY) < 0) zu
begrenzen. Bei einer Einschrankung auf diesen Bereich lésst sich eine gute bis sehr gu-
te Ubereinstimmung der FE-Ergebnisse (Drei-Phasen-Modell/Federmodell) aus den Ab-
bildungen erkennen. Im Fall einer Zwischenphasendicke von einem Hundertstel des Fa-
serradius (n = 0.01) ist die prozentuale Abweichung der Federmodellergebnisse von den
Drei-Phasen-Modellergebnissen fiir den eingeschrankten Bereich aus der Tab. 5-10 zu ent-
nehmen. Die Berechnungsformel fiir die Abweichung lautet

Peff _ Peﬁ,ref |

diff3 = | 100% . (5-8)

Peﬂ”,ref

Die Grofe P°T kennzeichnet eine beliebige effektive Konstante. Als Referenzwerte Pefref
dienen die effektiven Konstanten der Drei-Phasen-Modellierung (3P-Modell FEM).

Tabelle 5-10: Prozentuale Abweichung der Ergebnisse des Federmodells von dem
Drei-Phasen-Modell (3P-Modell FEM) (gerundet auf zwei Stellen nach dem Komma) im
Intervall —1 < log;o(G'/G™) < 1

log,o(GY/G™) | KT | G | Gif

-1 091 % | 121 % | 1.16 %
0 1.16 % | 1.45 % | 1.53 %
1 1.30 % | 1.61 % | 1.66 %

Es lasst sich zusammenfassen, dass die Ergebnisse der Federmodellierung {iber weite Stre-
cken von gleicher Grofenordnung wie die der Drei-Phasen-Modellierung mit einer sehr
diinnen Zwischenschicht sind. Mit einer zunehmenden Steifigkeit und Dicke der Zwischen-
phase weichen die Ergebnisse stérker voneinander ab. Eingeschrénkt auf das Intervall
—1 < log;o(G'/G™) < 1 ldsst sich im Rahmen der Homogenisierung die Drei-Phasen-
Modellierung bis zu einer gewissen Zwischenphasendicke néherungsweise durch die Feder-
modellierung ersetzen. Bei einer deutlichen Ausprdgung der Zwischenphase ist ein Drei-
Phasen-Modell einem Federmodell vorzuziehen.

Weitere Untersuchungen

Nachfolgend werden weitere Untersuchungen zu den Berechnungsmodellen mit einem im-
perfekten Phaseniibergang durchgefiihrt. Diese haben das Ziel, den Einfluss des Mate-
rialunterschieds der beteiligten Phasen auf die effektiven Werkstoffeigenschaften néher
zu untersuchen. Im Zusammenhang mit einer Drei-Phasen-Modellierung kann zusétzlich
festgestellt werden, wie die Materialverdnderung die Vergleichbarkeit der Modelle beein-
flusst. Dies wird anhand exemplarisch ausgewahlter effektiver Elastizitétskoeffizienten ver-
anschaulicht.

Tabelle 5-11: Fixierte Geometrie- und Materialeigenschaften

a [ e |

60° ] 04]02[035[0.3

Fiir die Untersuchung des Einflusses der beteiligten Phaseneigenschaften auf die effek-
tiven Elastizitdtskoeffizienten wird angenommen, dass die Phase der Matrix, der Faser
und der Zwischenschicht (fiir die imperfekte Phaseniibergangsbeschreibung) ein isotropes
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Materialverhalten besitzen. Es werden die in der Tab. 5-11 aufgefithrten Geometrie- und
Materialinformationen in den Berechnungsmodellen verwendet. Diese Informationen sind
der Winkel o, der Faservolumenanteil vf und die Querkontraktionszahlen der Faser vf, der
Matrix #™ und der Zwischenphase /. Zusitzlich werden die Schubmoduln der Matrix- und
Faserphase iiber ein Verhiiltnis GI/G™ (G™ hat den Wert 1) vorgegeben. Die Zwischen-
phasendicke wird auf ein Tausendstel und ein Hundertstel des Faserradius festgelegt.

9.6 2.4f e
88 2 ] R Y = ACA-ASASASASASASA
8t 5655858658868 2t
7.2t 18
g &4 <-G'16M=10, 3P g 19 <-G'1GM=10, 3P
Q 5.6t £ m =, 145 f,~m
L T4s -©-GG™M=50, 3P 812 -©-GlG™M=50, 3P
& 4 =GfG™=100, 3P Y1 -5GY6M=100, 3P
34 < GYG™=10, Feder o8 % GGM=10, Feder ||
165 © GYGM=50, Feder 04 © GG™=50, Feder ||
0.8 = G7G™=100, Feder 0.2/ = G76™=100, Feder]|
$ 4324 01 23 4 5 $ 4324 01 23 45
1 m 1 m
log, (G/G™) log, (G/G™)
Abbildung 5-24: Normierte Koeffizienten C§ff | G’"‘ und C§f,./G™, verwendetes
Koordinatensystem {y}, v, 75}, o = 60°, vf = 0.4, 7 = 0.001
9.6 o
8.8 5ol )
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Abbildung 5-25: Normierte Koeffizienten C§ff | /G™ und s, /G™, verwendetes
Koordinatensystem {y}, 5, v}, o = 60°, vf = 0.4, n = 0.01

In Abb. 5-24 und 5-25 sind die normierten Elastizitdtskoeffizienten Cfl; und C§l, in Ab-
hiingigkeit von G!/G™ fiir drei verschiedene Schubmodulverhiltnisse zwischen Faser und
Matrix dargestellt. Die Verhéltnisse sind durch die Werte 10, 50 und 100 angegeben.

Die Verdnderung des Schubmodulverhéltnisses von 10 zu 100 bewirkt eine Vergroferung
des Wertebereiches von C§f, /G™ und C$f,/G™. Des Weiteren lisst sich ein Einfluss auf
die Vergleichbarkeit der Federmodellierung mit der Drei-Phasen-Modellierung feststellen
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(siehe Tab. 5-12). Bei einer Einschrankung des Zwischenphasenmaterials auf das Intervall
—1 < log(G'/G™) < 1 ist mit einem zunehmenden Materialverhiltnis Gf/G™ eine leichte
Erhohung in der prozentualen Abweichung der Modellergebnisse erkennbar. Fiir die Be-
rechnung der Abweichung wird die Gl. (5-8) verwendet. Die GréRe PT kennzeichnet hier
einen beliebigen effektiven Elastizitatskoeffizienten der Federmodellierung. Als Referenz-
wert P°ref dient der jeweilige effektive Koeffizient der Drei-Phasen-Modellierung.

Tabelle 5-12: Prozentuale Abweichung der Ergebnisse des Federmodells von dem
Drei-Phasen-Modell (3P-Modell FEM) (gerundet auf zwei Stellen nach dem Komma) im
Intervall —1 < log;o(G'/G™) < 2, Zwischenphasendicke betriigt ein Hundertstel des Faserradius

logo(G'/G™) | G'/G™ =10 GGm = 50 G/G™ = 100

Cily | Cshy | Cily | G5 | Oy | Cihy
1 098% [121% [119% [ 147 % [ 122% | 151 %
0 1.26 % | 145 % | 1.53 % | 1.77 % | 1.57 % | 1.81 %
1 140 % | 1.61% | 1.57 % | 1.81 % | 1.61 % | 1.85 %
2 236 % | 283 % | 1.63 % | 1.88 % | 1.63 % | 1.87 %

5.1.3 Parallelogrammférmiger RUC-Querschnitt mit perfektem
Phaseniibergang

In den vorherigen Abschnitten wurden Kompositwerkstoffe mit einer rhombischen Faser-
anordnung untersucht. Die periodische Verteilung der unidirektionalen Faser kann dabei
durch einen Rhombus beschrieben werden. Verdndert man nun eine Kantenldnge des Rhom-
bus, so entsteht ein Parallelogramm.

Dieser Teilabschnitt befasst sich mit Berechnungsmodellen unter Verwendung einer RUC
mit einem Parallelogramm-Querschnitt und einem perfekten Phasentiibergang. Zuerst wer-
den die Berechnungsmodelle anhand von Modellen aus der Literatur validiert. Im Anschluss
daran wird der Einfluss des parallelogrammférmigen RUC-Querschnitts auf die effektiven
Elastizitatskoeffizienten untersucht.

"t © © ©

Abbildung 5-26: Spezielle Querschnitte fiir die RUC, die durch den Algorithmus erzeugt
werden konnen: Links - Rechteck, Mitte - Rhombus, Rechts - Parallelogramm

In Abb. 5-26 sind einige spezielle Formen des Parallelogramms dargestellt, die mit dem
entwickelten Berechnungsalgorithmus betrachtet werden konnen. Dies sind das Rechteck,
der Rhombus und das allgemeine Parallelogramm. Die Geometrieeigenschaften eines Par-
allelogramms und somit die Verteilung der Fasern im Verbundwerkstoff werden durch das
Festlegen zweier Kantenldngen, welche nicht parallel zueinander liegen, und eines Winkels
beschrieben. In Abb. 3-10 aus Teilabschnitt 3.3.1 sind diese Eigenschaften durch b, w und
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« gekennzeichnet. Zur Bestimmung der effektiven Elastizitatskoeffizienten eines Komposit-
werkstoffes ist es ausreichend, eine normierte Geometrie zu betrachten. Der Kantenléinge
b wird die Einheitslinge zugewiesen. Somit ldsst sich die Geometrie durch ein Kantenldn-
genverhéltnis und einen Winkel o beschreiben.

Die RUC-Geometrie wird mit Hexaeder- und Pentaeder-Elementen vom Polynomgrad 2
diskretisiert. Das FE-Netz muss eine gleiche Flachendiskretisierung gegeniiberliegender
RUC-Rénder gewéahrleisten, damit die periodischen Randbedingungen Gl. (3-66) bis (3-71)
in das FE-Modell integriert werden koénnen. Fiir die Verhinderung der Starrkdrperbewe-
gungen der RUC werden die drei Verschiebungsfreiheitsgrade im Querschnittsmittelpunkt
einer der beiden Faserrandflichen zu Null gesetzt.

Validierung der Berechnungsmodelle

Hinsichtlich einer Validierung der entwickelten Berechnungsmodelle werden die effektiven
Elastizitatskoeffizienten mit Koeffizienten aus der Literatur verglichen. Fiir den Vergleich
der Ergebnisse werden in den Berechnungsmodellen die in Abb. 5-26 dargestellten RUC-
Querschnitte verwendet. Im Fall des Parallelogramms (siehe Abb. 5-26 rechts) stehen lei-
der nur wenige Arbeiten zur Verfiigung, die fiir Vergleichszwecke genutzt werden kénnen.
Es werden hier fiir den Vergleich effektive Elastizitdtskoeffizienten herangezogen, fiir die
sich in [34], [86] und [83] Werte finden lassen. Fiir eine Validierung der entwickelten Be-
rechnungsmodelle im Fall der beiden anderen RUC-Querschnitte lassen sich in [34], [83]
entsprechende Vergleichsmoglichkeiten finden.

Die effektiven Koeflizienten der Methoden aus der Literatur sind mit ,, AHM* [86], [83] und
,G&N¥ [34] und die Ergebnisse der in dieser Arbeit entwickelten Berechnungsmodelle mit
LFEM“ gekennzeichnet.

Tabelle 5-13: Materialeigenschaften der Faser und Matrix

E™ [GPa) | v™ | E', [GPd] | Vf
26 03] 312 |03

Tabelle 5-14: Normierte effektive Elastizitatskoeffizienten, verwendetes Koordinatensystem
{y1, 92,93}, a = 90°
w/b | o Ciy /G Cilyn/G™ Cleil:f35/ G 032333/ G
AHM | FEM | AHM | FEM | AHM | FEM | AHM | FEM
1.1 | 0.1 | 4.0757 | 4.0756 | 1.6972 | 1.6971 | 1.7319 | 1.7318 | 1.7288 | 1.7287
0.3 | 5.9477 | 5.9460 | 2.1087 | 2.1091 | 2.4169 | 2.4165 | 2.3596 | 2.3598
0.5 | 10.347 | 10.321 | 2.4968 | 2.5095 | 3.8533 | 3.8498 | 3.4096 | 3.4198
1.25 | 0.1 | 4.0847 | 4.0847 | 1.6957 | 1.6957 | 1.7341 | 1.7340 | 1.7268 | 1.7267
0.3 | 6.1334 | 6.1324 | 2.0892 | 2.0900 | 2.4668 | 2.4667 | 2.3256 | 2.3258
0.5 | 12.207 | 12.333 | 2.3617 | 2.4520 | 4.3705 | 4.4358 | 3.2052 | 3.2289
1.5 | 0.1 | 4.1016 | 4.1016 | 1.6917 | 1.6917 | 1.7380 | 1.7380 | 1.7236 | 1.7235
0.3 | 6.5184 | 6.5535 | 2.0439 | 2.0406 | 2.5687 | 2.5782 | 2.2780 | 2.2757

Fiir die Validierung der entwickelten Berechnungsmodelle werden die Phaseneigenschaften
aus [34] und [83] verwendet. Diese Eigenschaften sind in Tab. 5-13 aufgelistet. Die isotro-
pen Phasen sind durch ein Schubmodulverhéltnis der Faser zur Matrix von 120 (Verhéltnis
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wie in [34]) charakterisiert. Diese Materialdaten werden fiir alle entwickelten Berechnungs-
modelle zur Validierung verwendet. In Tab. 5-14 bis 5-19 sind die effektiven Koeffizienten
aufgelistet.

Tabelle 5-15: Normierte effektive Elastizitdtskoeffizienten, verwendetes Koordinatensystem
{y1,92,93}, 0 =90°
wih | o | o/ st /G™ ohilel oilels
AHM | FEM | AHM | FEM | AHM | FEM | AHM | FEM
1.1 | 0.1 | 34.578 | 34.578 | 1.2152 | 1.2152 | 1.2212 | 1.2211 | 1.1567 | 1.1567
0.3 ] 96.853 | 96.853 | 1.7984 | 1.7983 | 1.8864 | 1.8864 | 1.5287 | 1.5285
0.5 | 159.48 | 159.48 | 2.7861 | 2.7860 | 3.3100 | 3.3099 | 2.1612 | 2.1595
1.25 | 0.1 | 34.578 | 34.578 | 1.2113 | 1.2113 | 1.2255 | 1.2254 | 1.1556 | 1.1556
0.3 ] 96.858 | 96.857 | 1.7476 | 1.7476 | 1.9611 | 1.9611 | 1.5231 | 1.5226
0.5 | 159.57 | 159.59 | 2.5576 | 2.5576 | 3.9762 | 3.9762 | 2.1992 | 2.1624
1.5 1 0.1 | 34.578 | 34.578 | 1.2054 | 1.2054 | 1.2326 | 1.2325 | 1.1528 | 1.1528
0.3 196.874 | 96.876 | 1.6808 | 1.6808 | 2.1114 | 2.1114 | 1.5090 | 1.5090

In Tab. 5-14 und 5-15 sind effektive Elastizitdtskoeffizienten in Abhéngigkeit von verschie-
denen Kantenlédngenverhéltnissen und Faservolumenanteilen fiir Verbundwerkstoffe, deren
Faseranordnung durch den rechteckigen RUC-Querschnitt charakterisiert wird (siehe Abb.
5-26, rechts), dargestellt. Neben den Ergebnissen der in dieser Arbeit entwickelten Berech-
nungsmodelle (,FEM®) sind zusétzlich Vergleichsergebnisse (, AHM*) angegeben. Die acht
aufgelisteten effektiven Koeffizienten beschreiben das Materialverhalten in Faserldngsrich-
tung und in der Faserquerschnittsebene. Infolge der Verdnderung des Kantenldngenver-
héltnisses w/b ist zu einem festen Faservolumenanteil ein monotoner Anstieg oder Abfall
fiir fast alle Koeflizienten zu erkennen.

Vergleicht man die Ergebnisse der unterschiedlichen Methoden miteinander, so erkennt
man eine gute Ubereinstimmung bei niedrigen Faservolumenanteilen (vf = 0.1) bis hin zu
einem Wert von 0.3. Fiir 0.5 sind kleine Unterschiede in einigen Koeffizienten erkennbar.

Tabelle 5-16: Normierte effektive Elastizitatskoeffizienten bei einer rhombischen
RUC-Querschnittsgeometrie, verwendetes Koordinatensystem {yi,y2,y3}

o v! Cf{ru /G" Cﬁfx /G" CSgQQ /G™ ng:s; /G™

AHM | FEM | AHM | FEM | AHM | FEM | AHM | FEM
30° 1 0.1 | 4.0376 | 4.0377 | 1.6980 | 1.6979 | 4.1106 | 4.1109 | 34.579 | 34.578
50° | 0.1 | 4.0494 | 4.0494 | 1.7145 | 1.7145 | 4.0572 | 4.0572 | 34.578 | 34.578
0.3 | 5.5696 | 5.5723 | 2.3232 | 2.3191 | 5.7018 | 5.7085 | 96.853 | 96.852
70° 1 0.1 | 4.0609 | 4.0609 | 1.7075 | 1.7074 | 4.0595 | 4.0595 | 34.578 | 34.578
0.3 | 5.7209 | 5.7228 | 2.2425 | 2.2405 | 5.6993 | 5.7009 | 96.851 | 96.851
0.5 | 8.9147 | 8.9576 | 3.0557 | 3.0157 | 8.7726 | 8.8073 | 159.44 | 159.44

In Tab. 5-16 und 5-17 sind acht effektive Koeffizienten fiir Kompositwerkstoffe, deren Fa-
seranordnung durch den rhombischen RUC-Querschnitt nach Abb. 5-26 (Bildmitte) cha-
rakterisiert wird, dargestellt. Die Koeffizienten beschreiben das effektive Materialverhalten
lings und quer zur Faserrichtung. Durch die rhombische Querschnittsgeometrie der RUC
und das in Abb. 5-26 verwendete Koordinatensystem ergibt sich ein Elastizitatstensor, des-
sen Darstellung in M-V-Notation der des Tensors beziiglich monokliner Symmetrie in Gl.
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(2-43) entspricht. Wie bereits in Abschnitt 5.1.1 erwithnt wurde, ist das effektive Material-
verhalten im Allgemeinen orthotrop. Durch eine Transformation in ein geeignetes lokales
Koordinatensystem kann der Tensor in M-V-Notation die Darstellung aus Gl. (2-44) an-
nehmen. Die Koeffizienten der Tab. 5-17 (auker Cfj,) wiirden in diesem Fall den Wert
Null besitzen.

Die berechneten Koeffizienten (,FEM“) in Tab. 5-16 und 5-17 zeigen eine gute Uberein-
stimmung mit den Vergleichsergebnissen (,AHM*“). Wie in den vorherigen zwei Tabellen
sind bei einem hoheren Faservolumenanteil beim Vergleich einiger Koeffizienten kleine Un-
terschiede erkennbar.

Tabelle 5-17: Normierte effektive Elastizititskoeffizienten bei einer rhombischen
RUC-Querschnittsgeometrie, verwendetes Koordinatensystem {y1,y2,ys}

a of Cﬁfh/Gm ngm/Gm ngh/Gm OTQHIA/GI“

AHM FEM AHM FEM AHM FEM | AHM | FEM
30° | 0.1 | 0.0124 | 0.0123 | -0.0335 | -0.0334 | -0.0063 | -0.0063 | 1.1616 | 1.1617
50° | 0.1 | 0.0056 | 0.0056 |-0.0103 | -0.0102 | -0.0014 | -0.0013 | 1.1722 | 1.1721
0.3 | 0.0479 | 0.0482 | -0.1267 | -0.1293 | -0.0236 | -0.0243 | 1.6870 | 1.6919
70° | 0.1 | -0.0038 | -0.0038 | 0.0057 | 0.0057 | 0.0006 | 0.0005 |1.1651 | 1.1650
0.3 | -0.0378 | -0.0378 | 0.0674 | 0.0679 | 0.0089 | 0.0090 | 1.6085 | 1.6097
0.5 | -0.0987 | -0.1017 | 0.2939 | 0.3086 | 0.0586 | 0.0620 |2.4261 | 2.4445

Tabelle 5-18: Normierte effektive Elastizitatskoeffizienten bei einer
RUC-Querschnittsgeometrie in Parallelogrammform, verwendetes Koordinatensystem {y1,y2, y3}

w/b | of Cit /G Cila/G™ Cihan /G™ Cih/G™
AHM | FEM | AHM | FEM | AHM | FEM | AHM | FEM
1.1 [ 0.1 | 4.0621 | 4.0621 | 1.7086 | 1.7084 | 4.0561 | 4.0561 | 1.1657 | 1.1658
0.3 | 5.7327 | 5.7478 | 2.2659 | 2.2555 | 5.6394 | 5.6465 | 1.6077 | 1.6152
0.5 | 8.9137 | 9.1808 | 3.2075 | 3.0681 | 8.3894 | 8.4718 | 2.3723 | 2.4555
1.25 | 0.1 | 4.0741 | 4.0742 | 1.7026 | 1.7025 | 4.0565 | 4.0565 | 1.1607 | 1.1607
0.3 | 5.9190 | 5.9446 | 2.1924 | 2.1819 | 5.6245 | 5.6289 | 1.5625 | 1.5680
1.4 | 0.1 | 4.0861 | 4.0861 | 1.6978 | 1.6978 | 4.0551 | 4.0551 | 1.157 | 1.1570
0.3 | 6.1396 | 6.1817 | 2.1311 | 2.1203 | 5.5872 | 5.5901 | 1.5344 | 1.5389

Auf der rechten Seite in Abb. 5-26 ist die allgemeinste Querschnittsform einer RUC dar-
gestellt, welche sich mit dem entwickelten Berechnungsalgorithmus betrachten lésst. Diese
Form ist das Parallelogramm. Unidirektionale Faserverbundwerkstoffe, die durch eine RUC
mit einem solchen Querschnitt charakterisiert werden und deren Phasen ein isotropes Ma-
terialverhalten aufweisen, besitzen ein effektives monoklines Materialverhalten. Die Dar-
stellung des Elastizitatstensors in M-V-Notation bezogen auf das in Abb. 5-26 dargestellte
Koordinatensystem entspricht der Gl. (2-43).

Die effektiven Koeffizienten in Tab. 5-18 und 5-19 gehoren zu Berechnungsmodellen, in
denen eine RUC mit einem Parallelogramm-Querschnitt genutzt wird. Die Tabellen zeigen
die Abhéngigkeit der Koeffizienten von dem Kantenldngenverhéltnis und dem Faservolu-
menanteil. Der verwendete Winkel a des Parallelogramms berechnet sich aus der Annahme,
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dass b Einheitsldnge hat, und der Formel [34]

b
a = arccos (%> . (5-9)

Es ergeben sich Winkel von ca. 63° (bei w/b = 1.1), 66° (bei w/b = 1.25) und 69° (bei
w/b=1.4).

Die Tab. 5-18 enthélt Koeffizienten, welche das effektive Verhalten in der Querschnittsebe-
ne beschreiben. Im Fall vf = 0.5 weichen die berechneten Koeffizienten C$f, s, und
cslL, (,FEM®) deutlicher von den Vergleichsergebnissen (, AHM“, [83]) ab als der Koeffi-
zient C§,. Ansonsten ist eine gute Ubereinstimmung der berechneten Ergebnisse mit den
Vergleichsergebnissen erkennbar.

Die Koeffizienten C¢5, und C§h, in Tab. 5-19 beschreiben das Schubverhalten des Ver-
bundwerkstoffes léngs zur Faserrichtung. Zusétzlich zu den eigenen Ergebnissen sind Ver-
gleichsergebnisse aus [34] (,G&N“) und [83] (,AHM*) angegeben. Im Unterschied zu den
Koeffizienten aus Tab. 5-18 stimmen die berechneten Ergebnisse auch fiir héhere Faservo-
lumenanteile (vf = 0.5) sehr gut mit den Vergleichsergebnissen iiberein.

Tabelle 5-19: Normierte effektive Elastizitatskoeffizienten bei einer
RUC-Querschnittsgeometrie in Parallelogrammform, verwendetes Koordinatensystem {y1,v2,v3}
w/b | vf Ciis/G™ Oy /G™
G&N | AHM | FEM | G&N | AHM | FEM
1.1 1 0.3 | 1.87 | 1.8657 | 1.8657 | 1.81 | 1.811 | 1.8109
0.5 ] 3.11 | 3.1088 | 3.1088 | 2.81 | 2.8088 | 2.8087
1.25 1 0.3 | 1.92 | 1.9245 | 1.9245 | 1.77 | 1.7674 | 1.7674
1.4 10.3| 2.00 | 1.9998 | 1.9998 | 1.72 | 1.7252 | 1.7252

Es ldsst sich zusammenfassen, dass die Elastizitdtskoeffizienten der Berechnungsmodelle
mit den unterschiedlichen RUC-Querschnitten im GroRen und Ganzen eine gute Uber-
einstimmung mit den Vergleichsergebnissen aufweisen. Diese Ubereinstimmung mit den
Homogenisierungsmethoden aus der Literatur zeigt, dass sich die entwickelten Berech-
nungsmodelle fiir die Bestimmung der effektiven Elastizitdtskoeffizienten eignen.

‘Weitere Untersuchungen

Wie schon vorher erwéhnt wurde, wird im Fall des parallelogrammformigen RUC-
Querschnitts die Faseranordnung iiber das Kantenldngenverhéltnis w/b und den Winkel
« gesteuert. Die nachfolgenden Betrachtungen haben das Ziel, den Einfluss des Kanten-
langenverhéltnisses und des Winkels auf die effektiven Elastizitétskoeffizienten nidher zu
untersuchen. Dies wird anhand ausgewihlter Koeffizienten veranschaulicht.

Fiir die Untersuchungen werden die Materialphasen der Matrix und der Faser als isotrop
angenommen. Die Eigenschaften der Phasen sind durch das Schubmodulverhéltnis

G[

=120 5-10
Gm ( )
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und die Querkontraktionszahlen vf = 0.2 beziehungsweise ™ = 0.35 gegeben (G™ wird 1
gewihlt). Der Faservolumenanteil wird auf vf = 0.3 festgelegt.

In den Abb. 5-27 bis 5-30 sind ausgewéhlte Elastizitdtskoeffizienten in Abhéngigkeit vom
Winkel o und dem Kantenlédngenverhéltnis w/b dargestellt. Der Winkel variiert von 50°
bis 90° und das Kantenlédngenverhéltnis betrégt 1.0, 1.1 beziehungsweise 1.2.

7.5

7.4¢

#uu 1111, w/b 1.

0

A

| {Fun—1111 w/b 1.2
-o- |||| 2222, w/b 1.0
1

2

® |- = -iiii= 2222 w/b 1

50 60 70 80 90
o
Abbildung 5-27: Normierte effektive Koeffizienten C§; /G™ und C§h, /G™ in Abhiingigkeit
von a und w/b, verwendetes Koordinatensystem {y1,%s,¥3}, vf = 0.3
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Abbildung 5-28: Normierte effektive Koeffizienten C§ff,; /G™ und Cgff,,/G™ in Abhingigkeit
von o und w/b, verwendetes Koordinatensystem {y1,y2,y3}, of = 0.3
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Bei einem Kantenlangenverhéltnis von w/b = 1.0 und einem Winkel o = 60° beziehungs-
weise o = 90° ergibt sich ein hexagonales beziehungsweise tetragonales Materialverhalten
des Verbundwerkstoffes. Die effektiven Koeffizienten C$; und C$L,, haben im numerischen
Sinn den gleichen Wert. Gleiches gilt fiir die anderen paarweise dargestellten Koeffizienten
(zum Beispiel C§l, und C¢L,). Die Koeffizienten C¢f; und C¢L,, sind Null.
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Abbildung 5-29: Normierte effektive Koeffizienten Cfff;; /G™ und Cgf,,/G™ in Abhingigkeit
von o und w/b, verwendetes Koordinatensystem {y1,y2,y3}, vf = 0.3
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Abbildung 5-30: Normierte effektive Koeffizienten C§ff; /G™ und Cf,,/G™ in Abhingigkeit
von o und w/b, verwendetes Koordinatensystem {y1,y2,y3}, vf = 0.3
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Die Verdnderung des Kantenlédngenverhéltnisses wirkt sich unterschiedlich auf die effekti-
ven Koeffizienten aus. Die Werte einiger Koeffizienten (C¢L,, C¢iL.) werden grofer, with-
rend andere kleiner werden (Cs,, C5E..). Die Hauptursache dafiir liegt in dem veriinderten
Faserabstand. Eine weitere Ursache ist, dass mit einem grofer werdenden Kantenlédngenver-
hiiltnis das Faservolumen in der RUC steigt, da der Faservolumenanteil (v = 0.3) konstant
gehalten wird. Der Volumenanstieg in Kombination mit dem verénderten Faserabstand be-
einflusst die elastische Interaktion zwischen benachbarten RUCs in ;- und ye-Richtung.
Der Einfluss der Interaktion ist dabei zuriickzufithren auf die verwendeten periodischen
Randbedingungen, die die Stetigkeit der Spannungen und Verschiebungen am gemeinsa-
men Rand benachbarter Zellen gewéhrleisten. All das lasst sich am Beispiel der RUC mit
Rechteckquerschnitt (o = 90°) néher verdeutlichen. Die Fasern liegen hier in y;- und yo-
Richtung auf einer Linie. Mit einem grofer werdenden Kantenldngenverhéltnis nimmt der
Faserabstand zwischen benachbarten RUCs in y;-Richtung ab und in y»-Richtung zu. Das
bedeutet, dass die Erhohung des Kantenlingenverhéltnisses in der Regel zu einem aniso-
troperen Materialverhalten des Verbundwerkstoffes fiihrt.

Wie bereits erwihnt wurde, haben die Koeffizienten O, und C$E, aus Abb. 5-27 bei
w/b = 1.0, a = 60° den gleichen Wert. Die Gleichheit der Koeflizienten lasst sich auch
bei den Kantenlangenverhéltnissen w/b = 1.1 und w/b = 1.2 wiederfinden, jedoch zu
bestimmten Winkeln o # 60°. Fiir die paarweise dargestellten Koeffizienten der ande-
ren Abbildungen lisst sich Ahnliches beobachten. Dies ist damit zu erkliren, dass sich
zu diesen Winkelkonfigurationen Faseranordnungen ergeben, bei denen man anstelle des
Parallelogramm-Querschnitts einen Rechteck-Querschnitt wéihlen kann (siehe Abb. 5-31).
Infolge der neuen Geometrie der RUC und dessen Symmetrieebenen ergibt sich, dass das
effektive Materialverhalten im Allgemeinen orthotrop ist. Die Ubereinstimmung in den
Koeflizientenwerten aus Abb. 5-27, 5-28 und 5-29 kann dem rechten RUC-Querschnitt aus
Abb. 5-31 zugeordnet werden. Bei Verwendung des linken RUC-Querschnitts aus Abb. 5-31
werden die Koeffizienten C$f; und Cff,, (siche Abb. 5-30) zu Null.

NN

LoD .

i gl

Abbildung 5-31: RUC-Querschnitte mit speziellen Winkelvorgaben « bei einem
Kantenlédngenverhéltnis von w/b = 1.1, links: o > 60°, rechts: o < 60°

5.1.4 Parallelogrammf{6rmiger RUC-Querschnitt mit imperfektem
Phaseniibergang
Dieser Teilabschnitt beschéftigt sich mit unidirektionalen elastischen Faserverbundstruk-

turen, die durch eine RUC mit einem Parallelogramm-Querschnitt représentiert werden.
Im Unterschied zum vorherigen Teilabschnitt wird der Kontakt zwischen der Faser- und
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Matrixphase durch einen imperfekten Phaseniibergang beschrieben.

Ziel dieses Teilabschnittes ist es, die verdnderten Berechnungsmodelle zu validieren.

Zur Bestimmung der effektiven Materialeigenschaften werden wie in Teilabschnitt 5.1.3
RUC-Querschnitte beriicksichtigt, bei denen die Kante b Einheitslinge hat (siehe Abb.
3-10).

Fiir die FE-Modellierung der Phasen werden lineare Hexaeder- und Pentaeder-Elemente
(Polynomgrad 1) verwendet. Die imperfekte Phasentibergangsbeschreibung wird durch Fe-
derelemente realisiert (siche Abschnitt 4.4).

Validierung der Berechnungsmodelle

Die Validierung der Berechnungsmodelle erfolgt anhand bereits betrachteter Modelle. Als
Vergleichsmodelle dienen die Berechnungsmodelle aus dem Teilabschnitt 5.1.2. Die ver-
wendeten RUC-Querschnitte in den Vergleichsmodellen und in den aktuellen Berechnungs-
modellen sind der Abb. 5-32 zu entnehmen. Mit den beiden Modellvarianten lassen sich
effektive Elastizitatskoeffizienten von Verbundwerkstoffen mit einer rhombischen Faseran-
ordnung berechnen. Fiir die verschiedenen Berechnungsmodelle werden unterschiedliche
Koordinatensysteme verwendet. Daraus entstehen Vorteile in der Realisierung der peri-
odischen Randbedingungen. Im Fall des RUC-Querschnitts aus der Parallelogrammbe-
schreibung wird das globale Koordinatensystem {yi,y2,ys} genutzt, wihrend im anderen
Fall das lokale Koordinatensystem {y},v5,y4} verwendet wird. Es werden die effektiven
Elastizitatskoeffizienten der Modelle berechnet, auf ein gemeinsames Koordinatensystem
transformiert und anschliefsend miteinander verglichen.

Fiir die Validierung werden die Materialphasen aus der Tab. 5-8 verwendet. Die Faserver-
teilung wird durch den Winkel ov = 45° beschrieben. Der Faservolumenanteil betragt 0.4.
Die verwendete imperfekte Phaseniibergangsbeschreibung in den beiden Modellvarianten
wird durch G' (variierbar), ' = 0.3 und 1 = 0.001 charakterisiert.

A )2
V2 Y
; z; E h

Abbildung 5-32: Darstellung der RUC-Querschnitte und die jeweils betrachteten
Koordinatensysteme, links: RUC-Querschnitt aus der Parallelogrammbeschreibung (w/b = 1.0)
rechts: RUC-Querschnitt aus Abschnitt 5.1.2

In Abb. 5-33 sind exemplarisch normierte effektive Elastizitdtskoeffizienten in Abhéngigkeit
von log;,(G'/G™) priisentiert. Dies sind C§ff,, /G™, Cs,,/G™, Csf,. /G™ und Cf,/G™. Die
Koeffizienten der verschiedenen Modellvarianten sind mit ,,Para® (linker RUC-Querschnitt
in Abb. 5-32) und ,Rect” (rechter RUC-Querschnitt in Abb. 5-32) gekennzeichnet. Fiir die
Darstellung der Koeffizienten wurde das lokale Koordinatensystem {y}, v5,v4} verwendet.
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Man erkennt iiber den gesamten Bereich von log,,(G'/G™) eine sehr gute Ubereinstimmung
der effektiven Koeflizienten.

2
5.6¢ 1.8
4.9 1.67
1.4¢
e 42 1.2t
Q <-C /G™, Rect IRl eff jgm
:5\535 1f1f11 , =0l %C%%IG , Rect
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log, 0(G'/G’“) log, ,(G/G™)

Abbildung 5-33: Normierte effektive Koeffizienten C¢ff

o/ G™ und Cfﬁ] /G™, verwendetes

Koordinatensystem {y{,y5,y5}, n = 0.001, vf = 0.4, a = 45°

Eine sehr gute Ubereinstimmung ist auch bei einer Variation des Winkels zu erkennen
(sieche Abb. 5-34). Fiir den imperfekten Phaseniibergang wurden die Werte G* = 10 GPa,
v = 0.3 und n = 0.001 verwendet.
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Abbildung 5-34: Normierte effektive Koeffizienten C$ff /G™ und Cfﬁ] /G™, verwendetes

Koordinatensystem {y}, 45, y5}, n = 0.001, o' = 0.4, G' = 10 GPa, v} = 0.3

Es lasst sich zusammenfassen, dass die Berechnungsmodelle aus diesem Teilabschnitt in der
Lage sind, die Betrachtungen aus allen vorherigen Teilabschnitten des Kapitels abzudecken.
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5.2 Piezoelektrische unidirektionale
Faserverbundstrukturen

Dieser Abschnitt beschéftigt sich mit der Berechnung und der Bewertung von effektiven
Materialeigenschaften piezoelektrischer Verbundwerkstoffe. Dabei wird der Einfluss der
Faserverteilung und der Einfluss des Phaseniibergangs auf die effektiven Materialeigen-
schaften untersucht. Wie im elastischen Fall wird die Faserverteilung {iber geometrische
Groken der RUC gesteuert. Fiir den in dieser Arbeit allgemeinsten Fall der periodischen
Faserverteilung (Parallelogramm-Querschnitt) sind das der Winkel « und die Kantenlan-
gen des RUC-Querschnitts. Der Phasentibergang wird durch die Angabe eines perfekten
beziehungsweise imperfekten Phaseniibergangs beschrieben.

Im Abschnitt 3.5 sind die wichtigsten Grundlagen hinsichtlich der theoretischen Betrach-
tung festgehalten. Da fiir die Untersuchung das numerische Verfahren der FEM verwendet
wird, sind im Kapitel 4 wichtige Informationen hinsichtlich der Modellierung und der Be-
rechnung von Untersuchungsergebnissen festgehalten.

5.2.1 Rhombischer RUC-Querschnitt mit perfektem
Phaseniibergang

Im Abschnitt 5.1.1 wurden Berechnungsmodelle fiir unidirektionale elastische Verbund-
werkstoffe, die durch einen rhombischen RUC-Querschnitt und einen perfekten Phasen-
iibergang charakterisiert werden, behandelt. Diese Berechnungsmodelle werden so verin-
dert, dass sich effektive Materialeigenschaften von piezoelektrischen Faserverbundwerkstof-
fen berechnen lassen. Ziel dieses Teilabschnittes ist es, den Einfluss der Winkelvariation
und somit der Faserverteilung und den Einfluss des Faservolumenanteils auf das effektive
Materialverhalten zu untersuchen.

Zuerst werden die Berechnungsmodelle validiert. Dies geschieht durch einen Vergleich der
berechneten effektiven Materialeigenschaften mit Ergebnissen aus vorhandener Literatur.
Im Anschluss daran wird untersucht, wie sich eine Variation des Faservolumenanteils und
der Faseranordnung auf die effektiven Koeffizienten auswirkt.

Die RUC-Geometrie wird mit Hexaeder- und Pentaeder-Elementen vom Polynomgrad 2
diskretisiert. Infolge der piezoelektrischen Modellierung werden fiir die Berechnung der ef-
fektiven Koeffizienten die Randbedingungen aus Gl. (3-107) bis (3-115) verwendet. Des
Weiteren werden die drei Verschiebungsfreiheitsgrade und der elektrische Freiheitsgrad im
Querschnittsmittelpunkt einer der beiden Faserrandflichen der zentrierten Faser zu Null
gesetzt.

Validierung der Berechnungsmodelle

Fiir die Validierung der Berechnungsmodelle wird auf eine Beschreibung eines Kompo-
sitwerkstoffes aus [78| zuriickgegriffen. In Tab. 5-20 sind die Materialeigenschaften der
Phasen, der Matrix (Epoxidharz) und der Fasern (PZT-5), festgehalten. Die elastischen
Eigenschaften der Fasern spiegeln dabei ein isotropes Materialverhalten wider, wihrend
die piezoelektrischen und dielektrischen ein transversal isotropes Verhalten charakterisie-

ren. Das Materialverhalten der Matrix ist isotrop. Die Fasern sind unidirektional in einer
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hexagonalen Anordnung (o = 60°) in die Matrix eingebettet. Zwischen Faser und Matrix
existiert ein perfekter Phaseniibergang. Der Faservolumenanteil betragt 0.5.

Tabelle 5-20: Materialdaten der Phasen des betrachteten Kompositwerkstoffes aus [ 78]

Phase E €311 €333 €223 K11 K33

[GPa] [C/m?] | [C/m?] | [C/m?] | 107°[C*/(Nm®)] | 10~°[C*/(Nm®)]
Faser 87 0.34 -2.1 9.5 9.2 4.071 2.079
Matrix | 3 ‘ 0.33 ‘ 0 ‘ 0 ‘ 0 ‘ 0.079 ‘ 0.079

In Tab. 5-21 und 5-22 sind ausgewdahlte effektive Koeffizienten (gekennzeichnet mit ,FEM®)
und Vergleichsergebnisse aus [78] (gekennzeichnet mit ,,Pastor”) aufgelistet. Die erste Tabel-
le beinhaltet die elastischen Eigenschaften. Die zweite Tabelle enthélt die piezoelektrischen
und dielektrischen Eigenschaften. Das effektive Materialverhalten ist transversal isotrop.
Da in diesem Fall ) = Chy, Ol = Csflys, Cshas = Ciiia, €Sy = ey, €553 = eff; und

KT = kT gilt, enthalten die Tabellen alle von Null verschiedenen effektiven Koeffizienten.

Tabelle 5-21: Effektive elastische Materialeigenschaften sowie Vergleichsergebnisse aus [ 78]

Citn | Ol | Cflss | Cslss | s | China
[GPa] | [GPa] | [GPa] | [GPa] | [GPa] | [GPa]
FEM | 10.2710 | 4.5236 | 4.9661 | 48.3341 | 3.2047 | 2.8738
Pastor | 10.4017 | 4.4771 | 4.9952 | 48.3542 | 3.2466 | 2.9623

Tabelle 5-22: Effektive piezoelektrische Materialeigenschaften sowie Vergleichsergebnisse aus

[78]
egifl 63‘:?3 "ﬂflf /€§§
[C/m?] | [C/m?] C/ mQ] 107°[C?/(Nm?)] | 10-°[C?/(Nm®)]
FEM | -0.0873 | 5.4053 | 0.0276 02299 1.0996
Pastor | -0.0882 | 5.4047 | 0.0287 0.2330 1.0996

Bei dem Vergleich der gelisteten Werte erkennt man, dass sie nahe beieinander liegen.
Da in [78] fiir die Berechnung der Koeffizienten auch die FEM verwendet wird, liegt die
Vermutung nahe, dass die Diskrepanz in den Werten zum Teil aus der FE-Diskretisierung
resultiert. Die FE-Diskretisierung der RUC aus [78] ist grober als die Diskretisierung der
RUC in dieser Arbeit. Der hexagonale RUC-Querschnitt aus der Literatur ist in 192 Ele-
mente unterteilt, der RUC-Querschnitt in dieser Arbeit in 4784 Elemente. Hinzu kommt,
dass in [78] lineare Elemente anstelle von quadratischen verwendet werden.
Nichtdestotrotz kann festgestellt werden, dass sich die entwickelten Modelle fiir die Be-
rechnung der effektiven Eigenschaften eignen.

Weitere Untersuchungen

Nach der Validierung der Berechnungsmodelle soll im Folgenden der Einfluss der Faser-
verteilung auf die effektiven Eigenschaften untersucht werden. Dabei wird wie in den vor-
angegangenen Abschnitten die Faserverteilung iiber die Verdnderung des Winkels « (siche
dazu Abb. 5-7) gesteuert.
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Fiir die Untersuchung werden die Materialdaten aus Tab. 5-20 verwendet. Um den Ein-
fluss des Faservolumenanteils auf die effektiven Koeffizienten mitzuberiicksichtigen, werden
exemplarisch die Volumenanteile vf = 0.3 und vf = 0.5 genutzt.

Cil —<-cf V=03
1111’ .
eff f_,
165 <?\ , ~6-C7},,v'=05
\ eff f_
3 O 02222,v =0.3
1.4¢ \ eff fo
\ - C5Y V=05
z ®,
=12 .
B = &
O Q\ VAN VAN
1t
0.8} ©-
o5 .

0. y
%0 40 50 60 70 80 90

Abbildung 5-35: Effektive Elastizitatskoeffizienten in Abhéngigkeit von «, verwendetes
Koordinatensystem {y},v5,y5}, o' = 0.3 und of = 0.5
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? 11337 T
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Abbildung 5-36: Effektive Elastizitiitskoefﬁzientel_l in Abhéngigkeit von «, verwendetes
Koordinatensystem {y},y5,v4}, vf = 0.3 und »f = 0.5

In Abb. 5-35 bis 5-40 sind exemplarisch ausgewéhlte effektive Werkstoffeigenschaften dar-
gestellt. Diese Eigenschaften beziehen sich auf das Materialverhalten in Faserlangsrichtung
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und quer dazu. Im Allgemeinen l&sst sich das effektive Verhalten in den lokalen Koordina-
ten {y}, vh, y4} durch die folgende Matrix ausdriicken

* k%
* k%
* k%
o 000
C = 000
000
000
000
* k%

OO ¥ OO O

0
0
0

O ¥ OO OO

0
*

0

* ¥ OO O OO

0
0

OO % ¥ OO O OO

O OO OO

0
*

0

O O DO ¥ ¥ ¥

0
0

*

(5-11)

die die materialbeschreibende effektive Matrix in M-V-Notation fiir piezoelektrische Kom-
positwerkstoffe aus Gl. (3-91) widerspiegelt. Mit ,, *“ sind in der Matrix effektive Kompo-
nenten gekennzeichnet, die von Null verschieden sind. Fiir den Fall, dass die Matrix auf
das globale Koordinatensystem bezogen wird, ergibt sich

*¥ O O OO ¥ ¥ ¥ X
*¥ O O DO D *x Kk ¥ ¥
*¥ O O OO ¥ ¥ ¥ X

*¥ O O DO DO *x Kk ¥ ¥

(e}

O *x ¥ ¥ ¥ O O O

0
0

D ¥ % ¥ ¥ O O

o

D * X ¥ ¥ O OO

o

O % ¥ ¥ ¥ O OO

% 40 50 60 70 80 90
o

* OO DO DO ¥ ¥ ¥ X
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Abbildung 5-37: Effektive Elastizitdtskoeflizienten in Abhéngigkeit von «, verwendetes
Koordinatensystem {y/,y5,y4}, vf = 0.3 und v = 0.5
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Abbildung 5-38: Effektive Elastizitatskoeffizienten in Abhéngigkeit von «, verwendetes
Koordinatensystem {y},y5,v5}, vf = 0.3 und of = 0.5

eff f_
—o-€,05V =0.3

$e§g3,vf=0.5

eff  f_
O-epgV =0.3

- ef:f3,vf=0.5

Abbildung 5-39: Effektive Elastizitdtskoeffizienten in Abhéngigkeit von «, verwendetes
Koordinatensystem {y}, 45, v4}, v = 0.3 und of = 0.5

Die in den Abbildungen paarweise dargestellten effektiven Koeffizienten weisen fiir @ = 60°
und fiir @ = 90° im numerischen Sinn gleiche Werte auf. Eine Erh6hung des Faservolumen-
anteils bewirkt eine Erhohung der effektiven Elastizitatskoeffizienten und der dielektrischen
Koeffizienten. Die Werte der piezoelektrischen Koeffizienten werden grofer (im Fall von
e?ﬁ) beziehungsweise kleiner (im Fall von effj). Ebenso ist erkennbar, dass die anisotrope
Auspriagung der Koeffizienten mit einem zunehmenden Volumenanteil der Faser stérker
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zur Geltung kommt. Wie bei der elastischen Betrachtung aus Abschnitt 5.1.1 zeigen sich
bei sehr kleinen Winkeln die gréfsten Wertunterschiede in den paarweise auftretenden Ko-
effizienten.

Wie grof der Einfluss der Faseranordnung auf das effektive Materialverhalten ist, verdeut-
lichen die Tab. 5-23 und 5-24. Die hier aufgelisteten Werte im Fall von vf = 0.5 spiegeln die
prozentuale Abweichung des Minimalwertes zum Maximalwert eines effektiven Koeffizien-
ten wider. Der Minimal- und Maximalwert wird aus einem Vergleich der Koeffizientenwerte
fiir alle Winkelkonfigurationen bestimmt. Fiir die Berechnung der Abweichung wird die
Formel in Gl. (5-6) verwendet. Fiir die meisten Koeffizienten lasst sich eine deutliche Ab-
weichung feststellen. Selbst bei einer Einschrankung auf 60° < a < 90° ist im Fall einiger
Koeffizienten ein noch ausgepriagter Einfluss der Faserverteilung zu erkennen.

Tabelle 5-23: Prozentuale Abweichung des Minimalwertes zum Maximalwert fiir ausgewéhlte
Koeffizienten, vf = 0.5
eff eff eff eff eff eff eff eff eff
Chin ‘ Caan ‘ Clans ‘ Cla1a ‘ €311 ‘ €322 ‘ €923 ‘ K11 ‘ Koo

72% 405 % [39.5% | 349 % | 262 % [69.1% | 78.0 % | 21.9 % | 41.8 %

Tabelle 5-24: Prozentuale Abweichung des Minimalwertes zum Maximalwert fii_r ausgewdahlte
Koeffizienten bei einer Einschriankung des Winkels auf 60° < a < 90°, of =05
it ‘ Cshs ‘ C§§23 Cifs ‘ egflfl ‘ egfzfz ‘ eggs ‘ ot ‘ K55
42% [55% 46 % [227% [38% [4.0% [150% |47 % |49 %

eff f_
Q -o-x3,v'=0.3
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3.5} \ : : : %Kﬂ,v =0.5
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Abbildung 5-40: Effektive Elastizitdtskoeffizienten in Abhéngigkeit von «, verwendetes
Koordinatensystem {y/,v5,y4}, vf = 0.3 und v = 0.5

Es gibt effektive Koeffizienten, die nahezu unabhéingig vom Winkel o und somit unabhingig

von der Faseranordnung sind. Zu diesen gehdren die Koeffizienten e$f,, x5 und Cst, (siehe

Abb. 5-41). Die Ursache dafiir ist die unidirektionale Anordnung der Fasern.
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Abbildung 5-41: Effektive Koeffizienten e§i; und x$f in Abhéngigkeit von «, verwendetes
Koordinatensystem {y},45,v5}, o' = 0.3 und of = 0.5

5.2.2 Parallelogrammférmiger RUC-Querschnitt mit perfektem
Phaseniibergang

In diesem Teilabschnitt werden Berechnungsmodelle fiir piezoelektrische Verbundwerkstof-
fe behandelt, deren Faserverteilung durch eine RUC mit einem parallelogrammférmigen
Querschnitt reprasentiert wird. Der Phasenkontakt zwischen Matrix und Faser wird als
perfekt angenommen. Wie bereits aus dem Teilabschnitt 5.1.3 bekannt ist, wird die Faser-
verteilung {iber den Winkel v und das Kantenléngenverhéltnis des RUC-Querschnitt w/b
gesteuert. Das erste Ziel dieses Teilabschnittes ist die Validierung der Berechnungsmodelle.
Im Anschluss daran wird der Einfluss des Winkels und des Kantenlingenverhéltnisses auf
die effektiven Werkstoffeigenschaften untersucht.

Fiir die FE-Diskretisierung werden quadratische Hexaeder- und Pentaeder-Elemente (Poly-
nomgrad 2) genutzt. Die verwendeten Randbedingungen fiir die Berechnung der effektiven
Materialeigenschaften sind in Abschnitt 3.5 ndher erlautert.

Validierung der Berechnungsmodelle

Die Validierung der Berechnungsmodelle erfolgt anhand bereits behandelter Modelle aus
dem Teilabschnitt 5.2.1. Dazu werden die berechneten effektiven Materialeigenschaften der
verschiedenen Modelle miteinander verglichen. Dabei ist es ausreichend, den Vergleich auf
ausgewéhlte effektive Koeffizienten zu beschranken. In Abb. 5-32 sind die Querschnitte der
RUCs der zwei Modellvarianten dargestellt. Da in den Berechnungsmodellen unterschied-
liche Koordinatensysteme verwendet werden, ist eine Koordinatentransformation der be-
rechneten effektiven Koeffizienten erforderlich.

Fiir die Validierung werden die Phaseneigenschaften aus der Tab. 5-20 verwendet. Der
Faservolumenanteil ist auf vf = 0.3 festgelegt.
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Abbildung 5-42: Effektive Elastizititskoeffizienten in Abhéngigkeit von «, verwendetes
Koordinatensystem {y},y5, v}, vf = 0.3

In Abb. 5-42 und 5-43 sind die effektiven Koeffizienten der zwei Modellvarianten in Ab-
héngigkeit des Winkels o dargestellt. Es ist unabhéngig von der Faseranordnung eine gute
Ubereinstimmung fiir alle Koeffizienten erkennbar.
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Abbildung 5-43: Effektive piezoelektrische und dielektrische Koeffizienten in Abhéngigkeit von
a, verwendetes Koordinatensystem {y}, 5,94}, o' = 0.3

Daraus lésst sich schlussfolgern, dass sich die Berechnungsmodelle auf Basis der RUC mit
dem parallelogrammférmigen Querschnitt zum Berechnen der effektiven Werkstoffeigen-
schaften eignen.

Weitere Untersuchungen

Unter Verwendung der validierten Berechnungsmodelle wird nachfolgend der Einfluss der
Faseranordnung auf die effektiven Koeffizienten untersucht. Wie bereits bekannt, lasst sich
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die Faseranordnung iiber den Winkel a und das Kantenldngenverhaltnis w/b des RUC-
Querschnitts steuern. Die verwendeten Phasen fiir die Beschreibung des Kompositwerk-
stoffes sind die gleichen wie bei der Validierung (Tab. 5-20). Der Winkel « variiert von 50°
bis 90°. Das Kantenldngenverhéltnis w/b nimmt Werte von 1.0, 1.1 oder 1.2 an.

Im Allgemeinen lésst sich das effektive Materialverhalten, bezogen auf das Koordinaten-
system {y1, y2, y3}, durch die folgende Matrix in M-V-Notation beschreiben

* x x x 0 0 0 0 =
* x x x 0 0 0 0 =%
* x x x 0 0 0 0 =%
* x x x 0 0 0 0 x
CT"—1 0000 % %% %0 |, (5-13)

0000 % % % % 0
00 00 % x % % 0

00 0 % x % % 0
* x x x 0 0 0 0 =

wobei mit ,, * “ die Komponenten der Matrix gekennzeichnet sind, die nicht Null sind.
In Abb. 5-44 sind ausgewéhlte piezoelektrische und dielektrische Koeffizienten paarweise
dargestellt. Die effektiven Koeffizienten beschreiben das Verhalten des Kompositwerkstof-
fes quer zur Faserrichtung. Bei einem Kantenldngenverhéltnis von 1.0 und einem Winkel
von 60° und 90° haben die paarweise dargestellten Koeffizienten im numerischen Sinn den
gleichen Wert. Gleiche Koeffizientenwerte lassen sich auch bei hoheren Kantenldngenver-
héltnissen beobachten. Je hoher das Verhéltnis wird, desto kleiner ist der Winkel «, bei
dem sich die Gleichheit ergibt. Der grofite Wertunterschied in den paarweise dargestellten
Koeffizienten tritt jeweils bei 90° und w/b = 1.2 ein.

Zusammenfassend ldsst sich sagen, dass der Einfluss des Winkels und des Kantenldngen-
verhéltnisses in Analogie zu dem elastischen Fall aus Teilabschnitt 5.1.1 zu bewerten ist.

-0.036 1,610

-0.037
B & 5-ijj=311, wib=1.0 5ii=11, wb=1.0
€ -0.038%) ||=-iji=311, wib=1.1 ~%-ii=11, w/b=1.1
5 i -e-ijj=311, wib=1.2 ©-ii=11, wb=1.2
o , -2-ijj=322, wib=1.0 -5-ii=22, wib=1.0
©,=-0.039¢ 1]-0-ijj=322, w/b=1.1 1-0-ii=22, w/b=1.1

-©-ijj=322, wib=1.2 | [-oii=22, wib=1.2
-0.04 |
-0.041

50 60 70 80 90
o

Abbildung 5-44: Effektive piezoelektrische und dielektrische Koeffizienten in Abhéngigkeit von
a und w/b, verwendetes Koordinatensystem {y1,y2,y3}, v/ = 0.3
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5.2.3 Parallelogrammformiger RUC-Querschnitt mit imperfektem
Phaseniibergang

Die Berechnungsmodelle aus dem vorherigen Teilabschnitt werden nun so verdndert, dass
anstelle des perfekten Phaseniibergangs ein imperfekter Phaseniibergang verwendet wird.
Der imperfekte Ubergang wird durch die Beziehungen in der Gl. (3-120) und (3-121) be-
schrieben. In [84] wurde der Einfluss eines abgewandelten imperfekten Phaseniibergangs
fiir unidirektionale piezoelektrische Faserverbundwerkstoffe behandelt. Anstelle der elektri-
schen Bezichung in Gl. (3-120) wurde ein elektrisch perfekter Ubergang verwendet. Zusitz-
lich wurde kein Bezug zu einer isotropen Zwischenphasenmodellierung hergestellt, wodurch
zwischen den Parametern K7, ¢ = 7,6,z keine Abhéngigkeit bestand. Daher konnte der
Einfluss von jedem K auf die effektiven Koeflizienten separat untersucht werden.

Das Ziel dieses Teilabschnittes ist es, den Einfluss des imperfekten Phaseniibergangs nach
GL (3-120) und (3-121) auf die effektiven Koeffizienten zu untersuchen.

Die Beziehung aus Gl. (3-121) verkniipft die Parameter der imperfekten Phaseniibergangs-
beschreibung K7, 7 = r, 0, z, Kj mit den Materialeigenschaften einer sehr diinnen isotropen
nichtpiezoelektrischen Zwischenphase. Das ermoglicht es zusétzlich, die Berechnungsmo-
delle anhand von Drei-Phasen-Modellen zu validieren.

Fiir die FE-Diskretisierung werden lineare Hexaeder- und Pentaeder-Elemente (Polynom-
grad 1) verwendet. Der elastische Teil der imperfekten Phaseniibergangsbeschreibung wird
durch Federelemente realisiert. Der elektrische Teil wird durch Kondensatorelemente simu-
liert (siche Abschnitt 4.4).

Die fiir die Untersuchung verwendeten Phasen sind der Tab. 5-20 zu entnehmen. Die Fa-
seranordnung soll eine eher untergeordnete Rolle einnehmen. Daher werden das Kanten-
langenverhéltnis des RUC-Querschnitts w/b und der Winkel a auf 1.0 beziehungsweise 60°
festgelegt. Der Faservolumenanteil betragt 0.4.

10X 10° 53X 10°
eff eff
-&-C3144:3P 25 ©-C 304:3P
¢ eff . eff
8 —-C{y,Feder —Canq Feder
eff 2 eff
g 6 © Capp3P E © Cl3133P
— eff — eff
£k > G,y Feder - 551 5 % Gy, 5Feder
o 4 o
1
-%-4-3-2-1 012345 -%-4-3-2-1 012345
Iogw(G'/Gm) Iogw(G'/Gm)

Abbildung 5-45: Effektive Elastizitéitskoeffizienten in Abhéngigkeit von G1/G™, x!/k™ =1,
verwendetes Koordinatensystem {y1 , Y2, y3}

Fiir die Validierung der Berechnungsmodelle mit Drei-Phasen-Modellen werden noch In-
formationen hinsichtlich der Zwischenphase bendtigt, welche auch in die Gl (3-121) fiir
den imperfekten Phaseniibergang einfliefen. Die Dicke der Zwischenphase wird auf ein Tau-
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sendstel des Faserradius festgelegt. Die Querkontraktionszahl ' wird mit 0.3 angenommen.
Der Schubmodul G* und die dielektrische Konstante ' werden in der Untersuchung als va-
rilerbare Grofsen behandelt.

In Abb. 5-45 und 5-46 sind ausgewé&hlte elastische, piezoelektrische und dielektrische Koef-
fizienten dargestellt, die das effektive Materialverhalten des Kompositwerkstoffes bei einem
variierenden Schubmodul G' und einer festen dielektrischen Konstante x! = ™ beschrei-
ben. Die Abkiirzung , Feder kennzeichnet die Koeffizienten der Berechnungsmodelle mit
dem imperfekten Phaseniibergang. Die Koeffizienten der Drei-Phasen-Modelle sind durch
3P gekennzeichnet.

In Abb. 5-45 sind die elastischen Koeffizienten zu betrachten. Es ist eine gute Ubereinstim-
mung mit der Drei-Phasen-Modellierung zu erkennen. Ist der Zwischenphasenschubmodul
sehr viel grofer (ab G'/G™ = 3) als die der anderen Phasen des Kompositwerkstoffes, so ist
ein zunehmender Unterschied in den Werten der verschiedenen Modellierungen festzustel-
len. Das liegt daran, dass der Einfluss des Anteils der Zwischenphase auf die Berechnung
der makroskopischen Spannungen zunimmt. Die paarweise dargestellten Koeffizienten CST |
und C$E, weisen jeweils fiir beide Berechnungsmodellierungen den gleichen Wert auf, was
auf die hexagonale Faseranordnung zuriickzufiihren ist. Analoges lisst sich fiir C$5, und
Cs, sagen.

o5 - x10° =
-0.01} J&eilf“w e e
—~-eJ,,,Feder +K‘15f1f,Feder
< 002 o el 3p o x553P
:%x 003} x e§g2,Feder > Kgngeder
o X
¢ 0,04
-0.05F
1.76
0084321012345 54321 012345
log, (G/G™) log,(G/G™)

Abbildung 5-46: Effektive piezoelektrische und dielektrische Koeffizienten in Abhéngigkeit von
G'/G™, k' /k™ = 1, verwendetes Koordinatensystem {y1,%2,y3}

In Abb. 5-46 sind die piezoelektrischen und dielektrischen Koeffizienten dargestellt. Auch
hier ist eine gute Ubereinstimmung der Koeffizienten zu erkennen.

Die Verdanderung des Zwischenphasenschubmoduls scheint sich unterschiedlich auf die je-
weiligen Koeflizienten auszuwirken. Der Zwischenphasenschubmodul beeinflusst die elasti-
schen und piezoelektrischen Koeffizienten stiarker als die dielektrischen. Eingeschrinkt auf
das Intervall —5 < log;(G'/G™) < 3 ist nur eine sehr kleine Verdnderung in den dielektri-
schen Koeffizienten erkennbar. Des Weiteren zeigt sich, dass mit einem kleiner werdenden
Zwischenphasenschubmodul die piezoelektrischen Koeffizienten kleiner werden. Somit wird
das piezoelektrische Verhalten des Kompositwerkstoffes reduziert. Im Fall der Drei-Phasen-
Modellierung lasst sich dies damit erkléaren, dass ein im Vergleich zu den anderen beteiligten
Phasen kleinerer Schubmodul der Zwischenphase den elastischen Lasttransfer zwischen der
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Matrix und den Fasern infolge der aufgebrachten Randbedingungen reduziert. Somit wird
auch die Wirkung des piezoelektrischen Effektes der Fasern verringert. Im theoretischen

Grenzfall (log;y(G'/G™)=-5) sind die piezoelektrischen Eigenschaften der Fasern nahezu
wirkungslos.

9 9
8.5x 10 . 2.58% 10 -
6.45 %C1111,3P %C2323,3P
+C:f1f1 Feder 2.56 ‘ ‘ ‘ +CZ§23,Feder
8.4 eff eff
E 6.35 ks 02222,3P E 254 fes 01313,3P
= ©. eff = eff
s ERTRILELEL) -~ C5p Feder s % G, 5-Feder
o 83 %5 2.52
8.25
25
8.2
-5-4-3-2-1 012345 24—%-4-3-2-1 012345
|Og1O(KI/Km) |Og10(KI/Km)

Abbildung 5-47: Effektive Elastizitéitskoeffizienten in Abhéngigkeit von «'/k™, GI/G™ =1,
verwendetes Koordinatensystem {y1, y2, y3}
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Abbildung 5-48: Effektive piezoelektrische und dielektrische Koeffizienten in Abhéngigkeit von
K'/K™, GI/G™ = 1, verwendetes Koordinatensystem {y1,%y2,y3}

In Abb. 5-47 und 5-48 sind ausgewihlte elastische, piezoelektrische und dielektrische Ko-
effizienten dargestellt, die das effektive Materialverhalten des Kompositwerkstoffes bei ei-
ner variierenden dielektrischen Konstante ' und einem festen Zwischenphasenschubmo-
dul G' = G™ beschreiben. Die elastischen Koeffizienten lassen sich aus der Abb. 5-47
entnehmen. Man kann eine sehr gute Ubereinstimmung der paarweisen Koeffizienten der
unterschiedlichen Modellierungen erkennen. Des Weiteren entsprechen die Werte der Drei-
Phasenmodellierung in gewisser Ndherung denen der imperfekten Modellierung. Eine Ver-
dnderung der dielektrischen Konstante der Zwischenphase &' iibt nahezu keinen Einfluss
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auf die elastischen Koeffizienten aus. Im Fall von C$f, und C§E,, sind nur leichte Veriin-
derungen erkennbar.

In Abb. 5-48 sind die piezoelektrischen und dielektrischen Koeffizienten dargestellt. Es
zeigt sich eine sehr gute Ubereinstimmung der paarweise dargestellten Koeffizienten so-
wie eine gute Naherung der Koeffizienten der imperfekten Modellierung mit denen der
Drei-Phasen-Modellierung. Die Veridnderung der dielektrischen Konstante x' hat keinen
erkennbaren Einfluss auf die dargestellten piezoelektrischen Koeffizienten. Im Fall der di-
elektrischen Koeffizienten ist jedoch ein deutlicher Einfluss von ! festzustellen.

Es gibt aber auch effektive Koeffizienten, die sowohl von G' als auch von ' eine ausgeprigte
Abhéngigkeit zeigen (siche Abb. 5-49).

0.021

0.02

o€ 3P o-eSf 3P
0.015f ey Feder 0.015 ~efyyFeder
— eff —_— eff
g O e;45:3P < O e53P
O b x
S x- 113,Feder £ 0.01 113,Feder
% 2 (= -
(3 ©
0.005¢ 0.005
-5-4-3-2-1 012345 -5-4-3-2-1 012345
I m I, M
log,,(G/G™) log, ,(x'/x™)
Abbildung 5-49: Effektive Koeffizienten €4y und ey in Abhingigkeit von G'/G™, k!/k™ =

(linkes Bild) beziehungsweise in Abhingigkeit von x'/x™, G1/G™ =
verwendetes Koordinatensystem {y1,y2,y3}

(rechtes Bild),

Tabelle 5-25: Prozentuale Abweichung ausgewéhlter effektiver Koeffizienten der imperfekten
Modellierung zu den Koeffizienten der Drei-Phasen-Modellierung, x'/x™ = 1, of = 0.4, die
verwendete Zwischenphasendicke betrégt ein Hundertstel des Faserradius

l()glo(Gl G™) ‘ Oll]l ‘ C§§23 ‘ e'3}61{1 ‘ €§g3 ‘ ”Tflf
-2 0.03% |0.15% | 3.66% |3.44% | 1.81 %
-1 121 % | 145 % | 449 % | 415 % | 1.80 %
153 % | 1.76 % | 4.70 % | 4.36 % | 1.80 %
1 1.58 % | 1.81 % | 4.60 % | 4.21 % | 1.80 %

Wie im elastischen Fall weichen die effektiven Koeffizienten der imperfekten Modellierung
und der Drei-Phasen-Modellierung mit einer zunehmenden Zwischenphasendicke stérker
voneinander ab. In Tab. 5-25 sind im Fall einer Zwischenphasendicke von einem Hundertstel
des Faserradius fiir ausgewéhlte effektive Koeffizienten die prozentualen Abweichungen
prasentiert. Fiir die Berechnung der Abweichung wird die folgende Gleichung verwendet

| eff Pe(‘f,ref|
diff4 =

———100
|Peff,ref| %
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Als Referenzwerte P°T*f werden die Koeffizienten der Drei-Phasen-Modellierung genutzt.

Bei einer Einschrénkung des Zwischenphasenschubmoduls auf einen eher realistischen Wer-
tebereich von —2 < log;(G}/G™) < 1 zeigt sich, dass im Fall der piezoelektrischen Koeffi-
zienten die groften Abweichungen auftreten.

Es lasst sich zusammenfassen, dass die Ergebnisse der imperfekten Phasentibergangsmo-
dellierung tiber weite Strecken néherungsweise denen der Drei-Phasen-Modellierung mit
einer sehr diinnen isotropen nichtpiezoelektrischen Zwischenphase entsprechen. Die Ver-
dnderung von G' oder x' wirkt sich unterschiedlich auf die effektiven Koeffizienten aus.
Im Fall von G' werden die elastischen und piezoelektrischen Koeffizienten erkennbar be-
einflusst, die dielektrischen Koeffizienten bleiben nahezu konstant. Bei der Variation von
! bleiben die elastischen und einige piezoelektrischen Koeffizienten nahezu konstant. Die
dielektrischen Koeffizienten zeigen dagegen einen erkennbaren Einfluss. Die effektiven Ko-
effizienten (egh,, e$%,) lassen sich sowohl von G' als auch von &' beeinflussen. Mit einer
zunehmenden Zwischenphasedicke weichen die berechneten Koeffizienten der imperfekten
Modellierung und der Drei-Phasen-Modellierung deutlicher voneinander ab.
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6 Zusammenfassung und Ausblick

In dieser Arbeit wurden unter der Verwendung der FEM numerische Modelle zum Berech-
nen effektiver Materialeigenschaften von unidirektionalen Faserverbundwerkstoffen mit ei-
ner periodischen Mikrostruktur entwickelt. Die Berechnungsmodelle auf Basis einer RUC
sind in der Lage, verschiedene Faseranordnungen und Phaseniibergéinge zu simulieren und
deren Einfluss auf die effektiven Materialeigenschaften zu untersuchen. Die simulierbaren
Faseranordnungen lassen sich im Allgemeinen durch einen rhombischen oder einen paral-
lelogrammformigen RUC-Querschnitt beschreiben. Die Verwendung des imperfekten Pha-
seniibergangs, welcher auch als sehr diinne Zwischenphase interpretiert werden kann, bietet
die Moglichkeit der Wichtung des Lasttransfers zwischen der Matrix- und der Faserpha-
se. Diesbeziiglich wurden im Rahmen der Doktorarbeit zu Validierungszwecken zusétzlich
Drei-Phasen-Modelle entwickelt.

Die numerischen Berechnungsmodelle wurden sowohl fiir eine elastische als auch eine pie-
zoelektrische Modellierung von Verbundwerkstoffen entwickelt. Durch die Verwendung von
dreidimensionalen RUCs in Kombination mit den jeweiligen periodischen Randbedingun-
gen lassen sich alle effektiven materialbeschreibenden Koeffizienten der betrachteten Werk-
stoffmodelle berechnen.

Es wurden Berechnungsmodelle fiir elastische Faserverbundwerkstoffe mit einer rhombi-
schen Faserverteilung und einem perfekten Phaseniibergang entwickelt. Dies schlieft auch
Verbundwerkstoffe mit einer hexagonalen und quadratischen Faseranordnung mit ein. Da-
zu wurde ein rechteckiger RUC-Querschnitt verwendet, da sich die Modellierung leichter
realisieren ldsst. Zur Validierung der Berechnungsmodelle wurde auf analytische Metho-
den aus der Literatur zuriickgegriffen. Es konnte eine gute Ubereinstimmung der effektiven
Koeffizienten mit Vergleichsergebnissen anderer Berechnungsmethoden (,,Jiang®, ,, AHM",
LEEVMY  G&N¥, CCA-Modell) gezeigt werden. Im Anschluss an die Validierung wurde
der Einfluss der Faserverteilung und des Faservolumenanteils auf die effektiven Koeffizien-
ten untersucht. Dazu wurden isotrope (Matrix) und transversal isotrope (Faser) Phasen
fiir die Beschreibung des Verbundwerkstoffes verwendet. Das effektive Materialverhalten
konnte im Allgemeinen als orthotrop charakterisiert werden. Es wurde festgestellt, dass
der Faservolumenanteil einen groferen Einfluss auf die effektiven Koeffizienten als die Fa-
serverteilung hat. Der Einfluss der Faserverteilung ist dennoch nicht zu vernachldssigen.
Infolge der Unidirektionalitdt der Fasern werden nicht alle Koeffizienten gleichermaften
durch eine verinderte Faseranordnung beeinflusst. Ein Beispiel ist der Koeffizient Cgh,
welcher nahezu konstant bleibt.

Fiir das Einbeziehen einer sehr diinnen isotropen Zwischenphase in die rein elastischen
Untersuchungen von Faserverbundwerkstoffen wurden die Berechnungsmodelle verandert.
Der bisherige perfekte Phaseniibergang wurde durch den imperfekten Phaseniibergang,
welcher durch unstetige Randverschiebungen charakterisiert wird, ersetzt. Im Rahmen der
FEM erfolgte die Modellierung des imperfekten Ubergangs durch Federelemente, deren Fe-
dersteifigkeiten sich an den Materialeigenschaften der isotropen Zwischenphase orientieren.
Zur Validierung der Berechnungsmodelle wurden sowohl Drei-Phasen-Modelle analytischer
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Methoden aus der Literatur (CCA-Modell, GSCS) als auch eigens entwickelte Drei-Phasen-
Modelle (FEM) verwendet. Der Vergleich von effektiven Materialkonstanten anhand von
Modellbeispiclen ergab generell eine gute Ubereinstimmung. Es konnte festgestellt wer-
den, dass sich bei einer Einschrankung des Zwischenphasenschubmoduls auf einen realis-
tischen Bereich bis zu einer gewissen Zwischenphasendicke durch die imperfekte Phasen-
iibergangsmodellierung eine Naherung an die Koeffizienten der Drei-Phasen-Modellierung
(CCA-Modell, FEM) erzielen lésst. Eine Untersuchung hinsichtlich des Einflusses des Ma-
terialunterschieds der Matrix- und der Faserphase ergab, dass ein zunehmender Unter-
schied in der Regel zu einer Verschlechterung in der Ubereinstimmung der Ergebnisse der
Modellierungen fiihrt. Zusétzlich ist zu erwdhnen, dass durch die Festlegung sehr hoher
Federsteifigkeiten in den imperfekten Phasentibergangsmodellen ein nahezu perfekter Pha-
seniibergang simuliert wird. Somit kénnen die Modelle auch zur Berechnung effektiver
Eigenschaften von Kompositwerkstoffen, die sich aus zwei Phasen zusammensetzen und
einen perfekten Phaseniibergang besitzen, verwendet werden.

Eine komplexere Faseranordnung als die rhombische konnte durch die Entwicklung von Be-
rechnungsmodellen auf Basis einer RUC mit einem parallelogrammfoérmigen Querschnitt
erreicht werden. Durch das Festlegen eines geeigneten Kantenldngenverhéltnisses und Win-
kels des Querschnitts lassen sich auch rhombische und rechteckige Faseranordnungen simu-
lieren. Eine Validierung der Berechnungsmodelle erfolgte durch den Vergleich mit Metho-
den aus der Literatur (,AHM*, ,G&N*) anhand der berechneten effektiven Koeflizienten
von verschiedenen Modellbeispielen, die sich in Faseranordnung und Faservolumen von-
einander unterscheiden. Es konnte im Grofen und Ganzen eine gute Ubereinstimmung in
den Koeffizienten festgestellt werden. Anschliefend wurde eine genauere Untersuchung des
Einflusses des parallelogrammformigen RUC-Querschnitts auf die effektiven Koffizienten
durchgefiihrt. Es konnte festgestellt werden, dass im Fall eines parallelogrammférmigen
Querschnitts und einer isotropen Matrix- und Faserphase das effektive Materialverhal-
ten im Allgemeinen monoklin ist. Ein zunehmendes Kantenldangenverhéltnis verstarkt zu-
séatzlich die anisotrope Ausrichtung der Elastizitiat des Verbundwerkstoffes. Des Weiteren
konnte gezeigt werden, dass sich im Fall ungleicher Kantenldngen neben der rechteckigen
(a = 90°) noch weitere Faseranordnungen finden lassen, denen ein effektives orthotropes
Materialverhalten zugeordnet werden kann.

Die Berechnungsmodelle auf Basis einer RUC mit einem parallelogrammformigen Quer-
schnitt wurden auf einen imperfekten Phaseniibergang erweitert. Daraus ergibt sich der
Vorteil, dass alle Betrachtungen von Verbundwerkstoffen der zuvor entwickelten Modelle
durch diese Berechnungsmodelle simuliert werden kénnen. Dies konnte durch einen Modell-
vergleich (rhombische Faseranordnung und imperfekter Phaseniibergang), der gleichzeitig
zur Validierung genutzt wurde, anhand von berechneten effektiven Koeffizienten von Test-
beispielen untermauert werden.

Die entwickelten Berechnungsmodelle fiir piezoelektrische Verbundwerkstoffe mit einer
rhombischen Faseranordnungen und einem perfekten Phaseniibergang basieren auf einer
RUC mit einem rechteckigen Querschnitt. Die Validierung der Modelle erfolgte anhand
eines Simulationsbeispiels eines Verbundwerkstoffes mit hexagonaler Faseranordnung aus
der Literatur. Nach der erfolgreichen Validierung wurde der Einfluss der Faseranordnung
auf die effektiven Koeffizienten untersucht. Analog zum elastischen Fall wurde festgestellt,
dass infolge der Verdnderung der Faseranordnung ein Grofsteil der berechneten Koeffi-
zienten deutlichen Schwankungen unterliegen kann. Dies gilt speziell im Fall eines hohen
Faservolumenanteils und Materialunterschieds der Phasen. Dies zeigt, dass der Einfluss der
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Faseranordnung auf die effektiven Koeffizienten im Allgemeinen nicht zu unterschitzen ist.
Ausnahmen bilden die Koeffizienten C$L,. esE, und x$f, die aufgrund der Unidirektiona-
litdt der Fasern konstant bleiben.

Die Entwicklung von piezoelektrischen Berechnungsmodellen auf Basis einer RUC mit ei-
nem parallelogramférmigen Querschnitt ermoglichte die Betrachtung komplexerer Faser-
anordnungen. Fiir die Validierung der Berechnungsmodelle wurden zuvor entwickelte Mo-
delle verwendet. Ein Vergleich der effektiven Koeffizienten fiir Modellbeispiele ergab eine
sehr gute Ubereinstimmung. Anschliefend wurde der Einfluss der Faseranordnung auf die
effektiven Koeffizienten untersucht. Dies sollte kliaren, inwieweit sich ein verandertes Kan-
tenlangenverhdltnis und ein verdnderter Winkel auf das Materialverhalten des Verbund-
werkstoffes auswirken. Es konnte festgestellt werden, dass das effektive Werkstoffverhalten
in Analogie zum elastischen Fall zu bewerten ist.

Das Einbeziehen einer sehr diinnen Zwischenphase, welche aus Griinden der einfacheren
Realisierung ein nicht-piezoelektrisches Materialverhalten aufweist, in die piezoelektrischen
Betrachtungen erfolgte iiber einen imperfekten Phaseniibergang. Der Ubergang ist durch
Unstetigkeiten in den Verschiebungen und in dem elektrischen Potential gekennzeichnet. Im
Rahmen der FEM wurden fiir die Realisierung des imperfekten Ubergangs Federelemente
und Kondensatorelemente verwendet, wobei deren Federsteifigkeiten und deren elektrische
Kapazitéiten sich an den Materialeigenschaften der Zwischenphase orientieren. Zum Va-
lidieren der Berechnungsmodelle wurden zusétzlich Drei-Phasen-Modelle entwickelt. Die
Validierung anhand von Modellbeispielen wurde gleichzeitig auch fiir Untersuchungen hin-
sichtlich des Einflusses der imperfekten Ubergangsmodellierung genutzt. Es sollte tiberpriift
werden, wie sich unterschiedliche Federsteifigkeiten oder elektrische Kapazitdten auf das
effektive Materialverhalten auswirken. Es stellte sich heraus, dass durch die Verédnderung
der Federsteifigkeiten die elastischen Koeffizienten deutlich stirker beeinflusst werden als
die dielektrischen. Diese bleiben nahezu konstant. Bei einer Verinderung der elektrischen
Kapazitit konnte gerade ein umgekehrter Effekt beobachtet werden. Fiir die effektiven
piezoelektrischen Koeffizienten konnte festgestellt werden, dass eine Verdnderung der Fe-
dersteifigkeit alle Koeffizienten, welche nicht Null sind, deutlich beeinflusst, wiahrend ei-
ne Verdnderung der elektrischen Kapazitdt nur eine Wirkung auf gewisse Koeffizienten
zeigt. Einige Koeflizienten bleiben nahezu konstant. Der Vergleich mit einer Drei-Phasen-
Modellierung, wobei die Zwischenphase eine Dicke von einem Tausendstel des Faserradius
hatte, lieferte iiber weite Bereiche &hnliche Resultate. Ein Koeffizientenvergleich der Mo-
dellierungen im Fall einer Zunahme der Zwischenphasendicke ergab wie im elastischen Fall
eine Verschlechterung der Ubereinstimmung. Die grofte Abweichung trat bei den piezo-
elektrischen Koeffizienten auf.

Die in dieser Arbeit préasentierten numerischen Homogenisierungskonzepte auf Basis einer
RUC, welche einen parallelogrammférmigen Querschnitt aufweisen, stellen in Kombination
mit der imperfekten Phaseniibergangsmodellierung und der Erweiterung auf piezoelektri-
sche Faserverbundwerkstoffe den Neuheitswert der vorliegenden Arbeit dar.

Ausblick

In zukiinftigen Arbeiten kann das hier prasentierte numerische Homogenisierungskonzept
auf Basis einer RUC mit einem parallelogrammformigen Querschnitt auch auf andere (pe-
riodische) Verbundstrukturen tibertragen werden. Denkbar sind beispielsweise Verbund-
werkstoffe mit Partikeleinschliissen. Dariiber hinaus kénnen weitere Untersuchungen zu
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einer komplexeren Partikelverteilung durchgefithrt werden. Hierfiir kann die Verteilung
durch eine RUC in Form eines allgemeinen Parallelepipeds beschrieben werden. Fiir die
Geometriebeschreibung kénnen drei Kantenlédngen und drei Winkel verwendet werden.
Im Rahmen der numerischen Phaseniibergangsformulierung werden in dieser Arbeit im
elastischen Fall Federelemente verwendet, die Faserknoten und Matrixknoten koppeln. In
nachfolgenden Arbeiten kann die Entwicklung anderer Strategien zur Realisierung des im-
perfekten Phaseniibergangs unter Verwendung der FEM in Betracht gezogen werden.

Die in dieser Arbeit verwendete numerische Modellierung eines imperfekten Ubergangs
kann aus pragmatischer Sicht durch eine geeignete Modifizierung der Ubergangsbedingun-
gen im elastischen Fall auch dazu verwendet werden, ein approximatives Kohésivzonenmo-
dell zu entwickeln. In Verbindung mit einem RVE oder einer RUC liefe sich so ein Einstieg
in Untersuchungen zur Rissbildung und zum Rissfortschritt in Verbundwerkstoffen ermog-
lichen.
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A Verallgemeinertes

Selbstkonsistenzschema

Fiir die Darstellung der 12x12-Matrix L aus dem Abschnitt 3.2.2 werden zuerst die fol-

genden Abkiirzungen eingefiihrt

)<0=1721/07 X" =1-2r" Xi=1721/i7 Xf=1721/f

Somit hat L folgende Gestalt
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Die restlichen Teilmatrizen 0%** und
NULL-Eintréagen.

074 sind 2x4- beziehungsweise 4 x4-Matrizen mit
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B Untersuchungen zur FE-Netzfeinheit

Dieser Abschnitt dient dazu, den Einfluss der FE-Netzfeinheit fiir die entwickelten Be-
rechnungsmodelle etwas naher zu untersuchen. Fiir die FE-Diskretisierung der Berech-
nungsmodelle werden lineare und quadratische finite Elemente verwendet. Modelle mit
einem perfekten Phaseniibergang (aufer die Drei-Phasen-Modelle) werden mit quadrati-
schen Elementen diskretisiert. Im Fall eines imperfekten Phaseniibergangs werden lineare
Elemente verwendet.

Fiir die Berechnung der effektiven Materialeigenschaften unidirektionaler Faserverbund-
werkstoffe werden dreidimensionale RUCs genutzt, wobei die Fasern in y4-Richtung zeigen.
In diesem Fall kann die Abmessung der RUC in y;-Richtung aus theoretischer Sicht belie-
big gewihlt werden, da die heterogene Beschreibung des Kompositwerkstoffes von dieser
Richtung unabhéngig ist. Im FE-Modell der RUC ist eine Elementeinteilung von einem Ele-
ment in dieser Richtung ausreichend, um die effektiven Koeffizienten zu berechnen, da die
resultierenden Spannungen und Verzerrungen aus den Berechnungsmodellen unabhéngig
von der y;-Richtung sind.

% o N
yL; D A y\/y@
! b

b

Abbildung B-1: Verwendete RUC-Querschnitte der Berechnungsmodelle: links:
Rechteckgeometrie (Faseranordnung « = 60°), rechts: Rhombusgeometrie (Faseranordnung
a =75

Die Untersuchungen zur Netzfeinheit werden beispielhaft an ausgewédhlten Berechnungs-
modellen der Abschnitte 5.1.1 und 5.1.3 durchgefiihrt. Die verwendeten RUC-Querschnitte
sind der Abb. B-1 zu entnehmen. Aufgrund der oben beschriebenen Abmessung einer RUC
in y4-Richtung wird die Netzfeinheit nur in der y;-y5-Ebene untersucht. Die Feinheit des
Netzes wird durch die Vorgabe einer Elementkantenlénge (0.1, 0.075, 0.05, 0.025 oder 0.02)
im FE-Modell gesteuert. Unter der Annahme, dass die Kantenlédnge b des rechten RUC-
Querschnitts (Verweis auf Abb. B-1) Einheitsldnge aufweist, sind entlang dieser Kante 10,
14, 20, 40 oder 50 Elemente angeordnet. Entlang der Kante des linken RUC-Querschnitts
sind 20, 26, 36, 72 oder 88 Elemente angeordnet. Die verwendeten Materialdaten in den
Modellen sind der Tab. B-1 zu entnehmen. Der Faservolumenanteil ist auf 0.4 festgelegt.
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Tabelle B-1: Materialdaten der Matrix- und der Faserphase

Phase ‘ Schubmodul ‘ Querkontraktionszahl

Matrix 1 0.3
Faser 120 0.3
6.86; - 2.31
6.855 2.305
€ 1S
o ©
= 685 o 2.3—%\@\@“e
= =,
O o N
(@) [&)
6.845 2.295
6841000 2000 3000 4000 5000 2291000 2000 3000 4000 5000
Elementanzahl Elementanzahl

Abbildung B-2: Normierte effektive Koeffizienten C§l; /G™ und C§, /G™, verwendetes
Koordinatensystem {y{,v5,y5}, o = 60°

673500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Elementanzahl Elementanzahl

2.25

Abbildung B-3: Normierte effektive Koeffizienten C§l; /G™ und C§h, /G™, verwendetes
Koordinatensystem {y{,v5,y5}, o = 75°

In Abb. B-2 und B-3 sind jeweils die effektiven Koeffizienten C¢f; und C§E,, in Abhiin-
gigkeit von der Elementanzahl zu sehen. In Tab. B-2 und B-3 sind die dazugehorigen
prozentualen Abweichungen der Koeffizienten zu einer Referenzlosung festgehalten, wobei
als verwendete Referenzlosung der Koeffizient der feinsten Netzkonfiguration genommen
wurde. Die Formel zur Berechnung der prozentualen Abweichung lautet

eff eff ref
Cijkl - Cijkl

diff5 = e 100% (B-1)
ijkl
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Aus den Tabellen erkennt man, dass die Abweichungen der Koeffizienten zum Referenzwert
selbst bei einer groben FE-Diskretisierung unter 0.26% liegen.

Eine unzureichende FE-Diskretisierung der Faser zum Beispiel bei der Verwendung linearer
Elemente in Kombination mit einer sehr groben FE-Diskretisierung kann zu schlechten
Néaherungsergebnissen fiihren. Aufierdem wird der Volumeninhalt der Faser infolge der
groben Diskretisierung kleiner. Daher ist darauf zu achten, dass die FE-Diskretisierung
des Faservolumens in ausreichender Néherung die urspriingliche Geometrie widerspiegelt.

Tabelle B-2: Prozentuale Abweichung (gerundet auf drei Stellen nach dem Komma) von C$ff
und Csf,

C',?ffd Elementanzahl | Abweichung in %

oy 224 0.176
368 0.103
784 0.034
3092 0.005
4624 0

cst, 224 0.101
368 0.062
784 0.046
3092 0.006
4624 0

Tabelle B-3: Prozentuale Abweichung (gerundet auf drei Stellen nach dem Komma) von C$IF,,
und Cffyg

Csfy | Elementanzahl | Abweichung in %

cet, 125 0.074
236 0.031
525 0.017
1779 0.001
2840 0

Csh 125 0.259
236 0.007
525 0.015
1779 0.006
2840 0

Der Zeitaufwand fiir die Realisierung der Zwangsbedingungen im FE-Modell nimmt mit ei-
ner feiner werdenden FE-Diskretisierung zu, da geeignete Knotenpaarungen fiir die Zwangs-
gleichungen gefunden werden miissen. Die Berechnungsmodelle sollten daher eine FE-
Diskretisierung besitzen, die einen Kompromiss zwischen Genauigkeit und Zeitaufwand
widerspiegelt. Fiir die in dieser Arbeit durchgefithrten Berechnungen wird eine Element-
kantenldnge kleiner gleich 0.025 (bei quadratischen Elementen) oder kleiner gleich 0.02 (bei
linearen Elementen) verwendet.

Eine weitere Moglichkeit, die Netzfeinheit der Modelle zu untersuchen, besteht in der Be-
rechnung und dem Vergleich der Formanderungsenergien. Dies wurde jedoch nicht in dieser
Arbeit umgesetzt.
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