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Kapitel 2

σ Spannungstensor (2. Stufe)
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Γσ NEUMANN-Rand
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v dreidimensionale Testfunktion
δu Vektor der virtuellen Verrückungen
D Vektor der dielektrischen Verschiebung
E Vektor der elektrischen Feldstärke
e Tensor der piezoelektrischen Kostanten (3. Stufe)
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φ elektrisches Potential
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stanten
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xi, i = 1, 2, 3 Koordinaten auf der Makroebene
yi, i = 1, 2, 3 Koordinaten auf der Mikroebene
Ωf Störphase eines RVE (Faser)
Ωm Phase des Grundmaterials eines RVE (Matrix)
Γ Rand des RVE
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σfij, i, j = 1, 2, 3 Spannungskomponenten in Ωf

σmij , i, j = 1, 2, 3 Spannungskomponenten in Ωm

C f
ijkl, i, j, k, l = 1, 2, 3 Elastizitätskoeffizienten in Ωf

Cm
ijkl, i, j, k, l = 1, 2, 3 Elastizitätskoeffizienten in Ωm

uf Verschiebungsvektor in Ωf

um Verschiebungsvektor in Ωm
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〈εkl〉, k, l = 1, 2, 3 makroskopische Verzerrungskomponenten (2. Stufe)
Ceff
ijkl, i, j, k, l = 1, 2, 3 effektive (homogenisierte) Elastizitätskoeffizienten
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〈ε̃q〉, q = 1, · · · , 6 makroskopische Verzerrungskomponenten (M-V-Notation)
C̃eff
pq , p, q = 1, · · · , 6 effektive Elastizitätskoeffizienten (M-V-Notation)

S̃effpq , p, q = 1, · · · , 6 effektive Nachgiebigkeitskoeffizienten (M-V-Notation)
σ0
ij, i, j = 1, 2, 3 vorgegebene Spannungskomponenten auf Γ
ε0
ij, i, j = 1, 2, 3 vorgegebene Verzerrungskomponenten auf Γ

uper Vektor periodischer Verschiebungen bezüglich Ω
Ωm Matrixphase der CCA-Modellierung
Ωf Faserphase der CCA-Modellierung
ΩR restlicher freier Raum
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Ωcc homogenes Teilgebiet
rfn Radius der Faser im n-ten Zylinder
rZn Radius des n-ten Zylinders
Eeff
l effektiver longitudinaler Elastizitätsmodul

νeffl effektive longitudinale Querkontraktionszahl
Geff
l effektiver longitudinaler Schubmodul

Geff
t effektiver transversaler Schubmodul

νefft effektive transversale Querkontraktionszahl
Eeff
t effektiver transversaler Elastizitätsmodul

kefft effektiver transversaler Kompressionsmodul
vf Faservolumenanteil
vm Matrixvolumenanteil
Ef
l longitudinaler Elastizitätsmodul der Faser

Em
l longitudinaler Elastizitätsmodul der Matrix

νfl longitudinale Querkontraktionszahl der Faser
νml longitudinale Querkontraktionszahl der Matrix
Gf
l longitudinaler Schubmodul der Faser

Gm
l longitudinaler Schubmodul der Matrix

Gf
t transversaler Schubmodul der Faser

Gm
t transversaler Schubmodul der Matrix

kft transversaler Kompressionsmodul der Faser
kmt transversaler Kompressionsmodul der Matrix
P eff effektive Materialkonstante
Pm Materialkonstante der Matrix
P f Materialkonstante der Faser
Varm Platzhalter für Materialkonstanten der Matrix
Varf Platzhalter für Materialkonstanten der Faser
Ωi Zwischenphase
Ω0 homogene Phase
rm Radius der Matrix
rf Radius der Faser
ri Radius der Zwischenphase
ti Dicke der Zwischenphase
uki , i = r, θ Verschiebungskomponenten der Phase Ωk, k = f, i,m, 0
σkij, i, j = r, θ Spannungskomponenten der Phase Ωk, k = f, i,m, 0
Ak unbekannter Parameter der Phase Ωk

Bk unbekannter Parameter der Phase Ωk

Ck unbekannter Parameter der Phase Ωk

Dk unbekannter Parameter der Phase Ωk

νk Querkontraktionszahl der Phase Ωk

Gk Schubmodul der Phase Ωk

b Breite der RUC
h Höhe der RUC
t Tiefe der RUC
A+
i , i = 1, 2, 3 Randflächen in positiver yi-Richtung

A−
i , i = 1, 2, 3 Randflächen in negativer yi-Richtung
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yA+
i Koordinaten eines Punktes auf A+

i

yA−
i Koordinaten eines Punktes auf A−

i

C̃eff
ij , i, j = 1, 2, 3 effektive Elastizitätskoeffizienten (M-V-Notation)

α Winkel der RUC mit Parallelogramm-Querschnitt
b Länge der Kante in y1-Richtung
w Länge der angeschrägten Kante
h Höhe der RUC mit Parallelogramm-Querschnitt
n, s, t lokale kartesische Koordinaten auf Γmf
t Randspannungsvektor
Kε

i , i = n, s, t imperfekte Kontaktparameter in lokalen kartesischen Koordi-
naten

Kε
ij, i, j = 1, 2, 3 imperfekte Kontaktparameter in festen kartesischen Koordi-

naten
Kε

i , i = r, θ, z imperfekte Kontaktparameter in zylindrischen Koordinaten
‖ · ‖ Differenz der Größe „ · “ zwischen Matrix und Faser
Ei Elastizitätsmodul der Zwischenphase
ν i Querkontraktionszahl der Zwischenphase
δjk KRONECKER-Delta
Df

i, i = 1, 2, 3 dielektrische Verschiebungskomponenten in Ωf

Dm
i , i = 1, 2, 3 dielektrische Verschiebungskomponenten in Ωm

φf elektrisches Potential in Ωf

φm elektrisches Potential in Ωm

efkij , i, j, k = 1, 2, 3 Koeffizienten des piezoelektrischen Tensors in Ωf

emkij , i, j, k = 1, 2, 3 Koeffizienten des piezoelektrischen Tensors in Ωm

κfij, i, j = 1, 2, 3 Koeffizienten des dielektrischen Tensors in Ωf

κmij , i, j = 1, 2, 3 Koeffizienten des dielektrischen Tensors in Ωm

〈Di〉, i = 1, 2, 3 makroskopische dielektrische Verschiebungskomponenten
〈Ei〉, i = 1, 2, 3 makroskopische elektrische Feldstärkekomponenten
φper periodischer Anteil des elektrischen Potentials bezüglich Ω
E0
i , i = 1, 2, 3 vorgegebene elektrische Feldstärkekomponenten

KE imperfekter Kontaktparameter
κi dielektrische Konstante der Zwischenphase

Kapitel 4

N e Elementknotenanzahl
ue Elementvektor des Verschiebungsansatzes
Ne

u Elementmatrix bestehend aus Formfunktionen
ûe Elementvektor bestehend aus Verschiebungsfreiheitgraden
ξi, i = 1, 2, 3 Elementkoordinaten
ξki, k = 1, 2, 3 natürliche Koordinaten des Knotens i
Ke

uu mechanische Elementsteifigkeitsmatrix
Bu Matrix der differenzierten Formfunktionen (mechanisch)
Fe
uu mechanischer Elementlastvektor
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Formelzeichen XI

M Elementanzahl
Le Zuordnungsmatrix (elementweise)
Kuu mechanische Gesamtsteifigkeitsmatrix
Fuu mechanischer Gesamtlastvektor
û Gesamtvektor der Verschiebungsfreiheitsgrade
Ke,i

uu mechanische Elementsteifigkeitsmatrix des Elementes i
Fe,i
uu mechanischer Elementlastvektor des Elementes i

Le,i Zuordnungsmatrix (elementweise) des Elementes i
φe Elementansatz für das elektrische Potential
Ne

φ Elementmatrix bestehend aus Formfunktionen (elektrisch)
φ̂e Elementvektor bestehend aus Freiheitgraden (elektrisch)
Ke

φφ Elementsteifigkeitsmatrix (elektrisch)
Fe
φφ Elementlastvektor (elektrisch)

Ke
uφ Kopplungsmatrix (mechanisch/elektrisch)

Bφ Matrix der differenzierten Formfunktionen (elektrisch)
Kφφ Gesamtsteifigkeitsmatrix (elektrisch)
Fφφ Gesamtlastvektor (elektrisch)
Kuφ Gesamtkopplungsmatrix (mechanisch/elektrisch)
φ̂ Gesamtvektor bestehend aus Freiheitgraden (elektrisch)
SV Menge der Eckknoten
SE Menge der Kantenknoten
SF Menge der Flächenknoten
〈σ̃k〉�, k = 1, · · · , 6 makroskop. Spannungskomponenten (FEM, M-V-Notation)
〈ε̃k〉�, k = 1, · · · , 6 makroskop. Verzerrungskomponenten (FEM, M-V-Notation)
σ̃e,ik , k = 1, · · · , 6 Spannungskomponenten des Elementes i (M-V-Notation)
ε̃e,ik , k = 1, · · · , 6 Verzerrungskomponenten des Elementes i (M-V-Notation)
|Ωe,i| Volumen des Elementes i (M-V-Notation)
〈Dk〉�, k = 1, · · · , 3 makroskopische Komponenten des dielektrischen Verschie-

bungsvektors (FEM)
〈Ek〉�, k = 1, · · · , 3 makroskopische Komponenten des Vektors der elektrischen

Feldstärke (FEM)
De,i

k , k = 1, · · · , 3 Vektorkomponenten der dielektrischen Verschiebung des Ele-
mentes i

Ee,i
k , k = 1, · · · , 3 Vektorkomponenten der elektrischen Feldstärke des Elemen-

tes i
F Federkraft (eindimensional)
K�,ε Federsteifigkeit
ûj Verschiebungsfreiheitsgrad des Knotens j (eindimensional)
ûi Verschiebungsfreiheitsgrad des Knotens i (eindimensional)
Fi, i = r, θ, z Komponenten des Federkraftvektors in zylindrischen Koordi-

naten
K�,ε

i , i = r, θ, z Federsteifigkeiten in zylindrischen Koordinaten
‖ · ‖� Differenz von Freiheitsgraden einer Größe „ · “
An auf den Knoten n bezogener Flächeninhalt nach der FE-

Diskretisierung
rf Faserradius
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XII Formelzeichen

t Faserlänge
ccs Anzahl der Eckknoten des Polygons
α Winkel
Mm Elementanzahl der Matrix
M f Elementanzahl der Faser
ε̃e,m,ik , k = 1, · · · , 6 Verzerrungskomponenten des Elementes i der Phase der Ma-

trix (M-V-Notation)
ε̃e,f,ik , k = 1, · · · , 6 Verzerrungskomponenten des Elementes i der Phase der Faser

(M-V-Notation)
|Ωe,m,i| Volumen des Elementes i der Phase der Matrix
|Ωe,f,i| Volumen des Elementes i der Phase der Faser
‖uos‖�, s=1,2,3 Differenzen der Verschiebungsfreiheitsgrade der Knotenpaa-

rung, die den Knoten o enthält
ns, s = 1, 2, 3 Komponenten des äußeren Normalenvektors der Phase der Fa-

ser
M Summe von M f und Mm

Q elektrische Ladung
K�,E Kapazität
φ̂i elektrischer Freiheitsgrad des Knotens i
φ̂j elektrischer Freiheitsgrad des Knotens j
‖φo‖�� Differenz (elektrischen Freiheitsgrad) von Faser zu Matrix der

Knotenpaarung, die den Knoten o enthält

Kapitel 5

N Anzahl an RUCs in eine Achsenrichtung
Ceff,LVRB

1212 effektiver Koeffizient Ceff
1212 bei linearen Verschiebungsrandbe-

dingungen
Ceff,USRB

1212 effektiver Koeffizient Ceff
1212 bei homogenen Spannungsrandbe-

dingungen
Ceff,per. RB

1212 effektiver Koeffizient Ceff
1212 bei periodischen Randbedingungen

h Höhe der RUC (Rechteck-Querschnitt)
b Breite der RUC (Rechteck-Querschnitt)
α Winkel, der die unidirektionale Faseranordnung charakteri-

siert
rf Faserradius
vf Faservolumenanteil
Eeff,max

1 maximaler effektiver Elastizitätsmodul in y′1-Richtung für alle
Faseranordnungen zu einem festen Faservolumenanteil

Eeff,min
1 minimaler effektiver Elastizitätsmodul in y′1-Richtung für alle

Faseranordnungen zu einem festen Faservolumenanteil
ti Dicke der Zwischenphase
η Proportionalitätsfaktor zwischen Faserradius und Zwischen-

phasendicke
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Formelzeichen XIII

b Kantenlänge der RUC (Parallelogramm-Querschnitt) in y1-
Richtung

w Länge der schrägen Kante der RUC (Parallelogramm-
Querschnitt)

h Höhe der RUC (Parallelogramm-Querschnitt)
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XIV

Abstract

Composites are of enormous importance to the industry. The usage of such materials for in-
dustrial products has rapidly increased over the last years. Therefore, there is high interest
in gaining a better understanding of these materials and their physical behaviour. Aside
from performing experimental studies, this can also be achieved by using homogenisation
methods. With these methods, the composite can be characterised in a macroscopic ho-
mogeneous manner by taking into account the microscopic heterogeneous structure. This
approach provides the opportunity to calculate the so-called effective properties of the
composite.
The focus of the present thesis is to develop and advance numerical homogenisation me-
thods which are based on the finite element method (FEM). These methods developed are
applicable to calculate the effective properties of unidirectional fibre reinforced composites
with a periodic fibre distribution. In the developed numerical models repeated unit cells
(RUCs) are used, whose cross sections can even be parallelogram shaped. The significant
advantage of these models, especially those with the parallelogram shaped cross section, is
the capability to simulate a wide range of unidirectional fibre reinforced composites with
different fibre arrangements. This also includes the special cases of hexagonal and square
fibre arrangements, which are commonly used in the literature.
The numerical models are extended by employing an imperfect contact formulation bet-
ween the matrix and fibre phase to represent the presence of a very thin interphase, which is
for instance caused by chemical reactions in manufacturing processes. Besides pure elastic
considerations models capable of simulating piezoelectric composites are also developed.
In this thesis, all the developed models are, as far as possible, validated by comparing the
calculated effective material properties to results from methods given by the literature or
to results calculated from verification models. Furthermore, studies have been performed
in order to investigate the influence of different fibre distributions, fibre volume fractions
and imperfect contact conditions on the effective composite properties. All together, this
gives a better insight into the material behaviour of composites as well as the modelling
techniques.
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XV

Kurzfassung

In der Industrie sind Kompositwerkstoffe von großer Wichtigkeit. Der Einsatz solcher hete-
rogenen Werkstoffe für industrielle Produkte ist in den letzten Jahren rasant angestiegen.
Daher besteht ein sehr großes Interesse darin, diese Materialien und ihr physikalisches
Verhalten besser zu verstehen. Um dies zu erreichen, können neben der Durchführung
von experimentellen Untersuchungen Homogenisierungsverfahren genutzt werden. Diese
Verfahren dienen dazu, den Kompositwerkstoff unter Berücksichtigung der mikroskopisch
heterogenen Struktur in einer makroskopisch homogenen Weise zu charakterisieren. Unter
bestimmten Annahmen lassen sich sogenannte effektive Materialeigenschaften berechnen.
Der Schwerpunkt der vorliegenden Dissertation liegt in der Weiterentwicklung von numeri-
schen Homogenisierungsverfahren, welche auf der Finite-Elemente-Methode (FEM) basie-
ren. Diese werden zum Berechnen der effektiven Materialeigenschaften von unidirektional
faserverstärkten Verbundwerkstoffen mit einer periodischen Faseranordnung verwendet. In
den entwickelten numerischen Berechnungsmodellen werden Einheitszellen (RUCs) verwen-
det, deren Querschnitt sogar parallelogrammförmig sein kann. Der Vorteil dieser Modelle
besteht darin, dass mit ihnen ein breites Spektrum an unidirektionalen Faserverbundwerk-
stoffen mit unterschiedlicher Faserverteilung simuliert werden kann. Das schließt auch die
Spezialfälle der quadratischen und hexagonalen Faseranordnung mit ein, welche häufig in
der Literatur zu finden sind.
Die Berechnungsmodelle werden auf einen imperfekten Phasenübergang erweitert, welcher
sich als sehr dünne Verbindungsschicht zwischen der Matrix- und Faserphase interpretie-
ren lässt. Die Ausprägung einer solchen Zwischenschicht kann zum Beispiel auf chemische
Reaktionen im Herstellungsprozess zurückgeführt werden. Neben rein elastischen Betrach-
tungen werden auch Modelle entwickelt, mit denen piezoelektrische Faserverbundwerkstoffe
simuliert werden können.
Alle in dieser Arbeit entwickelten Berechnungsmodelle werden hinsichtlich ihrer Eignung
überprüft. Dazu werden die berechneten effektiven Materialeigenschaften nach Möglichkeit
mit Ergebnissen von Verfahren aus der Literatur oder mit Ergebnissen aus Verifizierungs-
modellen verglichen. Darüber hinaus werden Studien durchgeführt, die den Einfluss der
Faserverteilung, des Faservolumenanteils und des imperfekten Phasenübergangs auf die
effektiven Werkstoffeigenschaften untersuchen. Dies führt zu einem besseren Verständnis
des Materialverhaltens von Kompositwerkstoffen sowie der Modellierungstechniken.
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1

1 Einleitung

1.1 Motivation

In der heutigen Zeit ist ein Wandel beim Materialeinsatz von Strukturbauteilen zu erken-
nen. Dieser äußert sich darin, dass Verbundwerkstoffe zunehmend homogenen Materiali-
en bevorzugt werden. Die Ursache dafür sind neben ökonomischen (Preisentwicklung der
Rohmaterialien) vor allem physikalische Gesichtspunkte, wie zum Beispiel die Gewichts-
reduktion bei gleichbleibenden Festigkeitseigenschaften. Die Verbundwerkstoffe sind durch
einen heterogenen Strukturaufbau charakterisiert. Bei solchen Werkstoffen, speziell den
Faserverbundwerkstoffen, besteht die Struktur aus mindestens zwei Phasen. Mit dem Be-
griff Phase soll hier ein Bereich des Verbundwerkstoffes aus gleichem Material bezeichnet
werden. Bei einem aus zwei Phasen bestehenden Kompositwerkstoff übernimmt die eine
Phase die Aufgabe des Füllmaterials, und die andere Phase dient zur Verstärkung oder
Verminderung bestimmter physikalischer Eigenschaften.
Durch das Kombinieren unterschiedlicher Ausgangsstoffe sind die Materialmodelle von
Kompositwerkstoffen nicht mehr nur auf reine Modelle einer physikalischen Kategorie aus-
gelegt. Als Beispiel lässt sich hier der Einsatz von piezoelektrischen Fasern in Kombination
mit elastischen Füll-/Bindematerialien nennen. Durch den piezoelektrischen Effekt werden
elastische und elektrische Zustandsgrößen in Abhängigkeit zueinander gebracht. Infolge
einer mechanischen Verformung oder durch Anlegen eines elektrischen Feldes kommt es
zu elektrischen und elastischen Interaktionen zwischen den Phasen. Man spricht in diesem
Fall von einem gekoppelten Feldproblem.
Die Analyse und Berechnung von Bauteilen aus Verbundwerkstoffen hinsichtlich ihrer Be-
lastbarkeit und Anwendung ist mitunter sehr komplex. Dies resultiert hauptsächlich dar-
aus, dass eine exakte Modellierung der heterogenen Struktur einen sehr hohen Rechenauf-
wand nach sich ziehen würde. Die Betrachtungsebene der heterogenen Struktur ist sehr
viel größer als die atomare Ebene, wodurch eine Beschreibung der Heterogenität mittels
klassischen Materialmodellen durchgeführt werden kann, aber sie ist zu klein, um bei einer
Untersuchung von Bauteilen mit bloßen Augen sichtbar zu sein. Es entsteht der Eindruck,
der betrachtete Werkstoff sei homogen. Die Betrachtungsebenen der Heterogenität und
des Kompositwerkstoffes werden als Mikro- beziehungsweise Makrolevel bezeichnet. Jedes
Level ist dabei durch spezifische Längenangaben charakterisiert. Diese leiten sich meistens
aus geometrischen Größen ab. In manchen Fällen werden noch Zwischenebenen eingeführt
(Mesolevel). Für klassische Materialien, wie Metalle oder Holz, lassen sich auch solche Be-
trachtungsebenen zuordnen. Metalle haben eine kristalline Struktur und Holz ist mit feinen
Poren durchsetzt (Abb. 1-1). Für viele klassische Materialien wurden trotz dieser Kenntnis
Materialeigenschaften abgeleitet, die ein homogenes Material suggerieren. Dadurch wird
die Berücksichtigung solcher Materialien in Berechnungsmodellen vereinfacht. Somit ist es
von Vorteil, im Fall der Verbundwerkstoffe, eine ähnliche Herangehensweise zu nutzen, um
sogenannte effektive (homogene) Materialeigenschaften zu ermitteln.
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2 Einleitung

Es gibt verschiedene Wege, um (effektive) Materialeigenschaften von (heterogenen) Werk-
stoffen zu bestimmen. Eine Möglichkeit besteht darin, diese Eigenschaften auf experimen-
tellem Wege zu ermitteln. Bei rein elastischen Materialien werden sogenannte Zug-/Druck-
und Schubtests durchgeführt [88], [101]. Hierfür werden spezielle Probekörper aus dem zu
untersuchenden Material hergestellt. Im Fall der Zugprüfung besitzt die gewählte Probe
einen länglich schlanken, mittleren Abschnitt mit einem konstanten, kreisförmigen Quer-
schnitt. Die verdickten Enden der Probe, die mit Abrundungsradien in den mittleren Ab-
schnitt übergehen, dienen zum Einspannen und zur Krafteinleitung. Der Testkörper wird in
die Prüfmaschine biegungsfrei eingespannt und durch eine zunehmende Zugkraft gedehnt.
Dabei erfährt er eine Verlängerung, die mittels Messaufnehmern (z.B. Dehnungsmessstrei-
fen) in geeigneter Form abgegriffen wird. Eine weitere Möglichkeit der experimentellen
Untersuchung von Materialkennwerten besteht in der Nutzung der Ultraschalltechnik [29].
Die Schallerzeugung und der -empfang erfolgen über Wandler mit piezoelektrischen, elek-
trodynamischen, magnetorestriktiven Effekten oder durch Laserpulse. Dabei ist der direkte
Kontakt zwischen Probekörper und Wandler zur Schallübertragung nicht in allen Fällen
erforderlich. Im Fall eines makroskopisch isotropen Probekörpers lassen sich die Material-
eigenschaften aus den Geschwindigkeiten der Longitudinalwelle und der Transversalwellen
ableiten. Die so ermittelten Materialkennwerte können unter Umständen von den Ergeb-
nissen eines mechanischen Zug- oder Druckprüfverfahrens abweichen. Eine Ursache kann
in dem Auftreten von plastischen Verformungen bei höherer Zug- beziehungsweise Druck-
belastung liegen.
Die experimentellen Untersuchungen sind kostenintensiv, da geeignete Apparaturen zur
Testdurchführung gekauft, geliehen oder gebaut werden müssen. Des Weiteren sind Kennt-
nisse im Umgang mit ihnen erforderlich, um mögliche Untersuchungsfehler so gering wie
möglich zu halten.

Abbildung 1-1: Heterogene Mikrostrukturen, links: Balsaholz [99], rechts: Kupfer [65]

Ein anderer Weg zur Ermittlung der Materialeigenschaften besteht in der Untersuchung
des Werkstoffes mittels analytischer und/oder numerischer Methoden. Das Verhalten der
Mikrostruktur wird dabei als physikalischer Zustand eines materiellen Punktes auf der
Makroebene interpretiert. Der Übergang von einem mikroskopischen zu einem geeigne-
ten makroskopischen Materialmodell wird als Homogenisierung bezeichnet. Die Nutzung
analytischer Verfahren erfordert häufig eine Vereinfachung der zu untersuchenden mikro-
skopisch heterogenen Struktur. Durch diese Vereinfachung erhält man für einige Fälle ein-
fach zu handhabende Formeln für die Berechnung von effektiven Materialeigenschaften
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Motivation 3

des heterogenen Kompositwerkstoffes. Dies können je nach Vereinfachung Koeffizienten
des Elastizitätstensors oder physikalische Materialkonstanten, wie zum Beispiel der Elas-
tizitätsmodul, sein. Im Gegensatz zu den analytischen Methoden ist bei einer Nutzung
numerischer Berechnungsverfahren, speziell der Finite-Elemente-Methode (FEM), für die
kommerzielle Softwareprodukte (z. B. ANSYS oder ABAQUS) zur Verfügung stehen, eine
Vereinfachung der Mikrostruktur nicht erforderlich. Die Mikrostruktur kann in Form eines
repräsentativen Volumenelementes (RVE), welches bei zufällig verteilten Mikroeinschlüs-
sen bevorzugt wird, oder in Form einer sich periodisch fortsetzenden Einheitszelle, auch
RUC (RUC-repeated unit cell) genannt, berücksichtigt werden.
Das makroskopische Materialverhalten heterogener Werkstoffe, speziell Verbundwerkstof-
fe, ist im hohen Maße von den beteiligten Phasen auf dem Mikrostrukturlevel abhängig.
Einflussreiche Faktoren sind die Form, die Verteilung, die Materialeigenschaften und der
Volumenanteil der Phasen des Kompositwerkstoffes. Sie sind dafür verantwortlich, dass sich
ein richtungsabhängiges, effektives Stoffverhalten ausprägen kann. Diese Faktoren werden
maßgeblich durch den Herstellungsprozess eines Verbundwerkstoffes beeinflusst. Typische
Herstellungsprozesse von Faserverbundwerkstoffen sind das Handlaminieren/Faserspritzen,
Wickelverfahren und Injektionsverfahren [8]. Beim Handlaminieren handelt es sich um das
älteste und einfachste Herstellungsverfahren, mit dem man beispielsweise Bauteile aus glas-
faserverstärkten, duroplastischen Kunstoffen herstellen kann (siehe Abb. 1-2 aus [8]). Viele
der Verfahren werden zugunsten des Zeitaufwandes und der Wirtschaftlichkeit in automa-
tisierten Prozessen realisiert (zum Beispiel das Profilziehverfahren). Dadurch ist man in
der Lage, Verbundteile zu produzieren, die im Idealfall identische oder wenigstens ähnliche
Mikrostrukturverteilungen aufweisen, wodurch Zufälligkeiten im Strukturaufbau reduziert
werden.

Abbildung 1-2: Darstellung des Verfahrens der Handlaminierung [8]

Infolge von Herstellungsprozessen von Faserverbundwerkstoffen kann es vorkommen, dass
sich zwischen Faser und Matrix eine Zwischenschicht (nachfolgend auch Zwischenphase
genannt) ausprägt [75], welche von den physikalischen Eigenschaften der Fasern und der
Matrix verschieden ist (Abb. 1-3). Selbst bei keiner erkennbaren Ausprägung dieser Schicht
kann man von einer Zwischenschicht sprechen und meint den Kontaktbereich, der durch den
gemeinsamen Rand charakterisiert wird und eine Lastübertragung zwischen den Phasen
gewährleistet [62]. Dieser Kontaktbereich beziehungsweise die Zwischenschicht hat Ein-
fluss auf das makroskopische Verhalten des Verbundwerkstoffes. Die Eigenschaften dieser
Zone sind in der Regel unbekannt. Die vorliegende Arbeit soll unter anderem auch einen

https://doi.org/10.51202/9783186346186 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:55:08. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186346186


4 Einleitung

Beitrag zur Berechnung von effektiven Materialeigenschaften von Faserverbundwerkstof-
fen mit periodischer Mikrostruktur unter Berücksichtigung der Faseranordnung und des
Phasenkontaktes leisten.

Abbildung 1-3: Mikrostruktur eines Faserverbundwerkstoffes mit einer Zwischenphase [75]

1.2 Stand der Forschung

Die rechnerische Ermittlung effektiver Materialeigenschaften unter Einbeziehung der Mi-
krostruktur eines Materials ist seit Jahrzehnten Gegenstand der Forschung, und es ist eine
Vielzahl von Herangehensweisen entwickelt worden. Zwei der ersten Pioniere auf diesem
Gebiet sind VOIGT [98] und REUSS [81]. Ihre Untersuchungen beziehen sich auf Polykris-
talle. Dabei nehmen sie an, dass auf makroskopischer Werkstoffebene ein quasiisotropes
Materialverhalten zu Grunde liegt. Mit Hilfe von Mittelungsmethoden, unter der Annah-
me von homogenen Verzerrungen oder Spannungen in den einzelnen Kristallen, wurden
Materialeigenschaften von Polykristallen abgeleitet. Infolge des gleichen Belastungszustan-
des aller Kristalle kommt es zu physikalischen Unstetigkeiten an den Kristallgrenzen [53].
Gleiche Verzerrungszustände von Kristallen produzieren Unstetigkeiten in den Spannungen
zwischen benachbarten Kristallen. Aus gleichen Spannungszuständen resultieren Unstetig-
keiten in den Verschiebungen. Das bedeutet, verformte benachbarte Kristalle passen an den
Grenzen nicht mehr zusammen. Die effektiven Eigenschaften eines Polykristalls, die sich aus
der Annahme eines homogenen Verzerrungs- oder eines homogenen Spannungszustands er-
geben, unterscheiden sich. Die beiden unterschiedlichen Modellbetrachtungen, welche auch
auf andere heterogene Strukturen angewendet werden können, liefern die Schranken von
VOIGT und REUSS.
Genauere Berechnungen der Materialeigenschaften wurden durch die Nutzung von Variati-
onsprinzipien erreicht [47], [48]. Die dabei verwendeten Methoden liefern für polykristalline
Materialien eine obere und eine untere Schranke für die makroskopischen Materialeigen-
schaften, welche anisotroper Natur sein können. Diese Vorgehensweise lässt sich auch auf
heterogene Verbundwerkstoffe übertragen. Die Schrankenbildung ist darin begründet, dass
an einem repräsentativen Volumenelement, welches Bestandteil des Kompositwerkstoffes
ist und im Mittel die gleiche Beanspruchung aufweist, keine Übereinstimmung mit den
realen Randbedingungen im heterogenen Werkstoff gewährleistet ist, sondern stattdessen
lineare Randverschiebungen oder homogene Randspannungen berücksichtigt werden.
Weitere Methoden, mit denen sich ebenfalls analytische Formeln zur Berechnung effektiver
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elastischer Materialeigenschaften herleiten lassen, sind die Methode der wechselwirkungs-
freien („dünnen“) Defektverteilung [35], [12] und das Selbstkonsistenzschema [35], [63],
[50], wobei in [63] und [50] polykristalline Medien untersucht werden. In [100], [103], [24],
[25] werden angepasste Betrachtungen an Kompositstrukturen behandelt. Weitere Metho-
den sind das Verfahren nach MORI-TANAKA [71], [12], [35] und das Differentialschema
[70], [73], [35]. Die analytischen Verfahren lassen sich in zwei Klassen einordnen. Die erste
Klasse beinhaltet Verfahren, mit denen sich Näherungslösungen für effektive Eigenschaf-
ten berechnen lassen. Diese greifen meist auf stark vereinfachte Modelle zurück, wie zum
Beispiel ein unendlich ausgedehntes RVE und die Erfassung der Wirkung der heterogenen
Materialverteilung durch die Betrachtung einer einzelnen Heterogenität. Die zweite Klasse
beinhaltet Verfahren, die sich auf Variationsformulierungen oder Extremalprinzipien stüt-
zen. Diese ermöglichen es, aus Energiegleichungen obere und untere Schranken für effektive
Eigenschaften abzuleiten.
Werden periodische, heterogene Strukturen betrachtet, so ist das repräsentative Volumen-
element (RVE) der kleinste periodische Bereich der Struktur. Dieser wird in der Literatur
auch als (sich wiederholende) Einheitszelle (RUC, repeated unit cell) bezeichnet [96]. Be-
züglich solcher Strukturen sind die Randbedingungen, wie sie in den analytischen Betrach-
tungen verwendet werden, nicht mehr adäquat. Die Randbedingungen müssen dahingehend
verändert werden, dass sie die Periodizität der RUC berücksichtigen. Das Konzept der RUC
basiert auf einer Mikro-Makro-Betrachtung der Materialstruktur, einer Abhängigkeit be-
züglich einer makroskopischen Variablen und einer mikroskopischen Variablen [96]. Eine
ähnliche Betrachtung wird bei der Methode der asymptotischen Erweiterung (auch mul-
tiple Skalenmethode genannt) genutzt, welche eher in mathematischen Veröffentlichungen
zu finden ist [26], [10]. Für die Bestimmung der effektiven Materialeigenschaften ist es er-
forderlich, Randwertprobleme zu lösen. Dafür können verschiedene Berechnungsverfahren
verwendet werden. In [37], [85], [107], [56] werden Verfahren beschrieben, die zum Lösen
der Randwertprobleme komplexwertige Potentialfunktionen verwenden. Ein weiteres weit
verbreitetes Verfahren stellt die Finite-Elemente-Methode dar [106], [17], [61], [96], [78].
Wie im Abschnitt 1.1 beschrieben, kann es im Herstellungsprozess für Verbundwerkstof-
fe zur Ausprägung einer Verbindungsschicht zwischen Faser und Matrix kommen. Selbst
wenn keine eindeutige Ausprägung erkennbar ist, kann ein Bereich vorliegen, in dem sich
die Eigenschaften der Faser in die der Matrix ändern. Dieser Bereich kann sehr dünn aus-
fallen. Daher wurden in den letzten Jahren zur Berücksichtigung des Kontaktbereiches
zwischen Faser und Matrix verschiedene physikalische Modelle entwickelt und untersucht.
Im Fall der Interpretation einer (sehr dünnen) Zwischenphasenbetrachtung haben sich zwei
unterschiedliche Varianten etabliert. Bei der ersten Variante wird die Zwischenphase mit
einem endlichen Volumen und zusätzlichen Phaseneigenschaften berücksichtigt [75], [60],
[5], wobei die Zwischenschicht auch aus mehreren Phasen bestehen kann [51],[52]. Die
zweite Möglichkeit besteht darin, den Kontakt zwischen Faser und Matrix über Unstetig-
keitsbedingungen, sogenannte imperfekte Phasenübergänge, zu beschreiben [46], [11], [6],
[15], [13], [72], [33], [43], [90]. Diese Bedingungen ordnen der Kontaktbereichszone, die in
der Regel als gemeinsame Grenzfläche zwischen Faser und Matrix modelliert ist, gewisse
Eigenschaften zu, die die Interaktion der Phasen beschreiben. Der imperfekte Phasenüber-
gang kann im Rahmen der Elastizitätstheorie durch Unstetigkeiten in den Spannungen,
in den Verschiebungen oder in beiden physikalischen Größen charakterisiert werden. Die
meisten Übergangsformulierungen werden aus einer isotropen Zwischenschichtmodellierung
hergeleitet. In [80] und [108] werden Modelle beschrieben, bei denen die Kontaktzone in
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Teilzonen unterschiedlichen Kontaktverhaltens unterteilt ist. In Kombination mit der Ver-
wendung der FEM besteht der Vorteil einer imperfekten Phasenübergangsmodellierung
darin, dass eine beliebig dünne Zwischenphase simuliert werden kann. Ein FE-Modell mit
einem Zwischenphasenvolumen dagegen kann aufgrund der Diskretisierung nur bis zu einer
gewissen minimalen Zwischenphasendicke realisiert werden.
Wie bereits im Abschnitt 1.1 erläutert, rücken immer mehr Verbundwerkstoffe mit gekop-
pelten physikalischen Effekten in den Fokus der industriellen Anwendung. Dazu zählen
unter anderem Verbundwerkstoffe mit piezoelektrischen Eigenschaften. Daher ist man be-
strebt, von diesen Materialien Eigenschaften zu bestimmen, die eine homogenisierte Be-
schreibbarkeit des Werkstoffverhaltens für Berechnungsuntersuchungen möglich machen.
In [30], [20] und [73] sind bekannte analytische Homogenisierungsverfahren für elasti-
sche Materialien (Methode der „dünnen“ Verteilung, das Differentialschema, das Verfahren
nach MORI-TANAKA, das Selbstkonsistenzschema, Schranken nach REUSS/VOIGT und
HASHIN-SHTRIKMAN) auf piezoelektrische Materialien erweitert worden. Im Fall von
periodischen Mikrostrukturen sind analoge Erweiterungen von Homogenisierungsverfah-
ren zum Beispiel in [93], [28], [78], [39], [17] und [16] zu finden.
Die Bestimmung und Berechnung effektiver Materialeigenschaften unidirektional faserver-
stärkter Verbundmaterialien mit periodischer Mikrostruktur und variabler Faseranord-
nung, deren Phasenkontakteigenschaften durch eine imperfekte Phasenübergangsmodel-
lierung charakterisiert wird, ist kaum erforscht. In [69] werden für Strukturen mit einer
rhombischen Faseranordnung und einer imperfekten Phasenübergangsformulierung nach
[43] effektive elastische Eigenschaften ermittelt. Diese resultieren aus einer makroskopi-
schen Schubbelastung. Das betrachtete Homogenisierungsverfahren basiert auf der Ver-
wendung von komplexwertigen Potentialfunktionen.
Modelle mit einer rhombischen Faseranordnung besitzen den Vorteil, durch eine Parame-
trisierung ein breites Spektrum an Verbundmaterialien mit periodischer Struktur abzude-
cken. Darunter fallen zum Beispiel auch Kompositwerkstoffe mit hexagonaler oder qua-
dratischer Faseranordnung, welche in der Literatur sehr häufig betrachtet werden. In [34]
und [56] werden Homogenisierungsverfahren unter Verwendung komplexwertiger Potentiale
auf Kompositstrukturen mit festgelegten rhombischen Faserverteilungen angewendet und
effektive Eigenschaften unter Nutzung einer makroskopischen Schubbelastung ermittelt.
Das in [34] behandelte Homogenisierungskonzept ermöglicht es im Fall einer periodischen
Faserverteilung, die durch einen parallelogrammförmigen RUC-Querschnitt charakterisiert
ist, effektive Eigenschaften aus einer Schubbelastung zu bestimmen. Konzepte und Resul-
tate zur Bestimmung aller Komponenten des Elastizitätstensors für Kompositwerkstoffe
mit einem parallelogrammförmigen RUC-Querschnitt sind zum aktuellen Zeitpunkt nicht
bekannt.

1.3 Ziele und Gliederung der Arbeit

Homogenisierungsverfahren bilden die Grundlage zur Bestimmung und Berechnung effekti-
ver Materialeigenschaften von Verbundwerkstoffen. Wie bereits in Abschnitt 1.2 erläutert,
existiert eine Vielzahl an Verfahren, die dafür genutzt werden können. Homogenisierungs-
verfahren unter Nutzung einer RUC besitzen große Vorteile und werden daher im Rahmen
der vorliegenden Arbeit vorzugsweise betrachtet. Da das Lösen von Differentialgleichun-
gen beziehungsweise Variationsformulierungen erforderlich ist, hat sich die Verwendung
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der Finite-Elemente-Methode als vorteilhaft erwiesen. Man ist in der Lage, auch komplexe
dreidimensionale Geometrien als RUC zu berücksichtigen.
Die Literaturrecherche hat gezeigt, dass die Berechnung effektiver Materialeigenschaften
für unidirektionale Faserverbundwerkstoffe mit einer periodischen Mikrostruktur, welche
durch einen rhombischen oder parallelogrammförmigen RUC-Querschnitt widergespiegelt
wird, bisher nur ungenügend betrachtet worden ist. Dies gilt insbesondere unter Einbezie-
hung imperfekter Phasenübergänge und gekoppelter Feldprobleme. Des Weiteren ist der
Einfluss der Faseranordnung auf die effektiven Materialeigenschaften bei einem rhombi-
schen oder parallelogrammförmigen RUC-Querschnitt nur für ausgewählte Elastizitätsko-
effzienten untersucht worden. Die Entwicklung von dreidimensionalen Modellen zur Be-
rechnung aller effektiven Materialkoeffizienten unter Nutzung der FEM und unter Berück-
sichtigung solcher Faserverbundstrukturen einschließlich imperfekter Phasenübergänge ist
nach dem aktuellen Stand der Literatur noch nicht behandelt worden. Dies gilt sowohl für
elastische als auch für piezoelektrische Verbundwerkstoffe. Es ergeben sich damit folgende
Zielstellungen für die vorliegende Arbeit:

• Entwicklung von dreidimensionalen Berechnungsmodellen mit verallgemeinerter Fa-
seranordnung (rhombischer, parallelogrammförmiger RUC-Querschnitt) zur Berech-
nung aller effektiven Elastizitätskoeffizienten unter Verwendung der FEM,

• Untersuchung des Einflusses einer verallgemeinerten Faseranordnung auf die effekti-
ven Koeffizienten,

• Erweiterung der Berechnungsmodelle auf einen imperfekten Phasenübergang,

• Untersuchungen zum Einfluss des imperfekten Phasenübergangs auf die effektiven
Materialeigenschaften,

• Erweiterung der Berechnungsmodelle auf das Gebiet der Piezoelektrizität.

Dadurch soll ein wissenschaftlicher Beitrag zur Weiterentwicklung von geeigneten Ho-
mogenisierungskonzepten und zum besseren Verständnis des Materialverhaltens von
Faserverbundwerkstoffen geleistet werden. Die vorliegende Arbeit ist folgendermaßen
gegliedert.

Im zweiten Kapitel werden die grundlegenden Gleichungen für die Berechnung elas-
tischer und piezoelektrischer Materialien zusammenfassend dargestellt. Ebenso wird auf
Symmetrieeigenschaften von materialbeschreibenden Tensoren eingegangen.
Das dritte Kapitel widmet sich der Homogenisierungstheorie. Es werden zwei Methoden
zum Bestimmen effektiver Materialeigenschaften präsentiert und näher erläutert. Sie
dienen später zur Validierung der entwickelten Berechnungskonzepte. Bei den beiden Me-
thoden handelt es sich um analytische Verfahren, die auf einfache Formeln zur Berechnung
der effektiven Materialeigenschaften führen. Darüber hinaus werden die in dieser Arbeit
entwickelten Homogenisierungskonzepte für unidirektionale Faserverbundstrukturen mit
periodischer Mikrostruktur in detaillierter Form beschrieben. Es wird dabei näher auf die
Geometrieveränderung der RUC, den imperfekten Phasenübergang sowie die Beschreibung
der periodischen Randbedingungen eingegangen.
Das vierte Kapitel gibt einen Einblick in die Finite-Elemente-Methode. Dazu werden
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grundlegende Gleichungen zur Beschreibung eines FE-Modells präsentiert. Es wird zusätz-
lich näher auf die Überführung der periodischen Randbedingungen und der imperfekten
Phasenübergangsmodellierung in ein FE-Modell eingegangen.
Das fünfte Kapitel befasst sich mit der Berechnung und der Auswertung der effektiven
Materialeigenschaften von Faserverbundwerkstoffen. Es werden Verbundwerkstoffe be-
trachtet, deren Phasen unterschiedlichen Materialsymmetrieklassen angehören. Weiterhin
wird der Einfluss der Faseranordnung, des Faservolumenanteils und des imperfekten
Phasenübergangs auf die effektiven Werkstoffeigenschaften untersucht.
Das letzte Kapitel enthält eine Zusammenfassung der Arbeit und eine Darstellung des
Erkenntnisgewinns. Zusätzlich werden mögliche Inhalte für weiterführende Arbeiten
diskutiert.
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2 Modellierung von Werkstoffen

Für die analytische Untersuchung von Werkstoffen sind geeignete mathematische Modelle
für die Beschreibung ihres Materialverhaltens erforderlich. Mittels eines Materialmodells
lässt sich eine Problemstellung ableiten, die eine bestimmte physikalische Situation des
Werkstoffes beschreibt. In den einfachsten Fällen besteht das Problem aus einer Differen-
tialgleichung mit Randbedingungen. Zum Lösen solcher Randwertprobleme werden in der
Regel zugehörige schwache Formulierungen (auch schwache Formen genannt) aufgestellt,
die als Ausgangsbasis für eine Finite-Elemente-Analyse (kurz: FE-Analyse), welche ein nu-
merisches Verfahren zum Lösen von Differentialgleichungsproblemen darstellt, dienen.
Zunächst werden grundlegende Gleichungen von Werkstoffen präsentiert, welche ein rein
elastisches Verhalten widerspiegeln. Im Anschluss daran erfolgt eine Erweiterung der Mo-
dellbetrachtung auf Materialien mit piezoelektrischen Effekten. Dieses Kapitel wird mit In-
formationen zu speziellen Symmetrien von materialbeschreibenden physikalischen Größen
beendet, wodurch sich die mathematischen Modelle vereinfachen können beziehungsweise
explizit Materialkonstanten aus den Größen ableitbar sind.
Zur übersichtlichen und kompakten Darstellung von Gleichungen werden in dieser Arbeit
zwei verschiedene Schreibweisen verwendet, die EINSTEINsche Summenkonvention und
eine modifizierte VOIGTsche Notation. Bei der EINSTEINschen Summenkonvention wird
über doppelt auftretende Indizes summiert (die Summenzeichen werden weggelassen)

∑
i

aibi = aibi ,∑
j

Aijbj = Aijbj ,∑
k,l

Aijklbkl = Aijklbkl .

(2-1)

Die modifizierte VOIGTsche Notation wird im weiteren Verlauf des Kapitels näher erläu-
tert. Zusätzlich werden alle grundlegenden Gleichungen in kartesischen Koordinaten des
dreidimensionalen Raumes angegeben.

2.1 Grundlagen der linearen Elastostatik

Die Ausgangsbasis einer elastostatischen Berechnung ist ein System von Differentialglei-
chungen (kurz DGL-System) und zusätzliche Randbedingungen. Im Rahmen der linearen
Elastostatik lassen sich die Differentialgleichungen aus der Betrachtung des Kräftegleich-
gewichtes am differentiell kleinen Volumenelement herleiten. Unter der Annahme, dass ein
zusammenhängendes offenes Gebiet Ω ⊂ R

3 eines Körpers vorausgesetzt wird, sieht dieses
DGL-System wie folgt aus

− ∂

∂xj
σij(x) = fi(x), i = 1, 2, 3,x ∈ Ω . (2-2)
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Mit σ(x) wird der (CAUCHYsche) Spannungstensor bezeichnet, welcher neun Komponen-
ten σij(x), i, j = 1, 2, 3 besitzt und als 3× 3-Matrix darstellbar ist

σ(x) =

⎛
⎝ σ11(x) σ12(x) σ13(x)

σ21(x) σ22(x) σ23(x)
σ31(x) σ32(x) σ33(x)

⎞
⎠ . (2-3)

Die Größen fi(x) sind die Komponenten des Vektors f(x), welcher die Intensität infolge von
verteilten Volumenkräften kennzeichnet. Wie man der Gleichung (2-2) entnehmen kann,
gilt sie punktweise, das heißt für jedes x ∈ Ω. Aus Gründen der kompakteren Darstellung
wird im weiteren Verlauf auf die Abhängigkeit der Größen von x verzichtet. Aus den
Momentengleichgewichten an einem differentiell kleinen Volumenelement erhalten wir die
Beziehung

σij = σji . (2-4)

Unter der Angabe einer konstitutiven Gleichung, d. h. einer Gleichung, die das Materialver-
halten eines betrachteten Werkstoffes festlegt, lässt sich das DGL-System umformulieren.
Wir nehmen dazu an, dass der betrachtete Körper homogen ist, ein linear elastisches Mate-
rialverhalten aufweist und infolge von Belastungen nur hinreichend kleine Deformationen
zugelassen werden. Das daraus resultierende Materialgesetz

σij = Cijklεkl (2-5)

beziehungsweise in inverser Form
εij = Sijklσkl (2-6)

wird auch HOOKEsches Gesetz genannt. Es verknüpft den Verzerrungstensor ε, gegeben
durch die Komponenten εkl, mittels Proportionalitätsfaktoren, Cijkl beziehungsweise Sijkl,
mit dem Spannungstensor σ. Die Verzerrungskomponenten sind durch

εkl(u) =
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
(2-7)

gegeben, wobei ui die Komponenten eines Verschiebungsvektors u = ( u1 u2 u3 )
T sind.

Wenn im Folgenden von einer Verschiebung gesprochen wird, ist damit in der Regel der
Verschiebungsvektor gemeint.
Die Gleichung (2-7) kann als ein Operator (Linearkombination zweier partieller Differen-
tialoperatoren), angewendet auf eine Funktion u, interpretiert werden. Wird aus dem Kon-
text klar, bezüglich welcher Funktion sich die Verzerrungskomponenten bilden, so wird εkl
anstelle εkl(u) geschrieben. Der Verzerrungstensor lässt sich wie der Spannungstensor in
Form einer 3× 3-Matrix ⎛

⎝ ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

⎞
⎠ (2-8)

darstellen, und es gilt auch hier
εij = εji . (2-9)
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Die Proportionalitätsfaktoren Cijkl sind Komponenten eines Tensors C vierter Stufe, die in-
folge der Homogenität des betrachteten Körpers invariant bezüglich x und somit konstant
sind. Dieser Tensor wird Elastizitätstensor genannt. Infolge der Symmetrieeigenschaften
des Spannungs- und Verzerrungstensors aus Gleichung (2-4) beziehungsweise (2-9) verrin-
gert sich das Gleichungssystem (2-5) von neun auf sechs unabhängige Gleichungen, und
die Anzahl der unabhängigen Koeffizienten Cijkl reduziert sich von 81 auf 36. Unter der
Voraussetzung, dass ein quadratisches, elastisches Potential (Formänderungsenergiedichte)
existiert, lässt sich die Anzahl um weitere 15 auf 21 reduzieren [19], [97]. Im Allgemeinen
gelten für die Koeffizienten des Elastizitätstensors folgende Symmetrieeigenschaften

Cijkl = Cjikl = Cijlk = Cklij . (2-10)

Das Gleichungssystem (2-5) lässt sich unter Berücksichtigung der Symmetrieeigenschaften
(2-4), (2-9) und (2-10) in einer modifizierten VOIGTschen Notation (kurz: M-V-Notation)
darstellen

σ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

σ̃1

σ̃2

σ̃3

σ̃4

σ̃5

σ̃6

⎞
⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C̃11 C̃12 C̃13 C̃14 C̃15 C̃16

C̃12 C̃22 C̃23 C̃24 C̃25 C̃26

C̃13 C̃23 C̃33 C̃34 C̃35 C̃36

C̃14 C̃24 C̃34 C̃44 C̃45 C̃46

C̃15 C̃25 C̃35 C̃45 C̃55 C̃56

C̃16 C̃26 C̃36 C̃46 C̃56 C̃66

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ε̃1

ε̃2

ε̃3

ε̃4

ε̃5

ε̃6

⎞
⎟⎟⎟⎟⎟⎟⎠
= C̃ε̃ , (2-11)

wobei

σ̃1 = σ11, σ̃2 = σ22, σ̃3 = σ33, σ̃4 = σ12, σ̃5 = σ23, σ̃6 = σ13 ,
ε̃1 = ε11, ε̃2 = ε22, ε̃3 = ε33, ε̃4 = 2ε12, ε̃5 = 2ε23, ε̃6 = 2ε13

(2-12)

gilt. Die Koeffizienten C̃ij der Elastizitätsmatrix C̃ ergeben sich aus den Cijkl mittels
folgender Indexrelationen

1 ⇐⇒ 11, 2 ⇐⇒ 22, 3 ⇐⇒ 33 ,
4 ⇐⇒ 12 or 21, 5 ⇐⇒ 23 or 32, 6 ⇐⇒ 13 or 31 .

(2-13)

Analoge Aussagen über die Symmetrieeigenschaften von Cijkl lassen sich auch für die Ko-
effizienten Sijkl formulieren. Der durch diese Koeffizienten definierte Tensor vierter Stufe
wird Nachgiebigkeitstensor genannt. Aus der Beziehung (2-11) lässt sich die inverse For-
mulierung

ε̃ = S̃σ̃ (2-14)

ableiten, wobei S̃ die Nachgiebigkeitsmatrix mit den Koeffizienten S̃ij darstellt.
Das DGL-System (2-2) sieht in der M-V-Notation wie folgt aus

− ∇T σ̃ = f . (2-15)

Hierbei ist ∇ die folgende Differentiationsmatrix

∇ =

⎛
⎜⎜⎜⎜⎜⎝

∂

∂x1

0 0
∂

∂x2

0
∂

∂x3

0
∂

∂x2

0
∂

∂x1

∂

∂x3

0

0 0
∂

∂x3

0
∂

∂x2

∂

∂x1

⎞
⎟⎟⎟⎟⎟⎠

T

. (2-16)
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12 Modellierung von Werkstoffen

Zusätzlich zu dem DGL-System sind noch Randbedingungen erforderlich, wodurch der Ver-
schiebungsvektor u eindeutig bestimmt werden kann. Die geläufigsten Randbedingungen
sind Verschiebungsrandbedingungen (DIRICHLET-Randbedingungen)

u = û auf Γu (2-17)

und Randbedingungen infolge von Randspannungen (NEUMANN-Randbedingungen)

p = σijnj = p̂ auf Γσ . (2-18)

Hierbei sind û, p̂ und n =
(
n1 n2 n3

)T eine vorgegebene Verschiebung, ein vorgege-
bener Randspannungsvektor beziehungsweise der äußere Normalenvektor. Weiterhin kann
die Verschiebung u auch durch festgelegte Zwangsbedingungen an einem Rand Γce ge-
geben sein. Diese Bedingungen sind durch Gleichungen definiert, in denen physikalische
Größen, wie zum Beispiel die Spannungen oder Verschiebungen, des betrachteten Körpers
miteinander gekoppelt sein können. Diesbezüglich wird auf das Kapitel 3 verwiesen.

Schwache Formulierung

Eine Differentialgleichung beziehungsweise ein Differentialgleichungssystem mit gegebenen
Randbedingungen kann in eine schwache Formulierung (auch schwache Form genannt)
überführt werden. Dies ist einerseits dadurch motiviert, dass numerische Verfahren wie
die FEM auf schwache Formulierungen zurückgreifen [57]. Ebenso werden spezielle Anfor-
derungen an die Lösung (Verschiebungsfunktion) abgeschwächt. Damit sind zum Beispiel
Stetigkeits- und Differenzierbarkeitseigenschaften gemeint. Eine schwache Formulierung
besteht aus einer Gleichgewichtsbeziehung in integraler Form, durch welche die DGL (das
DGL-System) und die Randbedingungen näherungsweise im integralen Mittel erfüllt wer-
den. In mathematischer Literatur werden meistens noch ein Funktionenraum, in dem die
Lösung dieses Gleichgewichts zu suchen ist, und ein Funktionenraum, aus dem Testfunk-
tionen gewählt werden, angegeben. Hier soll nur die Gleichgewichtsbeziehung hergeleitet
und betrachtet werden. Die Vorgehensweise für die Herleitung der schwachen Formulierung
ähnelt grundlegenden Schritten der Methode des gewichteten Residuums [109].
Ausgangspunkt der Betrachtung ist das in M-V-Notation gegebene DGL-System (2-15)
in Ω, wobei sowohl Verschiebungsrandbedingungen (2-17) als auch Spannungsrandbedin-
gungen (2-18) am betrachteten Körper aufgebracht sind. Es ist dabei zu bemerken, dass
Γu ∩ Γσ = ∅ gilt, das bedeutet, dass sich die Gebiete der Randbedingungen nicht über-
schneiden. Nach Multiplikation des Systems mit einer Testfunktion v = ( v1 v2 v3 )

T ,
der anschließenden Integration über Ω und der Annahme, dass die gesuchte Funktion u
bereits die DIRICHLET-Randbedingungen (2-17) erfüllt, ergibt sich

−
∫
Ω

vT (∇T σ̃) dΩ =

∫
Ω

vT f dΩ . (2-19)

Nun wird die erste GREENsche Formel, welche einer partiellen Integration im Mehrdi-
mensionalen entspricht, auf die linke Seite angewendet. Dadurch ist es möglich, eine Ab-
leitungsordnung auf die Testfunktion zu übertragen. Man erhält∫

Ω

(∇v)T σ̃ dΩ−
∫
Γu

vTp dΓ−
∫
Γσ

vTp dΓ =

∫
Ω

vT f dΩ . (2-20)
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Piezoelektrische Werkstoffe 13

Als Nächstes wird die Randbedingung aus Gl. (2-18) in die Gl. (2-20) eingesetzt. Unter
der Voraussetzung, dass die Testfunktion auf Γu den Wert Null annimmt, ergibt sich die
integrale Gleichgewichtsbeziehung zu

∫
Ω

(∇v)T σ̃ dΩ =

∫
Ω

vT f dΩ +

∫
Γσ

vT p̂ dΓ . (2-21)

Da
ε̃(u) = ∇u (2-22)

gilt, lässt sich die Beziehung weiter umformen zu
∫
Ω

(∇v)T C̃∇u dΩ =

∫
Ω

vT f dΩ +

∫
Γσ

vT p̂ dΓ . (2-23)

Diese integrale Gleichgewichtsbeziehung ist äquivalent zur schwachen Form nach dem Prin-
zip der virtuellen Arbeit, indem man

v = δu (2-24)

setzt, wobei δu auch Vektor der virtuellen Verrückungen genannt wird.

2.2 Piezoelektrische Werkstoffe

Piezoelektrische Materialien werden für Sensoren oder Aktoren unter anderem bei Ul-
traschalluntersuchungen benötigt. Dabei spielen ferroelektrische Mischkeramiken wie bei-
spielsweise Bleizirkonattitanat (PZT) eine wichtige Rolle [29]. Makroskopisch betrachtet
sind diese Materialien nicht von Natur aus piezoelektrisch. Dies wird erst durch einen Po-
lungsvorgang gewährleistet. Nachfolgend wird ein kurzer Einblick in das Verhalten solcher
Materialien gegeben. Im Anschluss daran werden grundlegende Gleichungen zur mathema-
tischen Beschreibung eines piezoelektrischen Modells präsentiert.

2.2.1 Piezoeffekt

Der piezoelektrische Effekt wurde erstmalig an natürlichen Kristallen, wie zum Beispiel
Quarz und Turmalin, entdeckt [87]. Der Effekt bezeichnet die an Kristallen beobachtete
Erscheinung, dass durch eine mechanische Verformung elektrische Ladungen auf Außenflä-
chen des Kristalls auftreten. Dieser Effekt ist bezüglich Ursache und Wirkung proportional,
und er lässt sich umkehren. Damit ist gemeint, dass infolge eines angelegten elektrischen
Feldes eine Verlängerung oder Verkürzung eintritt. Ursache für den Effekt ist bei Einkris-
tallen aus Quarz der unsymmetrische Kristallaufbau.
Piezokeramiken werden auf Elementarebene durch Perowskit-Strukturen charakterisiert
[87]. Oberhalb der sogenannten CURIE-Temperatur besteht der elementare Aufbau solcher
Materialien aus einer kubischen Gitterstruktur (siehe Abb. 2-1), bei der der Schwerpunkt
der positiven und negativen Ladungen identisch ist. Es sind keine Unsymmetrien und somit
keine Dipole vorhanden. Unterhalb der CURIE-Temperatur verändert sich der elementa-
re Aufbau aus energetischen Gründen in tetragonale Gitter, wodurch die Schwerpunkte
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14 Modellierung von Werkstoffen

nicht mehr identisch sind und ein elektrischer Dipol entsteht. Dipole beeinflussen sich ge-
genseitig, wodurch sich spontan Bereiche mit gleicher Dipolausrichtung bilden. Aus dem
entstehenden Dipolmoment solcher Bereiche lässt sich die dazugehörige spontane Polari-
sation ableiten. Ein Kristallit beinhaltet mehrere Bereiche unterschiedlicher Ausrichtung.
Infolge der statistisch verteilten Orientierung der kristallinen Struktur und damit der Di-
polmomente tritt auf Makroebene keine Polarisation und somit auch kein piezoelektrischer
Effekt auf. Daher wird gegen Ende des Herstellungsprozesses das piezokeramische Mate-
rial polarisiert. Dies geschieht durch Anlegen eines starken elektrischen Feldes in einer
gewünschten Richtung knapp unterhalb der CURIE-Temperatur. Nachdem das Material
abgekühlt und das angelegte Feld abgeschaltet sind, bleibt die Richtung der Dipolmomente
nahezu erhalten. Man spricht dann auch von einer remanenten Polarisierung.

O
2-

A (Pb,Ba)
2+

B (Ti,Zr)
4+

-

+

Abbildung 2-1: Elementarzelle einer Piezokeramik mit kubischem Gitter (links)
beziehungsweise tetragonalem Gitter (rechts), nach [87]

2.2.2 Grundlagen der Modellierung

Nachfolgend wird eine Theorie für die mathematische Beschreibung eines piezoelektrischen
Feldproblems für den Fall kleiner Feldstärken und Verformungen angegeben. Hierfür wer-
den Feldgleichungen für physikalische Größen aus der Elastostatik mit der Elektrostatik
kombiniert. Die Kopplung der Feldgrößen ergibt sich aus konstitutiven Gleichungen (Ma-
terialgesetz). Das DGL-System, welches sich aus den Bilanzgleichungen für das Kräfte-
gleichgewicht und das Gleichgewicht der Ladungen herleiten lässt, wobei Volumenkräfte
angreifen, aber keine freien Ladungen im betrachten Körper Ω anliegen, lautet [64], [40]

− ∂

∂xj
σij = fi

∂

∂xi
Di = 0 .

(2-25)

Die Größen σij, fi und Di sind die Koeffizienten des Spannungstensors, die Koeffizienten
des Intensitätsvektors infolge verteilter Volumenkräfte beziehungsweise die Koeffizienten
des dielektrischen Verschiebungsvektors.
Die konstitutiven Gleichungen für ein piezoelektrisches Material sind durch

σij = Cijklεkl − ekijEk ,
Di = eiklεkl + κikEk

(2-26)
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gegeben, wobei die physikalischen Größen Ek, eikl und κik die Koeffizienten des Vektors der
elektrischen Feldstärke E, die Koeffizienten des Tensors der piezoelektrischen Konstanten
e beziehungsweise die Koeffizienten des Tensors der dielektrischen Konstanten κ sind.
Die Koeffizienten der materialbeschreibenden Tensoren e und κ besitzen die folgenden
Symmetrieeigenschaften [58]

eijk = eikj ,
κij = κji .

(2-27)

Das bedeutet, die Tensoren besitzen im allgemeinsten Fall 18 beziehungsweise 6 unabhän-
gige Koeffizienten.
Der Vektor der elektrischen Feldstärke ist durch den negativen Gradienten des elektrischen
Potentials φ

E = −∇φφ (2-28)

definiert. Das Symbol ∇φ bezeichnet einen Vektor, dessen Komponenten partielle Ablei-
tungsoperatoren sind

∇φ =

(
∂

∂x1

∂

∂x2

∂

∂x3

)T

. (2-29)

Die konstitutiven Gleichungen aus Gl. (2-26) lassen sich unter Nutzung der Indexrelationen
Gl. (2-13) (M-V-Notation) schreiben als⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ̃1

σ̃2

σ̃3

σ̃4

σ̃5

σ̃6

D1

D2

D3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C̃11 C̃12 C̃13 C̃14 C̃15 C̃16 −ẽ11 −ẽ21 −ẽ31

C̃12 C̃22 C̃23 C̃24 C̃25 C̃26 −ẽ12 −ẽ22 −ẽ32

C̃13 C̃23 C̃33 C̃34 C̃35 C̃36 −ẽ13 −ẽ23 −ẽ33

C̃14 C̃24 C̃34 C̃44 C̃45 C̃46 −ẽ14 −ẽ24 −ẽ34

C̃15 C̃25 C̃35 C̃45 C̃55 C̃56 −ẽ15 −ẽ25 −ẽ35

C̃16 C̃26 C̃36 C̃46 C̃56 C̃66 −ẽ16 −ẽ26 −ẽ36

ẽ11 ẽ12 ẽ13 ẽ14 ẽ15 ẽ16 κ11 κ12 κ13

ẽ21 ẽ22 ẽ23 ẽ24 ẽ25 ẽ26 κ12 κ22 κ23

ẽ31 ẽ32 ẽ33 ẽ34 ẽ35 ẽ36 κ13 κ23 κ33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε̃1

ε̃2

ε̃3

ε̃4

ε̃5

ε̃6

E1

E2

E3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2-30)

oder auch (
σ̃
D

)
=

(
C̃ −ẽT

ẽ κ

)(
ε̃
E

)
. (2-31)

Unter Verwendung der Matrixschreibweise ergibt sich aus dem DGL-System (2-25) das
System

−∇T σ̃ = f
∇T

φD = 0
. (2-32)

Da im Vergleich zum rein elastischen Modell drei zusätzliche Differentialgleichungen hin-
zugekommen sind, müssen diesbezüglich auch zusätzliche Randbedingungen neben den
Bedingungen (2-17) und (2-18) angegeben werden. Das sind die elektrischen DIRICHLET-
und NEUMANN-Randbedingungen [40], [64], [95]

φ = φ̂ auf Γφ (2-33)

beziehungsweise
q = Dini = −q̂ auf ΓD . (2-34)

Dabei sind φ̂ und q̂ ein vorgegebenes elektrisches Potential beziehungsweise eine vorgege-
bene elektrische Randladung(-sdichte).
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Schwache Formulierung

Für das Aufstellen der Gleichgewichtsbeziehung in schwacher Form kann man in analoger
Weise wie im rein elastischen Fall vorgehen. Es sei angenommen, dass die Randflächen Γφ
und ΓD die leere Menge als Mengendurchschnitt besitzen.
Ausgehend von dem DGL-System (2-32) werden die erste Gleichung mit der Testfunktion
v und die zweite Gleichung mit der Testfunktion w multipliziert und anschließend über
Ω integriert und addiert. Unter der Annahme, dass die gesuchten Lösungen u und φ die
DIRICHLET-Randbedingungen (2-17) beziehungsweise (2-33) bereits erfüllen, ergibt sich
der folgende Ausdruck

∫
Ω

vT (∇T σ̃) dΩ +

∫
Ω

vT f dΩ +

∫
Ω

w(∇T
φD) dΩ = 0 . (2-35)

Unter Anwendung der partiellen Integration lassen sich Ableitungsordnungen auf die Test-
funktionen übertragen. Man erhält

−
∫
Ω

(∇v)T σ̃ dΩ−
∫
Ω

(∇φw)
TD dΩ +

∫
Ω

vT f dΩ +

∫
Γu

vTp dΓ

+

∫
Γσ

vTp dΓ +

∫
Γφ

wq dΓ +

∫
ΓD

wq dΓ = 0 .
(2-36)

Unter der Bedingung, dass die Testfunktionen v und w auf den Rändern Γu beziehungs-
weise Γφ den Wert Null annehmen, verschwinden der vierte und der sechste Term. Nach
Einarbeiten der restlichen Randbedingungen (2-18) und (2-34) lässt sich die Gleichge-
wichtsbeziehung (2-35) wie folgt darstellen

∫
Ω

(∇v)T σ̃ dΩ +

∫
Ω

(∇φw)
TD dΩ−

∫
Ω

vT f dΩ−
∫
Γσ

vT p̂ dΓ +

∫
ΓD

wq̂ dΓ = 0 . (2-37)

Nach Einsetzen der konstitutiven Gleichungen aus Gl. (2-31) und der Gln. (2-22) und
(2-28) in Gl. (2-37) und anschließendem Umformen erhält man

∫
Ω

(∇v)T C̃∇u dΩ +

∫
Ω

(∇v)T ẽT∇φφ dΩ +

∫
Ω

(∇φw)
T ẽ∇u dΩ

−
∫
Ω

(∇φw)
Tκ∇φφ dΩ−

∫
Ω

vT f dΩ−
∫
Γσ

vT p̂ dΓ +

∫
ΓD

wq̂ dΓ = 0 .
(2-38)

2.3 Materialsymmetrien

In den vorhergehenden Abschnitten wurden Tensoren eingeführt, die das Materialverhalten
charakterisieren. Die Koeffizienten solcher Tensoren, welche in einem kartesischen Koordi-
natensystem {x1, x2, x3} dargestellt werden können, erfüllen im Allgemeinen grundlegende
Symmetrieeigenschaften. Verwendet man für die Darstellung ein bezüglich x1, x2, x3 ge-
drehtes kartesisches Koordinatensystem x′1, x

′
2 und x′3, so wird der gleiche Tensor in der

Regel durch Komponenten repräsentiert, die beim Komponentenvergleich von ungleichem
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Wert sind.
Sind die Koeffizienten bezüglich einer Koordinatentransformation, wie zum Beispiel der
Rotation um eine Achse mit einem festen Winkel α, invariant, so besitzt der Tensor zu-
sätzliche Symmetrien, welche auch materielle Symmetrien genannt werden. Je mehr Sym-
metrien vorliegen, desto weniger unabhängige Koeffizienten sind zur Darstellung des Ten-
sors erforderlich. Die Symmetrien eines Tensors und damit eines Materials kann man in
Symmetrieklassen einteilen. Zu möglichen Koordinatentransformationen zählen neben Ro-
tationen auch Spiegelungen (Reflektionen) bezüglich Koordinatensystemebenen [97], [22],
[18], [89].
Nachfolgend werden im Fall der Elastizität einige Klassen präsentiert, die im späteren
Verlauf Verwendung finden beziehungsweise als Eigenschaften von Kompositwerkstoffen
auftauchen. Analoge Symmetrieeigenschaften lassen sich auch für andere Materialtensoren
beziehungsweise Materialien formulieren, wofür auf die weiterführende Literatur [94], [55]
verwiesen wird.

2.3.1 Koordinatentransformation

Für Koordinatentransformationen sind die Richtungskosinus bezüglich der Koordinaten-
achsen von Bedeutung. Aus der Abb. 2-2 ergeben sich folgende Richtungskosinus

T1 = cos(α′), T2 = cos(β′), T3 = cos(γ′) , (2-39)

wobei α′, β′, γ′ die eingeschlossenen Winkel der Strecke OP mit den Achsen x1, x2 bezie-
hungsweise x3 sind.

x
1

x
2

x
3

P(x ,x ,x )
1 2 3

O

’

’

’

Abbildung 2-2: Strecke OP bildet mit den Achsen x1, x2, x3 die Winkel α′, β′, γ′ [21]

Bei der Transformation eines Tensors bezüglich kartesischer Koordinaten ergeben sich pro
Achse drei Richtungskosinus, das heißt insgesamt neun. Diese lassen sich in Matrixform
schreiben

T =

⎛
⎝ T11 T12 T13

T21 T22 T23

T31 T32 T33

⎞
⎠ , (2-40)

wobei die Richtungskosinus von x′i bezüglich x1, x2, x3 die Komponenten Ti1, Ti2, Ti3
sind. Die Matrix wird auch Transformationsmatrix genannt. Für den Fall, dass das neue
Koordinatensystem in Bezug zu dem alten System nur um den Winkel α um die x3-Achse
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im entgegengesetzten Uhrzeigersinn gedreht ist, erhält man die Matrix

T =

⎛
⎝ cos(α′) cos(90− α′) 0

cos(90 + α′) cos(α′) 0
0 0 1

⎞
⎠ =

⎛
⎝ cos(α′) sin(α′) 0

− sin(α′) cos(α′) 0
0 0 1

⎞
⎠ . (2-41)

Mittels einer Transformationsmatrix ist man in der Lage, ein geeigneteres Koordinaten-
system zur Darstellung von Tensoren zu wählen. Es seien dazu zwei kartesische Koor-
dinatensysteme {x1, x2, x3} und {x′1, x′2, x′3} gegeben. Die Transformationsregel für den
Elastizitätstensor C ist dann durch

C ′
pqrs = TpiTqjTrkTslCijkl (2-42)

definiert, wobei die Tij, i, j = 1, 2, 3 die Richtungskosinus nach Gleichung (2-40) sind.

2.3.2 Symmetrien des Elastizitätstensors

In diesem Teilabschnitt werden einige Symmetrieklassen für den Elastizitätstensor präsen-
tiert und daraus weitere Informationen abgeleitet. Wie bereits in den vorherigen Abschnit-
ten beschrieben wurde, lässt sich der Tensor im allgemeinen Fall durch 21 unabhängige
Koeffizienten beschreiben. Diese Anzahl kann infolge zusätzlicher Symmetrien reduziert
werden. Die Klassifizierung der einzelnen Symmetrien ist durch die Darstellung des Elas-
tizitätstensors bezüglich geeigneter Koordinatensysteme gegeben.

Monokline Symmetrie

Ein monoklines Material ist durch eine Symmetrieebene charakterisiert. Damit ist gemeint,
dass Tensorkomponenten nach Transformationen mittels Gleichung (2-42), welche die Sym-
metrie berücksichtigen, invariant bleiben. Bezüglich eines geeigneten kartesischen Koordi-
natensystems und unter der Annahme, dass die Symmetrieebene die x1-x2-Ebene ist, wird
ein monoklines Material durch die folgende Darstellung des Elastizitätstensors in M-V-
Notation repräsentiert

C̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C̃11 C̃12 C̃13 C̃14 0 0

C̃12 C̃22 C̃23 C̃24 0 0

C̃13 C̃23 C̃33 C̃34 0 0

C̃14 C̃24 C̃34 C̃44 0 0

0 0 0 0 C̃55 C̃56

0 0 0 0 C̃56 C̃66

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2-43)

Die Anzahl der unabhängigen Koeffizienten reduziert sich auf 13.

Orthotropie

Orthotrope Materialien zeichnen sich dadurch aus, dass drei Symmetrieebenen vorliegen.
Diese stehen orthogonal zueinander. Unter der Verwendung eines kartesischen Koordina-
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tensystems, bei dem die Achsenrichtungen parallel zu den Normalenrichtungen der ortho-
gonalen Symmetrieebenen verlaufen, lässt sich der Elastizitätstensor wie folgt schreiben

C̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C̃11 C̃12 C̃13 0 0 0

C̃12 C̃22 C̃23 0 0 0

C̃13 C̃23 C̃33 0 0 0

0 0 0 C̃44 0 0

0 0 0 0 C̃55 0

0 0 0 0 0 C̃66

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2-44)

Für diese Symmetrieklasse reduziert sich die Anzahl der unabhängigen Koeffizienten auf
neun. Die Koeffizienten der Gl. (2-44) lassen sich auch mit Hilfe der Elastizitätsmoduln Ei,
der Schubmoduln Gi und der Querkontraktionszahlen νij und νji, i, j = 1, 2, 3 schreiben.
Die Nachgiebigkeitsmatrix, geschrieben mit den Ingenieurkonstanten, lautet

S̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1/E1 −ν21/E2 −ν31/E3 0 0 0
−ν12/E1 1/E2 −ν32/E3 0 0 0
−ν13/E1 −ν23/E2 1/E3 0 0 0

0 0 0 1/G12 0 0
0 0 0 0 1/G23 0
0 0 0 0 0 1/G13

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2-45)

Bei der Querkontraktionszahl νij kennzeichnet der erste Index die Richtung der aufge-
brachten Belastung und der zweite Index die Richtung der Antwort.
Aufgrund der folgenden Symmetrieeigenschaft

S̃ij = −νij
Ei

= −νji
Ej

= S̃ji (2-46)

und da Ei 
= Ej ist, gilt νij 
= νji.

Transversalisotropie

Ein transversal isotroper Werkstoff besitzt eine Isotropieebene. Daraus lässt sich schluss-
folgern, dass bezüglich beliebiger Rotationen um den Normalenvektor der Ebene die Dar-
stellung des Elastizitätstensors invariant bleibt [18]. Unter Berücksichtigung eines Koordi-
natensystems in eine dieser Konfigurationen stellt sich der Tensor wie folgt dar

C̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C̃11 C̃12 C̃13 0 0 0

C̃12 C̃11 C̃13 0 0 0

C̃13 C̃13 C̃33 0 0 0

0 0 0
1

2

(
C̃11 − C̃12

)
0 0

0 0 0 0 C̃55 0

0 0 0 0 0 C̃55

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2-47)
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20 Modellierung von Werkstoffen

Hier ist die Isotropieebene die x1-x2-Ebene, und die x3-Achse steht senkrecht dazu und ist
damit parallel zum Normalenvektor der Ebene. Die Anzahl der unabhängigen Koeffizienten
beträgt fünf. Die Nachgiebigkeitsmatrix unter Verwendung der Ingenieurkonstanten lautet

S̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1/Et −νt/Et −νl/El 0 0 0
−νt/Et 1/Et −νl/El 0 0 0
−νl/El −νl/El 1/El 0 0 0

0 0 0 2(1 + νt)/Et 0 0
0 0 0 0 1/Gl 0
0 0 0 0 0 1/Gl

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2-48)

Dabei kennzeichnet der Index „ t“ die transversale Richtung und der Index „ l“ die longitudi-
nale Richtung. Eine weitere Materialkonstante, die im späteren Verlauf Anwendung findet,
ist der transversale Kompressionsmodul. In Abhängigkeit von den Elastizitätskoeffizienten
hat er die Form

kt =
1

2
(C11 + C12) . (2-49)

Isotropie

Im Fall, dass die Darstellung des Tensors unabhängig von der Orientierung des Koordina-
tensystems ist, repräsentiert der Tensor ein Material mit einem isotropen Stoffverhalten.
Bezüglich eines beliebig gewählten kartesischen Koordinatensystems stellt sich der Elasti-
zitätstensor wie folgt dar

C̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C̃11 C̃12 C̃12 0 0 0

C̃12 C̃11 C̃12 0 0 0

C̃12 C̃12 C̃11 0 0 0

0 0 0 1
2

(
C̃11 − C̃12

)
0 0

0 0 0 0 1
2

(
C̃11 − C̃12

)
0

0 0 0 0 0 1
2

(
C̃11 − C̃12

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2-50)

Die Anzahl der unabhängigen Koeffizienten des Elastizitätstensors reduziert sich auf zwei.
Die dazugehörige Nachgiebigkeitsmatrix hat die Form wie Gleichung (2-45), wobei hier

E1 = E2 = E3 = E ,
νij = νji = νkl = ν, ∀i, j, k, l = 1, 2, 3 ,

G1 = G2 = G3 = G
(2-51)

gilt. Weiterhin gilt die Beziehung

G =
E

2(1 + ν)
. (2-52)
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3 Homogenisierungsverfahren

Das Wissen über das Materialverhalten von Werkstoffen ist grundlegend für die Untersu-
chung von Bauteilen. Ist das Material homogen, so wird es durch konstante Koeffizienten
materialbeschreibender Tensoren, wie zum Beispiel den Elastizitätstensor C und den Ten-
sor der dielektrischen Konstanten, charakterisiert. Nun ist im Allgemeinen bei detaillierter
Betrachtung der Struktur, das heißt unter Verwendung eines Mikroskops, die Sichtweise
der Homogenität nicht mehr gegeben. Es zeigt sich eine heterogene Struktur, in der zum
Beispiel Risse oder Fremdeinschlüsse auftreten. Diese beiden Betrachtungsebenen, welche
auch Skalen genannt werden, sind die Makroebene und die Mikroebene, wobei der Unter-
schied der charakteristischen Längen beider Skalen sehr groß ist. Daher werden für beide
Skalen eigene Koordinaten eingeführt. In der Literatur findet man häufig x1, x2, x3 und
y1, y2, y3 für die Bezeichnung der makroskopischen beziehungsweise der mikroskopischen
Koordinaten.
Durch die Anwendung von Homogenisierungsmethoden ist es möglich eine feinskalierte
heterogene Mikrostruktur eines Werkstoffes so zu „verschmieren“, dass das Material auf
Makroebene als homogen betrachtet werden kann und sich ortsunabhängige effektive Ma-
terialeigenschaften zuordnen lassen. Dabei wird die Mikrostruktur in einem gemittelten
Sinne berücksichtigt [35]. Dieser Übergang von einer Mikro- zur Makrobetrachtung wird
Homogenisierung genannt.

Ceff

C y( )

y1
y2

y3

x1
x3

x2

lRVE

Homogenisierung

lMakro

lMikro

Abbildung 3-1: Heterogene Mikrostrukturen

Dieses Kapitel beinhaltet Grundlagen und Informationen zur Homogenisierung und zum
Bestimmen der effektiven Materialeigenschaften von Verbundwerkstoffen. Zuerst werden
einige grundlegende Gleichungen zur Homogenisierung in der linearen Elastizität ange-
geben. Im Anschluss daran werden zwei Methoden aus der Literatur vorgestellt, die zur
Validierung eigener Untersuchungen verwendet werden. Das sind die CCA-Modellierung
(CCA - composite cylinder assemblage) [46] und das verallgemeinerte Selbstkonsistenz-
schema [24], [25], [46]. Im dritten Abschnitt wird detaillierter auf den Fall periodischer
Mikrostrukturen eingegangen. Der vierte Abschnitt widmet sich dem Einbeziehen eines
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22 Homogenisierungsverfahren

imperfekten Phasenübergangs in die Homogenisierungsbetrachtungen. Am Ende wird der
Aspekt der Homogenisierung auf piezoelektrische Materialien erweitert.

3.1 Das repräsentative Volumenelement (RVE)

Bei der experimentellen Bestimmung von Materialeigenschaften werden geeignete Probe-
körper mittels Testvorrichtungen kraft- oder weggesteuert belastet. Die Messungen sind nur
sinnvoll, wenn das Ergebnis nicht konkret vom betrachteten Probekörper abhängt oder von
der Art der Laststeuerung. Mit anderen Worten der Probekörper muss „repräsentativ“ für
den Werkstoff sein. Genau wie bei einer experimentellen Untersuchung am repräsentativen
Probekörper wird bei einer theoretischen Betrachtung ein Volumenbereich Ω der Mikro-
ebene gewählt, der repräsentativ für das gesamte Material ist. Das ist das repräsentative
Volumenelement (kurz: RVE). Eine Bedingung für die Repräsentativität ist die Unabhän-
gigkeit des Volumenbereiches von mikrostrukturellen Details im Sinne der Verteilung der
Heterogenität. Damit ist gemeint, dass die mikrostrukturelle Anordnung innerhalb des Vo-
lumenbereichs zu jeden anderen gleichgroßen Volumenausschnitt des Materials äquivalent
ist, so dass die Unabhängigkeit der abgeleiteten effektiven Materialeigenschaften bezüglich
makroskopischer Koordinaten gewährleistet ist. Man spricht dann auch von einer statistisch
homogenen Verteilung der Defekte oder Heterogenitäten im Material. Aus Sicht der Rea-
lität ist dies eine Annahme, die schwer zu erfüllen ist, da die Defektverteilung im Material
im Allgemeinen regelfrei (zufällig) ist. Trotzdem soll angenommen werden, dass es möglich
ist, ein geeignetes RVE zu wählen. Infolge dieser Wahl sollen hier zwei Fälle unterschieden
werden. Diese sind die Wahl eines nichtperiodischen RVE, welches für ein Material mit
einer zufällig verteilten Heterogenität repräsentativ ist, und die Wahl eines periodischen
RVE, welches äquivalent für ein Material mit einer speziellen Verteilung der Defekte steht.
Für den Fall einer zufälligen Mikrostruktur sollte das RVE eine „hinreichend“ große An-
zahl an Defekten beinhalten [35], um näherungsweise als repräsentativ zu gelten, wobei das
Wort „hinreichend“ nicht näher spezifiziert wird. Als richtungsweisend ist diesbezüglich die
Beziehung

lMikro � lRVE � lMakro (3-1)

zu sehen. Hierbei sind lMikro, lRVE und lMakro charakteristische Abmessungen aus der Mikro-
ebene, für das RVE beziehungsweise aus der Makroebene (siehe Abb. 3-1). Die Abmessun-
gen des RVE müssen die Gl. (3-1) erfüllen, damit das RVE repräsentativ für den Werkstoff
ist. Im Fall einer periodischen Mikrostruktur wird in der Regel der kleinste periodisch
fortsetzbare Strukturbereich als RVE benutzt.
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f

m

mf

Abbildung 3-2: Repräsentatives Volumenelement für einen Kompositwerkstoff bestehend aus
zwei Phasen

Für die weiteren Betrachtungen wird angenommen, dass der betrachtete Volumenbereich
Ω, der als RVE genutzt wird, eine konvexe Form besitzt. Es wird weiterhin angenommen,
dass der zu untersuchende Werkstoff aus zwei Phasen besteht, welche jeweils linear elastisch
sind. Eine Phase dient als Basismaterial, Ωm, während die andere Phase, Ωf, welche in das
Basismaterial eingebettet ist, als Störung des Basismaterials interpretiert werden kann
(siehe Abb. 3-2). Der Rand, den die beiden Phasen gemeinsam haben, wird mit Γmf =
Γm ∩ Γf bezeichnet. Der äußere Rand des RVE wird mit Γ bezeichnet.
Unter der Annahme, dass Volumenlasten fehlen, ergibt sich mit Verweis auf Gl. (2-2) für
den Volumenbereich Ω = Ωf ∪ Ωm das folgende DGL-System

∂

∂yj
σij(y) = 0 (3-2)

mit dem dazugehörigen konstitutiven Materialgesetz nach Gl. (2-5)

σij(y) = Cijkl(y)εkl(u(y)) . (3-3)

Hierbei sind σij(y), Cijkl(y) und u(y) durch

σij(y) =

⎧⎨
⎩

σmij (y) wenn y ∈ Ωm

σfij(y) wenn y ∈ Ωf
, (3-4)

Cijkl(y) =

⎧⎨
⎩

Cm
ijkl wenn y ∈ Ωm

C f
ijkl wenn y ∈ Ωf

, (3-5)

und

u(y) =

⎧⎨
⎩

um(y) wenn y ∈ Ωm

uf(y) wenn y ∈ Ωf
(3-6)

definiert. Auf dem gemeinsamen Rand der Phasen Γmf gelten die Bedingungen [1]

ufi = umi auf Γmf , (3-7)

σfijn
f
j = −σmijnmj auf Γmf . (3-8)
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Diese Übergangsbedingungen charakterisieren einen sogenannten perfekten Phasenüber-
gang (auch perfekter Kontakt genannt). Erst in einem späteren Abschnitt (siehe Abschnitt
3.4) wird auch der Fall eines imperfekten Phasenübergangs behandelt.
Aus einer Zweiskalenbetrachtung heraus wird ein materieller Punkt der makroskopischen
Ebene dem repräsentativen Volumenbereich zugeordnet [35], [96]. Da auf Mikroebene
fluktuierende physikalische Felder vorliegen, werden die zur Beschreibung des mechani-
schen Zustands eines Punktes auf der Makroebene zugehörigen Makrospannungen und
-verzerrungen durch folgende Volumenmittelwerte

〈σij〉 = 1

|Ω|
∫
Ω

σij dΩ ,

〈εkl〉 = 1

|Ω|
∫
Ω

εkl dΩ
(3-9)

der mikroskopischen Felder definiert. Hierbei bezeichnet |Ω| das Volumen von Ω. Unter
Berücksichtigung der Bedingungen aus Gl. (3-7), (3-8) und dem Anwenden des GAUSSs-
chen Integralsatzes lassen sich die Makrogrößen auch durch die folgenden Randintegrale
darstellen

〈σij〉 = 1

|Ω|
∫
Γ

σiknkyj dΓ ,

〈εkl〉 = 1

2|Ω|
∫
Γ

(uknl + ulnk) dΓ .
(3-10)

Der effektive (homogenisierte) Elastizitätstensor Ceff ist durch die Beziehung zwischen
Makrospannungen und -verzerrungen

〈σij〉 = Ceff
ijkl〈εkl〉 (3-11)

definiert. Für die Deutung von Ceff als Materialeigenschaft wird gefordert, dass die HILL-
Bedingung [35]

1

2
〈σijεij〉 = 1

2
〈σij〉〈εij〉 (3-12)

erfüllt wird. Diese beschreibt die Äquivalenz der mittleren Formänderungsenergiedichte auf
Mikroebene mit der Formänderungsenergiedichte auf Makroebene [54].
Es ist offensichtlich, dass im Rahmen der linearen Elastizität die Symmetrie der Makro-
spannungen und Makroverzerrungen und somit auch der Koeffizienten des effektiven Elas-
tizitätstensors gewährleistet bleibt, wodurch die Beziehung Gl. (3-11) unter Verwendung
der Indexrelationen Gl. (2-13) in M-V-Notation dargestellt werden kann

〈σ̃p〉 = C̃eff
pq 〈ε̃q〉 p, q = 1, · · · , 6. (3-13)

Die Größen C̃eff
pq sind die Koeffizienten der effektiven Elastizitätsmatrix C̃eff. Durch

〈ε̃p〉 = S̃effpq 〈σ̃q〉 (3-14)
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lässt sich eine analoge Beziehung unter Verwendung der Koeffizienten der effektiven Nach-
giebigkeitsmatrix S̃eff formulieren.
Um effektive Elastizitätseigenschaften Ceff

ijkl aus der Beziehungsgl. (3-11) bestimmen zu
können, ist es vorher von Nöten, die mikroskopischen Größen σij und εkl im repräsenta-
tiven Volumenbereich Ω zu kennen. Somit muss vorher das DGL-System Gl. (3-2) gelöst
werden.
Für eine vollständige Formulierung eines Randwertproblems fehlt noch die Angabe von
geeigneten Randbedingungen auf Γ. Plausible Bedingungen sind homogene (konstante)
Randspannungen oder lineare Randverschiebungen. Diese sind durch

σijnj = σ0
ijnj auf Γ ,

ui = ε0
ijyj auf Γ

(3-15)

gegeben, wobei σ0
ij und ε0

ij konstante Größen sind, die die Symmetrieeigenschaften eines
Spannungs- beziehungsweise Verzerrungstensors besitzen. Der Vektor n ist der äußere Nor-
malenvektor auf Γ. Es gilt je nach Art der verwendeten Randbedingungen aus Gl. (3-15)
die Beziehung

〈εij〉 = ε0
ij (3-16)

oder
〈σij〉 = σ0

ij . (3-17)

Dies bedeutet, dass unter Vorgabe von homogenen Spannungs- oder Verzerrungszustän-
den auf dem Rand die makroskopischen Spannungen beziehungsweise Verzerrungen gerade
den homogenen Größen entsprechen. Die Beziehungen (3-16) und (3-17) werden auch als
„average strain theorem“ beziehungsweise „average stress theorem“ bezeichnet. Es sei noch
bemerkt, dass durch die beiden Randbedingungstypen aus Gl. (3-15) die HILL-Bedingung
Gl. (3-12) erfüllt wird [96].
Unter der Annahme, dass ein Kompositwerkstoff mit einer periodischen Mikrostruktur zu
Grunde liegt und als RVE die sich wiederholende Einheitszelle gewählt wird, sind diese
Typen von Randbedingungen zur Bestimmung der mikroskopischen Größen abzulehnen,
da sie zu schlechten Ergebnissen bei den effektiven Elastizitätseigenschaften führen kön-
nen. Eine genauere Untersuchung dazu wird im Kapitel 5 anhand einer zweidimensionalen
Modellbetrachtung durchgeführt.
Infolge der periodischen Struktur des Kompositwerkstoffes liegt es nahe, dass sich diese
Periodizität in den Spannungs- beziehungsweise den Verzerrungsfeldern (und damit auch
in den Verschiebungsfeldern) wiederspiegeln sollte. Adäquate Randbedingungen für die pe-
riodische Einheitszelle, welche auch als periodische Randbedingungen bezeichnet werden,
sind dann unter der Annahme herleitbar, dass die Spannungsvektoren σn auf gegenüber-
liegenden Rändern anti-periodisch sind und sich die Komponenten des Verzerrungstensors
εij(u) in Ω in

εij(u) = ε0
ij + εij(u

per) (3-18)

aufspalten lassen [96], [67], [68]. Hierbei sind ε0
ij konstante Größen, die die symmetrischen

Eigenschaften eines Verzerrungstensors besitzen, und uper ist ein Vektorfeld, welches peri-
odisch bezüglich Ω ist. Anhand der Periodizität der Funktion uper und dem GAUSSschen
Integralsatz lässt sich schlussfolgern, dass

〈εij(uper)〉 = 1

|Ω|
∫
Ω

εij(u
per) dΩ = 0 (3-19)
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gilt. Damit folgt aus Gl. (3-18)

〈εij(u)〉 = 1

|Ω|
∫
Ω

εij(u) dΩ = ε0
ij . (3-20)

Die periodischen Randbedingungen lauten (siehe [96])

σijnj = −σijnj auf Γ (anti-periodisch) ,
ui = ε0

ijyj + uperi auf Γ ,
uperi periodisch auf Γ ,

(3-21)

wobei die Komponenten ε0
ij eines Tensors ε

0 vorgegeben sind.
Die erste Bedingung aus Gl. (3-21) kann vernachlässigt werden, da die übrigen Bedingungen
aus Gl. (3-21) dazu führen, dass die Anti-Periodizität automatisch erfüllt wird [68], [23].
Daher reicht es aus, sich bei der Formulierung der Randbedingungen auf

ui = ε0
ijyj + uperi auf Γ ,

uperi periodisch auf Γ
(3-22)

zu beschränken. Diese Randbedingungen werden noch zum späteren Zeitpunkt in eine
geeignetere Form überführt, da sie sich in der jetzigen Darstellung nicht für eine numerische
Analyse eignen (Abschnitt 3.3). Auch diese Randbedingungen erfüllen die HILL-Bedingung
[96].

3.2 Nichtperiodische Mikrostruktur

3.2.1 CCA-Modellierung

Unter einem CCA-Modell nach Hashin [41] versteht man einen Kompositwerkstoff,
welcher vollständig aus eingeschränkt zufällig verteilten Zylindergeometrien unterschied-
licher Größe besteht. Ein jeder Zylinder besteht aus einer Matrix Ωm und einer zentral
eingebetteten unidirektionalen Faser Ωf mit einem kreisförmigen Querschnitt, weshalb
dieser auch wie in [41] als Kompositzylinder bezeichnet werden soll. Zwischen den
beiden Phasen wird ein kontinuierlicher Übergang von Spannungen und Verschiebungen
angenommen. Alle Kompositzylinder sind so angeordnet, dass sie zueinander parallel
liegen und sich nicht schneiden. Damit liegen auch alle Fasern parallel zueinander. In
Abb. 3-3 ist ein zylinderförmiges CCA-Modell dargestellt, wobei in dem Bild noch der
freie Raum ΩR zwischen den Kompositzylindern erkennbar ist. Dieser wird ebenfalls
mit Zylindern aufgefüllt, so dass das Volumen von ΩR gegen Null strebt. Es sei nun
rfn der Radius der Faser im n-ten Zylinder und rZn der Radius des n-ten Zylinders. Die
Einschränkung in Bezug auf die Zufälligkeit in der Verteilung besteht nun darin, dass
alle Kompositzylinder das gleiche Verhältnis rfn/r

Z
n aufweisen. Das bedeutet, dass alle Zy-

lindergeometrien für sich betrachtet den gleichen Faser- und Matrixvolumenanteil besitzen.
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Abbildung 3-3: Zylinderförmiges CCA-Modell (links), welches vollständig aus
Kompositzylindern besteht (das Volumen von ΩR strebt gegen Null)

Die CCA-Modellierung basiert auf dem Konzept des neutralen Einschlusses [46]. Die-
ses Konzept definiert sich wie folgt. Es wird in einem homogenen Körper ein gegebener
Spannungs- und Verzerrungszustand angenommen. Ist es möglich, eine Teilregion Ωcc aus
diesem Körper durch eine Region mit einer heterogenen Materialstruktur zu ersetzen, ohne
dass sich die gegebenen Spannungs- und Verzerrungszustände in dem Restgebiet verän-
dern, so wird die ersetzende Teilregion als neutraler Einschluss bezeichnet. In [41] wird
gezeigt, dass ein aus zwei Phasen bestehender Kompositzylinder unter der Annahme eines
konstanten Verzerrungszustandes der Form

ε0 =

⎛
⎝ ε0

11 0 ε0
13

0 ε0
22 ε0

23

ε0
13 ε0

23 ε0
33

⎞
⎠ (3-23)

mit geeigneten Größen ε0
ij ein neutraler Einschluss innerhalb eines homogenen, zylindri-

schen, transversal isotropen Körpers ist, wobei die Materialeigenschaften des Körpers äqui-
valent zu den (homogenisierten) Eigenschaften des Kompositzylinders sind (siehe Abb. 3-4)
[46]. Das bedeutet, dass der Kompositzylinder als ein RVE interpretiert werden kann. Die
transversal isotropen Eigenschaften lassen sich im Sinne der Homogenisierung durch die
Betrachtung eines beliebigen Kompositzylinders des Verbundkörpers als RVE bestimmen.

x1

x2

cc

0

Abbildung 3-4: Austausch des homogenen Teilgebiets Ωcc durch einen Kompositzylinder
(Konzept des neutralen Einschlusses)

Unter Verwendung des CCA-Modellierungskonzeptes lassen sich für einen Kompositwerk-
stoff, welcher sich aus zwei (transversal) isotropen Phasen mit einem perfekten Phasenüber-
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gang zusammensetzt, explizite Formeln für den effektiven longitudinalen Elastizitätsmodul
Eeff
l , die effektive longitudinale Querkontraktionszahl νeffl und den effektiven longitudinalen

Schubmodul Geff
l angeben, in die die Phasenvolumenanteile und die Materialeigenschaften

der beteiligten Phasen eingehen. Im Fall des effektiven transversalen Schubmoduls Geff
t , der

effektiven transversalen Querkontraktionszahl νefft und des effektiven transversalen Elasti-
zitätsmoduls Eeff

t lassen sich Schranken angeben [41], [42].
Eine Ausnahme bildet der transversale Kompressionsmodul kefft , für den sich ebenfalls wie
bei den longitudinalen Konstanten eine explizite Formel herleiten lässt. Die Formeln und
die Schranken der Materialkonstanten sind den folgenden Gleichungen zu entnehmen [46],
[41], [42]

kefft = kmt +
vf

1

kft − kmt
+

vm

kmt +Gm
t

, (3-24)

Eeff
l = Ef

lv
f + Em

l v
m +

4(νfl − νml )
2vfvm

vm

kft
+

vf

kmt
+

1

Gm
t

, (3-25)

νeffl = νflv
f + νml v

m +
(νfl − νml )(1/k

m
t − 1/kft)v

mvf

vm

kft
+

vf

kmt
+

1

Gm
t

, (3-26)

Geff
l = Gm

l +
vf

1

Gf
l −Gm

l

+
vm

2Gm
l

, (3-27)

Eeff,±
t =

4kefft G
eff,±
t

keff +meffGeff,±
t

, (3-28)

νeff,±t =
kefft −meffGeff,∓

t

keff +meffGeff,∓
t

(3-29)

mit

meff = 1 +
4kefft (ν

eff
l )

2

Eeff
l

,

bei Gf
t > Gm

t , k
f
t > kmt

Geff,−
t = Gm

t +
vf

1

Gf
t −Gm

t

+
(kmt + 2Gm

t )v
m

2Gm
t (k

m
t +Gm

t )

,

Geff,+
t = Gm

t

⎛
⎜⎜⎝1 +

(1 +K1)v
f

K2 − vf
(
1 +

3K2
1(v

m)2

K3(vf)3 + 1

)
⎞
⎟⎟⎠ ,

(3-30)
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bei Gf
t < Gm

t , k
f
t < kmt

Geff,−
t = Gm

t

⎛
⎜⎜⎝1 +

(1 +K1)v
f

K2 − vf
(
1 +

3K2
1(v

m)2

K3(vf)3 −K1

)
⎞
⎟⎟⎠ ,

Geff,+
t = Gm

t +
vf

1

Gf
t −Gm

t

+
(kmt + 2Gm

t )v
m

2Gm
t (k

m
t +Gm

t )

(3-31)

mit

K1 =
kmt

kmt + 2Gm
t

, K2 =
Gf
t/G

m
t +K1

Gf
t/G

m
t − 1

,

K3 =
K1 −Gf

t/G
m
t K4

1 +Gf
t/G

m
t K4

, K4 =
kft

kft + 2Gf
t

.

Für die Schranken Gl. (3-28), Gl. (3-29), Gl. (3-30) und Gl. (3-31) kennzeichnet der Index
„-“ und „+“ die untere Schranke beziehungsweise die obere Schranke.
Das Konzept der CCA-Modellierung lässt sich auch bei mehrphasigen Kompositzylindern
anwenden (siehe Abb. 3-5). Dabei steht jedoch nur die Berechnung der effektiven longi-
tudinalen Materialkonstanten sowie des effektiven transversalen Kompressionsmoduls im
Fokus der Betrachtung. Für die Berechnung transversaler Konstanten kann im Fall der
Mehrphasigkeit auf eine andere Berechnungsmethode, das verallgemeinerte Selbstkonsis-
tenzschema, zurückgegriffen werden (siehe Abschnitt 3.2.2).
Die Berechnungsgleichungen der effektiven Konstanten im Fall von mehrphasigen Kom-
positzylindern nach der CCA-Modellierung haben eine ähnliche Darstellung wie die Gln.
(3-24)-(3-27), wobei für die Herleitung eine Art Rekursionsalgorithmus angewendet wer-
den muss. Für die nähere Erläuterung werden die Eigenschaften (3-24)-(3-27) durch die
allgemeinere Bezeichnung P eff(P f, Pm,Varf,Varm, vf, vm) beschrieben. Die in den Klam-
mern aufgeführten Parameter kennzeichnen abhängige Größen. P eff, P f und Pm sind von
gleicher physikalischer Bedeutung, Varf und Varm dienen als Platzhalter in Form von Fel-
dern für etwaige zusätzliche Materialkontanten der Faser- beziehungsweise Matrixphase,
die in die Berechnung eingehen. Diese zusätzlichen Felder bestehen aus maximal zwei bezie-
hungsweise drei Komponenten. Die Reihenfolge der Auflistung der abhängigen Größen in
P eff(P f, Pm,Varf,Varm, vf, vm) ist von großer Wichtigkeit, da sich durch das Vertauschen
auch die heterogene Materialphasenanordnung verändert.
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i

f

m

Abbildung 3-5: Drei-Phasen-Kompositzylinder einer CCA-Modellierung

Für das weitere Vorgehen wird ein CCA-Modell mit Kompositzylindern nach Abb. 3-5 an-
genommen. Die Faser Ωf ist zentral im Zylinder eingebettet und durch eine Zwischenphase
Ωi von der Matrix Ωm, welche die Außenschicht bildet, separiert. Die Phasenübergänge
werden als perfekt angenommen. Die effektive Materialeigenschaft P eff

3p des CCA-Modells
mit dreiphasigen Kompositzylindern ergibt sich dann aus [46]

P eff
3p = P eff(P fi, Pm,Varfi,Varm, vf + vi, vm) , (3-32)

wobei

P fi = P eff
(
P f, P i,Varf,Vari,

vf

vf + vi
,

vi

vf + vi

)
(3-33)

gilt. Das etwaige zusätzliche Feld Varfi in Gl. (3-32) besteht aus Komponenten, die sich
ebenfalls durch die Gl. (3-33) berechnen lassen.

3.2.2 Verallgemeinertes Selbstkonsistenzschema, GSCS

Das in dieser Arbeit verwendete verallgemeinerte Selbstkonsistenzschema (GSCS) orien-
tiert sich an den Ausführungen von Hashin [46]. Es werden die wichtigsten Aspekte und
Gleichungen noch einmal dargestellt.
Das GSCS ist eine Näherungsmethode und kann zur Berechnung von effektiven Materialei-
genschaften von unidirektionalen Faserverbundwerkstoffen genutzt werden. Die Methode
wird in Kapitel 5 als Referenz- beziehungsweise Validierungsmethode herangezogen.
Das GSCS basiert im Fall eines unidirektionalen Faserverbundwerkstoffes, welcher sich aus
drei isotropen und elastischen Phasen zusammensetzt, auf dem folgenden geometrischen
Modell. Ein Kompositzylinder wie aus Abschnitt 3.2.1 Abb. 3-5, welcher eine Matrixphase
Ωm, eine Faserphase Ωf und eine Zwischenphase Ωi besitzt, ist in eine vierte homogene,
transversal isotrope Phase Ω0, welche durch die noch unbekannten effektiven Materialei-
genschaften des unidirektionalen Faserverbundwerkstoffes charakterisiert ist, eingebettet
(siehe Abb. 3-6). Die Zwischenphase separiert die Matrix- und die Faserphase. Der Kon-
takt zwischen allen Phasen wird als perfekt angenommen. Die vierte transversal isotrope
Phase erstreckt sich ins Unendliche, wobei an dem äußeren Rand spezielle Randbedingun-
gen so angenommen werden, dass sich die gewünschten effektiven Werkstoffeigenschaften
herleiten lassen.
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Abbildung 3-6: Links: GSCS-Modell (Kompositzylinder eingebettet in eine unendliche,
homogene Phase), rechts: verwendete Koordinatensysteme

Im Fall der Bestimmung des transversalen Schubmoduls sehen diese Randbedingungen wie
folgt aus [46]

u1(∞) = α0y2, u2(∞) = α0y1, u3(y) = 0 . (3-34)

Hierbei ist α0 ein fest vorgegebener Wert. Durch die Gl. (3-34) und das DGL-System

∂

∂xj
σij = 0 in Ω = Ω0 ∪ Ωf ∪ Ωm ∪ Ωi (3-35)

wird ein Randwertproblem formuliert, welches es zu lösen gilt. Da aus Gl. (3-34) u3(x) = 0
gilt, wird das Randwertproblem als ebenes Problem (ebener Verzerrungszustand) behan-
delt.
Unter Verwendung eines zylindrischen Koordinatensystems mit Ursprung im Fasermittel-
punkt (siehe Abb. 3-6) ergibt sich für Gl. (3-34)

ur = α0 sin(2θ), uθ = α0 cos(2θ) . (3-36)

Da zwischen den einzelnen Phasen ein perfekter Kontakt vorherrscht, gelten an den Pha-
senübergängen r = rf, r = ri = rf + ti und r = rm die folgenden Kontinuitätsbedingungen

ufr = uir, ufθ = uiθ, σfrr = σirr, σfrθ = σirθ ,
uir = umr , uiθ = umθ , σirr = σmrr, σirθ = σmrθ ,
umr = u0

r, umθ = u0
θ, σmrr = σ0

rr, σmrθ = σ0
rθ .

(3-37)

Der verwendete phasenweise Lösungsansatz hat die Form [46]

ukr(r, θ) = ũkr(r) sin(2θ), ukθ(r, θ) = ũk(r) cos(2θ) , k = f, i,m, 0 (3-38)

mit

ũkr(r) = Akr3 +Bkr +
Ck

r
+
Dk

r3
,

ũkθ(r) =
2 + (1− 2νk)

1− (1− 2νk)
Akr3 +Bkr +

1− 2νk

1 + (1− 2νk)

Ck

r
− Dk

r3
,

(3-39)
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wobei Ak, Bk, Ck, Dk unbekannte und konstante Parameter und νk die Querkontraktions-
zahl der jeweiligen Phase Ωk darstellen. Die dazugehörige Darstellung der phasenweisen
Spannungen ergibt

σkrr = 2Gk

(
Bk − 2

1 + (1− 2νk)

Ck

r2
− 3

Dk

r4

)
sin(2θ) ,

σkrθ = 2Gk

(
3

1− (1− 2νk)
Akr2 +Bk +

1

1 + (1− 2νk)

Ck

r2
+ 3

Dk

r4

)
cos(2θ) ,

σkθθ = 2Gk

(
− 6

1− (1− 2νk)
Akr2 −Bk + 3

Dk

r4

)
sin(2θ) .

(3-40)

Die Größe Gk ist der Schubmodul der Phase Ωk.
Mit Hilfe der Verschiebungen und Spannungen nach Gl. (3-38), (3-39) und (3-40) ergeben
sich für jede Phase vier unbekannte Konstanten, welche über einen hochgestellten Index
(„0“, „m“, „f“ oder „i“) dem jeweiligen Material zugeordnet sind. Vier der insgesamt 16
Konstanten sind aufgrund von Singularitäten beziehungsweise der Randbedingungen vor-
gegeben. Diese sind

A0 = 0, B0 = α0, C f = 0, Df = 0 . (3-41)

Die übrigen 12 Unbekannten formen mit der Gl. (3-37) das Gleichungssystem

Lq = b , (3-42)

wobei
qT =

(
C0 D0 Am Bm Cm Dm Ai Bi C i Di Af Bf

)
(3-43)

und

bT =

(
α0 α0 α0G0

Gm

α0G0

Gm 0 0 0 0 0 0 0 0

)
(3-44)

gilt. Dabei sind G0 und Gm der effektive Schubmodul der Phase Ω0 beziehungsweise der
Schubmodul der Phase Ωm. Die Einträge der regulären Matrix L kann man dem Anhang
A entnehmen.
Für die Konstante C0 muss gelten [24], [46]

C0 = 0 , (3-45)

um die Gleichheit der Formänderungsenergie des Modells nach Abb. 3-6 mit der eines
äquivalenten homogenen (effektiven) Modells zu gewährleisten. Für genauere Details wird
auf [24] und [46] verwiesen. Unter der Verwendung der CRAMERschen Regel auf die Gl.
(3-45) ergibt sich

C0 =
det(L0)

det(L)
= 0 . (3-46)

Die Matrix L0 erhält man durch den Austausch der ersten Spalte von L durch b. Da L
regulär und somit det(L) 
= 0 ist, muss det(L0) = 0 sein, damit die Gl. (3-46) erfüllt
wird. Die Berechnung der Determinante det(L0) führt auf eine quadratische Gleichung in
Abhängigkeit des gesuchten effektiven, transversalen Schubmoduls G0. Man erhält

R

(
G0

Gm

)2

+ 2S

(
G0

Gm

)
+ T = 0 , (3-47)
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wobei R, S, T Konstanten sind, die Material- und Geometrieeigenschaften der Faser, der
Matrix und der Zwischenphase beinhalten. Für die explizite Ermittlung der Gl. (3-47) und
die Berechnung der Nullstellen empfiehlt es sich, rechnergestützte Methoden zu verwenden,
da die Konstanten durch komplizierte Ausdrücke dargestellt werden.

3.3 Periodische Mikrostruktur

Wie schon im Abschnitt 3.1 erwähnt, ist es infolge der Periodizität ausreichend, für die
zu ermittelnden mikroskopischen Spannungs- und Verzerrungsfelder als RVE den kleinsten
periodischen Mikrostrukturbereich zu betrachten. Es kann aber auch jeder andere peri-
odische Strukturbereich eines Kompositwerkstoffes genutzt werden. Das RVE wird, da es
in unendlicher Wiederholung im Sinne des Kontinuums den Kompositwerkstoff definiert,
auch sich wiederholende Einheitszelle (RUC) genannt.
Das zu lösende DGL-System ist nach Abschnitt 3.1 Gl. (3-2) durch

∂

∂yj
σij(y) = 0 (3-48)

gegeben. Das verwendete Materialgesetz hat die Form

σij(y) = Cijkl(y)εkl(u(y)) . (3-49)

Die Gln. (3-48), (3-49), (3-7), (3-8) und die Randbedingungen (siehe Gl. (3-22))

ui = ε0
ijyj + uperi auf Γ ,

uperi periodisch auf Γ ,
(3-50)

wobei ε0
ij vorgegebenen ist, formulieren das zu betrachtende Randwertproblem.

Bisher wurde nicht erwähnt, dass die Randbedingungen Gl. (3-50) Starrkörperverschiebun-
gen zulassen, was einen Eindeutigkeitsverlust der Lösung u zur Folge hat. Des Weiteren ist
die Darstellung der Randbedingungen Gl. (3-50) in numerischen Rechnungen ungeeignet,
da das periodische Feld uper nicht bekannt ist. Deshalb wird nachfolgend eine veränderte
Darstellung der Randbedingungen beschrieben.

Abbildung 3-7: RUC mit Längenangaben und Randflächen
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Es wird angenommen, dass die betrachtete RUC die Form eines Quaders hat (siehe Abb.
3-7), wobei die Breite, Höhe und Tiefe über die Parameter b, h beziehungsweise t definiert
sind, welche auch die Periodizität charakterisieren. Schreibt man die Gl. (3-50) jeweils
für die parallelen Ränder A+

k und A−
k auf und bildet die Differenz, so erhält man die

Randbeziehung

u
A+

k
i − u

A−
k

i = ε0
ij

(
y
A+

k
j − y

A−
k

j

)
. (3-51)

Die Indizes „+“ und „−“ legen fest, ob der Normalenvektor der Randfläche in positiver
beziehungsweise negativer Achsenrichtung verläuft. Mit uA−

k ist der Verschiebungsvektor
für ein yA−

k ∈ A−
k und mit uA+

k der entsprechende Vektor für ein yA+
k ∈ A+

k gemeint, wobei
sich yA−

k und yA+
k nur in einer Komponente yi unterscheiden.

Jede identische Einheitszelle des Kompositwerkstoffes erfüllt diese Form der Randbedin-
gungen. Durch die Darstellung der Randbedingungen nach Gl. (3-51) wird deutlich, dass
Starrkörperverschiebungen auftreten können, wodurch die Eindeutigkeit der Lösung des
Vektorfeldes u verloren geht. Dieser Eindeutigkeitsverlust kann durch das Festlegen eines
vorgegebenen Verschiebungsvektors in einem beliebigen materiellen Punkt der RUC besei-
tigt werden.
Zum Bestimmen der effektiven Materialeigenschaften aus der Gl. (3-13) werden sechs Pro-
bleme mit speziellen vorgegebenen symmetrischen Tensoren ε0 betrachtet. Diese Tensoren
sehen wie folgt aus

⎛
⎝ ε0

11 0 0
0 0 0
0 0 0

⎞
⎠ ,

⎛
⎝ 0 0 0

0 ε0
22 0

0 0 0

⎞
⎠ ,

⎛
⎝ 0 0 0

0 0 0
0 0 ε0

33

⎞
⎠ ,

⎛
⎝ 0 ε0

12 0
ε0
21 0 0
0 0 0

⎞
⎠ ,

⎛
⎝ 0 0 0

0 0 ε0
23

0 ε0
32 0

⎞
⎠ ,

⎛
⎝ 0 0 ε0

13

0 0 0
ε0
31 0 0

⎞
⎠ ,

(3-52)

wobei ε0
21 = ε0

12, ε
0
32 = ε0

23 und ε0
31 = ε0

13 gilt. Diese speziellen Probleme haben jeweils den
Vorteil, dass auf der rechten Seite des makroskopischen (effektiven) Materialgesetzes (3-13)
nur eine Makroverzerrungskomponente ungleich Null ist, wodurch nach den zugehörigen
makroskopischen Elastizitätskoeffizienten C̃eff

ij aufgelöst werden kann. Berücksichtigt man
anstatt der Tensoren aus Gl (3-52) die elementaren Verzerrungszustände

⎛
⎝ 1 0 0

0 0 0
0 0 0

⎞
⎠ ,

⎛
⎝ 0 0 0

0 1 0
0 0 0

⎞
⎠ ,

⎛
⎝ 0 0 0

0 0 0
0 0 1

⎞
⎠ ,

⎛
⎜⎜⎜⎝

0
1

2
0

1

2
0 0

0 0 0

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

0 0 0

0 0
1

2

0
1

2
0

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

0 0
1

2
0 0 0
1

2
0 0

⎞
⎟⎟⎟⎠ ,

(3-53)

so ergeben sich die effektiven Koeffizienten C̃eff
ij direkt aus den zugehörigen Makrospannun-

gen. Dies ist dadurch begründet, dass die Differentialoperatoren des Problems linear sind,
wodurch superpositioniert und normiert werden kann. Für ein besseres Verständnis wird
im Folgenden näher auf die speziellen Probleme eingegangen.
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Makroverzerrung in y1-Richtung

In Abb. 3-8 ist exemplarisch das skizzierte Verformungsbild einer quaderförmigen RUC
(rechteckige Querschnittsgeometrie) mit einer zentriert eingebetteten zylindrischen Faser-
phase dargestellt, wobei der Tensor ε0 nur durch die Nicht-Null-Komponente ε0

11 charak-
terisiert ist (siehe Gl. (3-52)).

y1

y2

unverformt

verformt

Abbildung 3-8: Skizzierte Darstellung der Verformung der RUC infolge einer Makroverzerrung
in y1-Richtung

Mit der Gl. (3-51) und den Geometriedaten der RUC nach Abb. 3-7 lassen sich die folgenden
Randbedingungen gewinnen

u
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1 − u

A−
1

1 = ε0
11b, u

A+
2

1 − u
A−

2
1 = 0, u
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3
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3
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2
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3
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3

2 = 0 ,

u
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A−
1

3 = 0, u
A+

2
3 − u

A−
2

3 = 0, u
A+

3
3 − u

A−
3

3 = 0 .

(3-54)

Diese Randbedingungen erzeugen einen makroskopischen Verzerrungszustand, wo nur
〈ε11〉 = ε0

11 ungleich Null ist. Unter Verwendung des makroskopischen Materialgesetzes
in M-V-Notation nach Gl. (3-13) ergibt sich

C̃eff
i1 =

〈σ̃i〉
〈ε̃1〉 , i = 1, . . . , 6 . (3-55)

Damit sind sechs effektive Koeffizienten von C̃eff bekannt.

Makroverzerrung in y2-Richtung

Die quaderförmige RUC wird in diesem Fall durch die Vorgabe von ε0
22 
= 0 verformt.

Die restlichen Komponenten des Verzerrungstensors werden zu Null angenommen. Daraus
ergeben sich die folgenden Verschiebungsrandbedingungen

u
A+

1
1 − u

A−
1

1 = 0, u
A+

2
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A−
2
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3
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3
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2
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3
2 = 0 ,

u
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A−
1

3 = 0, u
A+

2
3 − u

A−
2

3 = 0, u
A+

3
3 − u

A−
3

3 = 0 .

(3-56)

Als einzige Nicht-Null-Komponente der Makroverzerrung bleibt 〈ε22〉. Die zugehörigen
sechs effektiven Elastizitätskoeffizienten, die sich daraus berechnen lassen, sind durch

C̃eff
i2 =

〈σ̃i〉
〈ε̃2〉 (3-57)
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gegeben.

Makroverzerrung in y3-Richtung

In den beiden vorangegangenen Betrachtungen wurden Randbedingungen angenommen,
die einen Makroverzerrungszustand in Normalenrichtung bezüglich y1 oder y2 erzeugen.
Entsprechende Randbedingungen für einen Makroverzerrungszustand in y3-Richtung erhält
man durch die Vorgabe der Nicht-Null-Komponente ε0

33 
= 0. Diese lauten
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2
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3
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2
3 − u

A−
2

3 = 0, u
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3
3 − u

A−
3

3 = ε0
33t .

(3-58)

Aus den Gleichungen

C̃eff
i3 =

〈σ̃i〉
〈ε̃3〉 (3-59)

lassen sich weitere sechs effektive Elastizitätskoeffizienten berechnen.

Makroverzerrung in y1-y2-Richtung

Analog zu Abb. 3-8 wird in Abb. 3-9 exemplarisch das skizzierte Verformungsbild der
quaderförmigen RUC unter Berücksichtigung periodischer Randbedingungen, die durch
einen symmetrischen Tensor ε0 charakterisiert sind, in dem nur die Komponenten ε0

12 = ε0
21

ungleich Null sind, dargestellt.

y1

y2

unverformt verformt

Abbildung 3-9: Skizzierte Darstellung der Verformung der RUC infolge einer Makroverzerrung
in y1-y2-Richtung

Die Randbedingungen sind durch
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1
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2

1 = ε0
12h, u

A+
3

1 − u
A−
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2
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3
2 = 0 ,
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A−
1

3 = 0, u
A+

2
3 − u

A−
2

3 = 0, u
A+

3
3 − u

A−
3

3 = 0

(3-60)

gegeben. Durch diese Randbedingungen lassen sich die Elastizitätskoeffizienten C̃eff
i4 der

M-V-Darstellung (M-V-Notation) des Elastizitätstensors aus

C̃eff
i4 =

〈σ̃i〉
〈ε̃4〉 (3-61)

https://doi.org/10.51202/9783186346186 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:55:08. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186346186


Periodische Mikrostruktur 37

berechnen, da nur 〈ε̃4〉 = 2ε0
12 ungleich Null ist.

Makroverzerrung in y2-y3-Richtung

Der vorangegangene Randbedingungsfall erzeugt eine Schubbelastung auf Makroebene be-
züglich der y1-y2-Richtung. Für eine Schubbelastung bezüglich der y2-y3-Richtung werden
die folgenden Randbedingungen

u
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1
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A−
1

1 = 0, u
A+

2
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2
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A+
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2
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A−
3

2 = ε0
23t ,

u
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1
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A−
1

3 = 0, u
A+

2
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A−
2

3 = ε0
32h, u

A+
3

3 − u
A−

3
3 = 0

(3-62)

verwendet, wobei ε0
23 = ε0

32 
= 0 die einzigen vorgegebenen Nicht-Null-Komponenten des
Tensors ε0 sind. Da die Beziehung 〈εij〉 = ε0

ij gilt, ist nur 〈ε̃5〉 = 2ε0
23 
= 0, und die

zugehörigen Elastizitätskoeffizienten C̃eff
i5 berechnen sich aus

C̃eff
i5 =

〈σ̃i〉
〈ε̃5〉 . (3-63)

Makroverzerrung in y1-y3-Richtung

Für den vorgegebenen Tensor ε0 mit den Nicht-Null-Komponenten ε13 = ε31 lassen sich
die folgenden Randbedingungen aus Gl. (3-51) gewinnen
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2 = 0 ,

u
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3 = ε0
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A+
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2
3 = 0, u

A+
3

3 − u
A−

3
3 = 0 .

(3-64)

Die Randbedingungen führen dazu, dass auf der Makroebene ein Verzerrungstensor ent-
steht, bei dem die einzigen von Null verschiedenen Komponenten 〈ε13〉 = 〈ε31〉 sind. Damit
lassen sich die effektiven Elastizitätskoeffizienten aus

C̃eff
i6 =

〈σ̃i〉
〈ε̃6〉 (3-65)

gewinnen.
Wie man anhand der Gl. (3-13) erkennen kann, können durch die betrachteten sechs Fälle
von Randwertproblemen alle effektiven Koeffizienten von C̃eff bestimmt werden.

3.3.1 RUC mit einem parallelogrammförmigen Querschnitt

Bei der bisher betrachteten RUC (siehe Abb. 3-7) sind die Richtungen der Periodizität
orthogonal zu einander und zusätzlich in Übereinstimmung mit den Koordinatenrichtun-
gen. Nachfolgend wird eine RUC behandelt, bei der diese Orthogonalität verletzt ist. Dazu
wird eine RUC nach Abb. 3-10 betrachtet. Die Größen b, h und t sind, wie in Abb. 3-7
dargestellt, die Breite, die Höhe beziehungsweise die Tiefe der Einheitszelle. Mit w wird die
Länge der geneigten Kante gekennzeichnet. Die Periodizität der Zelle in der y1-y2-Ebene
wird durch die Kantenlängen b, w und 0◦ < α ≤ 90◦, welcher der eingeschlossene Winkel
zwischen den zugehörigen Kanten von b und w ist, charakterisiert. Wie man der Abbildung
entnehmen kann, stehen die Kanten im Allgemeinen nicht senkrecht zu einander, wodurch
die Orthogonalität verletzt ist (α 
= 90◦).
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Abbildung 3-10: RUC mit Geometrieangaben und Begrenzungsflächen

Für die Ermittlung der effektiver Elastizitätskoeffizienten C̃eff
ij sind die Randwertprobleme

mit den speziellen Randbedingungen aus den Gln. (3-54), (3-56), (3-58), (3-60), (3-62) und
(3-64) ungeeignet. Zum Formulieren geeigneter Randbedingungen wird von der Gl. (3-51)
ausgegangen.

Makroverzerrung in y1-Richtung

y1

y2 verformt

unverformt

Abbildung 3-11: Skizzierte Darstellung der Verformung der RUC infolge einer
Makroverzerrung in y1-Richtung

In Abb. 3-11 ist das Verformungsbild einer RUC mit einem parallelogrammförmigen Quer-
schnitt dargestellt, in den zentriert eine Faserphase eingebettet ist. Die Abbildung zeigt
die Verformung infolge der Randbedingungen Gl. (3-66). Die Randbedingungen lauten
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(3-66)

wobei ε0
11, wie im Fall der quaderförmigen RUC, die einzige von Null verschiedene Kom-

ponente eines vorgegebenen Tensors ε0 ist. Daraus resultiert eine makroskopische Verzer-
rungskomponente 〈ε11〉 
= 0, für die 〈ε11〉 = ε0

11 gilt. Alle anderen Komponenten sind Null.
Aus Abb. 3-11 erkennt man, dass im Vergleich zur quaderförmigen RUC die Kanten infolge
der Randbelastung nicht eben bleiben. Es bildet sich ein wellenförmiger Verschiebungsrand
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aus, der bezüglich gegenüberliegender Ränder die gleiche Form hat. Die effektiven Elasti-
zitätskoeffizienten C̃eff

i1 lassen sich aus Gl. (3-55) berechnen.

Makroverzerrung in y2-Richtung

Die Randbedingungen bei einer RUC mit einem parallelogrammförmigen Querschnitt für
eine makroskopische Verzerrung in y2-Richtung sind durch
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(3-67)

gegeben, wobei der vorgegebene Tensor ε0 als einzige Nicht-Null-Komponente ε0
22 besitzt.

Es ergibt sich, dass 〈ε22〉 = ε0
22 die einzige Komponente des makroskopischen Verzerrungs-

tensors ist, die ungleich Null ist. Die effektiven Koeffizienten C̃eff
i2 berechnen sich aus der

Beziehungsgl. (3-57).

Makroverzerrung in y3-Richtung

Der hier vorgegebene Tensor ε0 hat als einzige Komponente ε0
33 ungleich Null. Die für das

DGL-Problem hergeleiteten Randbedingungen
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(3-68)

gewährleisten eine Makroverzerrungskomponente 〈ε33〉 = ε0
33, welche als einzige ungleich

Null ist. Die effektiven Koeffizienten C̃eff
i3 berechnen sich dann aus Gl. (3-59).

Makroverzerrung in y1-y2-Richtung

y1

y2

unverformt

verformt

Abbildung 3-12: Skizzierte Darstellung der Verformung der RUC infolge einer
Makroverzerrung in y1-y2-Richtung
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In Abb. 3-12 ist das skizzierte Verformungsbild einer RUC mit einem parallelogrammförmi-
gen Querschnitt und zentriert eingebetteter Faserphase zu sehen, welches aus der Vorgabe
eines symmetrischen Tensors ε0 mit den einzigen Nicht-Null-Komponenten ε0

12 = ε0
21 re-

sultiert. Die Randbedingungen sind dabei durch
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(3-69)

gegeben. Daraus ergibt sich, dass 〈ε̃4〉 = 2〈ε12〉 = 2ε0
12 als einzige Komponente der M-V-

Darstellung (M-V-Notation) der makroskopischen Verzerrungen ungleich Null ist. Somit
lassen sich die effektiven Koeffizienten C̃eff

i4 aus Gl. (3-61) berechnen.

Makroverzerrung in y2-y3-Richtung

Der symmetrische Tensor ε0 hat als einzige Nicht-Null-Komponenten ε0
23 = ε0

23. Die dazu-
gehörigen Randbedingungen lauten
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(3-70)

Als makroskopische Verzerrungskomponenten, welche ungleich Null sind, ergeben sich
〈ε23〉 = 〈ε32〉 = ε0

23. Die effektiven Koeffizienten C̃eff
i5 lassen sich aus der Gleichung (3-

63) berechnen.

Makroverzerrung in y1-y3-Richtung

Aus der Vorgabe eines symmetrischen Tensors ε0 mit ε0
13 = ε31 
= 0 lassen sich die folgenden

Randbedingungen formulieren
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A+

3
1 − u

A−
3

1 = ε0
13t ,

u
A+

1
2 − u

A−
1

2 = 0, u
A+

2
2 − u

A−
2

2 = 0, u
A+

3
2 − u

A−
3

2 = 0 ,

u
A+

1
3 − u

A−
1

3 = ε0
31b, u

A+
2

3 − u
A−

2
3 = ε0

31w sin(90− α), u
A+

3
3 − u

A−
3

3 = 0 .

(3-71)

Daraus resultieren makroskopische Verzerrungskomponenten 〈ε13〉 = 〈ε13〉 = ε0
13, wobei

sich die zugehörigen effektiven Elastizitätskoeffizienten aus der Gl. (3-65) berechnen las-
sen.
Bei einem Vergleich der Randbedingungen der einzelnen Belastungsfälle dieser RUC mit
denen der quaderförmigen RUC ist zu erkennen, dass sich in einigen Fällen die Verschie-
bungsdifferenzen unterscheiden und in anderen gleich sind, was eine Folge der unterschied-
lichen Geometrie und der Richtungen der Periodizität ist.
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3.4 Imperfekter Phasenübergang

In der Regel wird für die Herleitung eines imperfekten Übergangs zwischen zwei Phasen
von einem Drei-Phasen-Modell ausgegangen [11], [15], [13], [43], [44], [46], [33]. Die im-
perfekte Phasenübergangsbeschreibung wird dabei in Form von Unstetigkeitsbedingungen
physikalischer Größen auf dem Phasenrand beschrieben.
Ein imperfekter Phasenübergang ist dabei nicht auf ein bestimmtes physikalisches Feld-
problem beschränkt. In [91], [92] und [36] werden piezoelektrische Feldprobleme unter
Berücksichtigung heterogener Materialstrukturen mit imperfekten Übergängen behandelt.
Grundlegende Gleichungen für piezoelektrische Feldprobleme mit einem speziellen imper-
fekten Phasenübergang im Rahmen der Homogenisierung werden im Abschnitt 3.5.1 prä-
sentiert.
Die in der Literatur zu findenden imperfekten Phasenübergangsmodelle für rein elastische
Probleme sind im Allgemeinen nicht einfach in numerischen Modellen zu realisieren, da
in den Unstetigkeitsbedingungen verschiedene physikalische Größen gekoppelt auftreten
können. Die Umsetzung solcher Modelle in kommerziellen FEM-Programmen ist mit er-
heblichem Aufwand verbunden oder gar unmöglich. Im Folgenden wird im Rahmen der
Homogenisierung ein Modell mit einem speziellen imperfekten Phasenübergang entwickelt,
welches sich mit einem überschaubaren Aufwand realisieren lässt.
In der bisherigen Modellbetrachtung wurde ein perfekter Phasenübergang zwischen den
Phasen des Kompositwerkstoffes angenommen. Damit ist die Gültigkeit der Gl. (3-7) und
(3-8) gemeint. Dieser perfekte Phasenübergang wird nun durch einen speziellen imperfek-
ten Übergang ersetzt.

f

mf

y1

y2

y3

mf

Abbildung 3-13: Gemeinsamer Rand Γmf einer eingebetteten zylinderförmigen Phase Ωf mit
der Matrixphase Ωm

Dieser spezielle Phasenübergang ist charakterisiert durch Gl. (3-8) und unstetige Verschie-
bungen [43], [44] [72]. Der Phasenübergang lässt sich unter Verwendung der normalen
Komponente (Index „n“) und der transversalen Komponenten (Index „s“ und „t“) des
Spannungsvektors t = ( tn ts tt)

T durch die folgende Beziehung beschreiben [45]

t =

⎛
⎝ tn

ts
tt

⎞
⎠ =

⎛
⎝ Kε

n 0 0
0 Kε

s 0
0 0 Kε

t

⎞
⎠

⎛
⎝ ‖un‖

‖us‖
‖ut‖

⎞
⎠ = Kε‖u‖ . (3-72)

Die konstanten Größen Kε
n, K

ε
s und Kε

t sind dabei Proportionalitätsfaktoren, durch die
Verschiebungsdifferenzen ‖u‖ = (um − uf) mit Spannungen t = σn verknüpft werden.
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Die tiefgestellten Zeichen n, s und t kennzeichnen den Bezug zu einem lokalen kartesi-
schen Koordinatensystem auf dem Rand Γmf (siehe Abb. 3-13). Unter der Annahme eines
raumfesten, kartesischen Koordinatensystems {y1, y2, y3} hat die Gl. (3-72) die Form

ti = Kε
ij‖uj‖, i, j = 1, 2, 3 , (3-73)

wobei Kε
n, K

ε
s und Kε

t die Eigenwerte der Matrix Kε sind. Die Größen Kε
n, K

ε
s und Kε

t

aus Gl. (3-72) besitzen einen konstanten Wert, während die Koeffizienten Kε
ij in Gl. (3-73)

von der Position auf dem Kontaktrand abhängig sind. Für jede Position lässt sich eine
Transformationsmatrix finden, mit der Kε aus Gl. (3-72) in Kε aus Gl. (3-73) überführt
werden kann.
Für den Fall, dass ein zylinderförmiger Rand Γmf berücksichtigt wird (siehe Abb. 3-13),
sehen die Bedingungen für den imperfekten Phasenübergang unter Verwendung eines zy-
lindrischen Koordinatensystems r, θ, z wie folgt aus

σfrr = σmrr, σfrθ = σmrθ, σfrz = σmrz ,
σfrr = Kε

r‖ur‖, σfrθ = Kε
θ‖uθ‖, σfrz = Kε

z‖uz‖ .
(3-74)

Aus Gl. (3-74) lässt sich entnehmen, dass Kε
r den Phasenübergang in radialer Richtung

beeinflusst, während Kε
θ und Kε

z für den Phasenübergang in transversaler Richtung ver-
antwortlich sind. Die physikalische Einheit der Größen Kε

i , i = r, θ, z ist [Kraft/Volumen].
Wie bereits erwähnt, kann ein imperfekter Phasenübergang im Allgemeinen aus einer Drei-
Phasen-Betrachtung hergeleitet werden. Für den speziellen imperfekten Phasenübergang
aus Gl. (3-74) ist es daher naheliegend, eine Interpretierbarkeit der Größen Kε

i , i = r, θ, z
aus den Materialeigenschaften der Zwischenphase einer Drei-Phasen-Modellierung zu fin-
den. Im Fall einer sehr dünnen Zwischenschicht Ωi, welche isotrope und vergleichsweise
sehr niedrige Materialeigenschaften aufweist und eine konstante Phasendicke hat, werden
in [46] die folgenden Beziehungen verwendet

Kε
r =

Ei(1− ν i)

ti(1− 2ν i)(1 + ν i)
,

Kε
θ =

Gi

ti
,

Kε
z =

Gi

ti
.

(3-75)

Hierbei bezeichnen die Konstanten Ei, Gi und ν i den Elastizitätsmodul, den Schubmodul
beziehungsweise die Querkontraktionszahl der Zwischenschicht. Durch ti ist die Dicke der
Zwischenschicht gekennzeichnet. Für die Darstellung der Beziehungen in Gl. (3-75) können
auch Elastizitätskoeffizienten der Zwischenphase verwendet werden. Aufgrund der Isotro-
pie lassen sich die Koeffizienten C i

1111 = Ei(1 − ν i)/((1 − 2ν i)(1 + ν i)) und C i
2323 = Gi

nutzen.
Die Art der Beschreibung des Phasenübergangs aus Gl. (3-74) ist einem Federgesetz ähn-
lich, weshalb die Kε

i im Englischen auch „spring constant type parameter“ oder einfach
„interface parameter“ genannt werden.
Im Fall periodischer Mikrostrukturen werden die Randbedingungen aus Gl. (3-50) auf eine
RUC angewendet. Der effektive Elastizitätstensor Ceff definiert sich über die Gleichung

〈σij〉 = Ceff
ijkl〈εkl〉 , (3-76)
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welche das makroskopische Materialgesetz repräsentiert. Hier sind die Größen 〈σij〉 und
〈εkl〉 durch [11]

〈σij〉 = 1

|Ω|
∫
Ω

σij dΩ ,

〈εkl〉 = 1

|Ω|
∫

Ωm

εkl dΩ +
1

|Ω|
∫
Ωf

εkl dΩ +
1

2|Ω|
∫

Γmf

‖uk‖nl + ‖ul‖nk dΓ
(3-77)

gegeben. Die makroskopischen Spannungen 〈σij〉 bilden sich aus dem integralen Mittelwert
der Spannungen in der RUC (1. Gleichung in Gl. (3-77)). Die makroskopischen Verzerrun-
gen 〈εkl〉 ergeben sich aus den integralen Mittelwertanteilen der Phase des Einschlusses (Ωf)
und des Füllmaterials (Ωm) sowie aus einem dritten Term. Dieser dritte Term spiegelt den
Verzerrungsanteil des imperfekten Phasenübergangs infolge der Verschiebungsdifferenzen
auf Γmf wider. Der Term lässt sich auch so interpretieren, dass er den Verzerrungsanteil
der Zwischenphase Ωi aus einer Drei-Phasen-Modellierung repräsentiert.
Werden in der zweiten Gleichung von Gl. (3-77) die ersten beiden Integralterme mittels
GAUSSschem Integralsatz in Randintegrale überführt, ergibt sich die Beziehung

〈εkl〉 =
1

2|Ω|
∫
Γm

ukn
m
l + uln

m
k dΓ +

1

2|Ω|
∫
Γf

ukn
f
l + uln

f
k dΓ

+
1

2|Ω|
∫

Γmf

‖uk‖nfl + ‖ul‖nfk dΓ .
(3-78)

Mit Γf und Γm wird der äußere Rand von Ωf und Ωm bezeichnet. Die Größen nmi und nfi
sind die Komponenten des Normalenvektors bezogen auf Ωm beziehungsweise Ωf. Mit der
Einbeziehung des Randes der RUC Γ (n sei hier der Normalenvektor auf Γ) lässt sich die
Gleichung wie folgt umschreiben

〈εkl〉 =
1

2|Ω|
∫
Γ

uknl + ulnk dΓ +
1

2|Ω|
∫

Γmf

umk n
m
l + uml n

m
k dΓ

+
1

2|Ω|
∫

Γmf

ufkn
f
l + ufln

f
k dΓ +

1

2|Ω|
∫

Γmf

‖uk‖nfl + ‖ul‖nfk dΓ .
(3-79)

Da auf dem Rand Γmf für die Komponenten der Normalenvektoren nmi = −nfi gilt, ergibt
sich

〈εkl〉 =
1

2|Ω|
∫
Γ

uknl + ulnk dΓ− 1

2|Ω|
∫

Γmf

umk n
f
l + uml n

f
k dΓ

+
1

2|Ω|
∫

Γmf

ufkn
f
l + ufln

f
k dΓ +

1

2|Ω|
∫

Γmf

‖uk‖nfl + ‖ul‖nfk dΓ

=
1

2|Ω|
∫
Γ

uknl + ulnk dΓ− 1

2|Ω|
∫

Γmf

‖uk‖nfl + ‖ul‖nfk dΓ

+
1

2|Ω|
∫

Γmf

‖uk‖nfl + ‖ul‖nfk dΓ

=
1

2|Ω|
∫
Γ

uknl + ulnk dΓ .

(3-80)
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Somit lassen sich die Größen 〈εkl〉 auch über Randintegrale ausdrücken.
Ähnliches lässt sich auch für die makroskopischen Spannungen 〈σij〉 erreichen. Mit Hilfe
der Gl. (3-48) und ∂yj/∂yk = δjk (δjk ist das KRONECKER-Delta) gilt in jeder Phase die
Beziehung [35]

∂

∂yk
(yjσik) =

∂yj
∂yk

σik + yj
∂σik
∂yk

= σij, i, j = 1, 2, 3 . (3-81)

Unter Verwendung der Gl. (3-81) und des GAUSSschen Integralsatzes erhält man

〈σij〉 =
1

|Ω|
∫
Ω

σij dΩ

=
1

|Ω|
∫

Ωm

σij dΩ +
1

|Ω|
∫
Ωf

σij dΩ

=
1

|Ω|
∫

Ωm

∂

∂yk
(yjσik) dΩ +

1

|Ω|
∫
Ωf

∂

∂yk
(yjσik) dΩ

=
1

|Ω|
∫
Γm

yjσ
m
ikn

m
k dΓ +

1

|Ω|
∫
Γf

yjσ
f
ikn

f
k dΓ

=
1

|Ω|
∫
Γ

yjσiknk dΓ +
1

|Ω|
∫

Γmf

yj(σ
f
ikn

f
k + σmikn

m
k ) dΓ .

(3-82)

Da im Fall des imperfekten Phasenübergangs die Gl. (3-8) auf Γmf erfüllt ist, ergibt sich
letztendlich

〈σij〉 = 1

|Ω|
∫
Γ

σiknkyj dΓ . (3-83)

Im Fall von 〈εkl〉 lässt sich infolge vorgegebener Randbedingungen nach Gl. (3-50) zusätz-
lich schlussfolgern, dass

〈εkl〉 = ε0
kl (3-84)

gilt.

3.5 Piezoelektrische Materialien

Das Prinzip der Homogenisierung kann auch im Fall von piezoelektrischen Materialien
angewandt werden. Es lassen sich Verfahren für nichtperiodische als auch für periodische
Kompositstrukturen findet. Im Allgemeinen ergeben sich diese Verfahren aus einer Erwei-
terung der bereits bekannten Homogenisierung von elastischen Problemen. In [30] wird die
Methode der „dünnen“ Verteilung, die MORI-TANAKA-Methode und das Differentialsche-
ma für piezoelektrische Kompositwerkstoffe behandelt. Verfahren auf der Basis einer RUC
mit periodischen Randbedingungen sind in [79], [78], [17], [59] zu finden. In den häufigsten
Fällen werden perfekte Übergänge der Materialphasen vorausgesetzt.
Im Rahmen der Homogenisierung wird im Folgenden ein Kompositwerkstoff betrachtet,
welcher sich durch ein RVE beziehungsweise eine RUC (gekennzeichnet mit Ω) charakteri-
sieren lässt. Dazu sei angenommen, dass sich die Kompositstruktur aus zwei unterschiedli-
chen Materialphasen zusammensetzt. Eine Phase ist die Matrixphase Ωm, und die andere
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Phase ist eine darin eingebettete „Störung“ Ωf. Der Rand, den beide Phasen gemeinsam
haben, wird mit Γmf = Γm ∩Γf bezeichnet. Der äußere Rand des RVE (der RUC) wird mit
Γ bezeichnet.
Unter der Annahme, dass Volumenlasten fehlen, ergibt sich mit Verweis auf Gl. (2-25) für
den Volumenbereich Ω das folgende DGL-System

∂

∂yj
σij(y) = 0 ,

∂

∂yi
Di(y) = 0 ,

(3-85)

mit den konstitutiven Gleichungen

σij(y) = Cijkl(y)εkl(u(y)) + ekij(y)
∂

∂yk
φ(y) ,

Di(y) = eikl(y)εkl(u(y))− κij(y)
∂

∂yj
φ(y) .

(3-86)

Hierbei sind u(y), φ(y), Cijkl(y), ekij(y), κij(y), σij(y) und Di(y) durch

u(y) =

{
um(y), y ∈ Ωm

uf(y), y ∈ Ωf , φ(y) =

{
φm(y), y ∈ Ωm

φf(y), y ∈ Ωf ,

Cijkl(y) =

{
Cm
ijkl(y), y ∈ Ωm

C f
ijkl(y), y ∈ Ωf , ekij(y) =

{
emkij(y), y ∈ Ωm

efkij(y), y ∈ Ωf ,

κij(y) =

{
κmij(y), y ∈ Ωm

κfij(y), y ∈ Ωf , σij(y) =

{
σmij (y), y ∈ Ωm

σfij(y), y ∈ Ωf ,

Di(y) =

{
Dm

i (y), y ∈ Ωm

Df
i(y), y ∈ Ωf

(3-87)

definiert. Auf dem gemeinsamen Rand der Phasen Γmf gelten die folgenden Stetigkeitsbe-
dingungen

ufi = umi auf Γmf ,
φf = φm auf Γmf ,

(3-88)

σfijn
f
j = −σmijnmj auf Γmf ,

Df
in

f
i = −Dm

i n
m
i auf Γmf .

(3-89)

Mit nf = ( nf1 nf2 nf3 )
T und nm = ( nm1 nm2 nm3 )T wird der äußere Normalenvektor

von der Phase Ωf beziehungsweise Ωm bezeichnet.
Die effektiven Materialeigenschaften von Kompositwerkstoffen bei Berücksichtigung von
piezoelektrischen Materialphasen lassen sich durch die makroskopische Beziehung

〈σij〉 = Ceff
ijkl〈εkl〉 − eeffkij〈Ek〉 ,

〈Di〉 = eeffikl〈εkl〉+ κeffij 〈Ej〉 (3-90)

beziehungsweise
〈σ〉 = C

eff〈ε〉 (3-91)

definieren, wobei

〈σ〉 =
( 〈σ̃1〉 〈σ̃2〉 〈σ̃3〉 〈σ̃4〉 〈σ̃5〉 〈σ̃6〉 〈D1〉 〈D2〉 〈D3〉

)T
,

〈ε〉 =
( 〈ε̃1〉 〈ε̃2〉 〈ε̃3〉 〈ε̃4〉 〈ε̃5〉 〈ε̃6〉 〈E1〉 〈E2〉 〈E3〉

)T
,

(3-92)

https://doi.org/10.51202/9783186346186 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:55:08. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186346186


46 Homogenisierungsverfahren

und

C
eff

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C̃eff
11 C̃eff

12 C̃eff
13 C̃eff

14 C̃eff
15 C̃eff

16 −ẽeff11 −ẽeff21 −ẽeff31
C̃eff

12 C̃eff
22 C̃eff

23 C̃eff
24 C̃eff

25 C̃eff
26 −ẽeff12 −ẽeff22 −ẽeff32

C̃eff
13 C̃eff

23 C̃eff
33 C̃eff

34 C̃eff
35 C̃eff

36 −ẽeff13 −ẽeff23 −ẽeff33
C̃eff

14 C̃eff
24 C̃eff

34 C̃eff
44 C̃eff

45 C̃eff
46 −ẽeff14 −ẽeff24 −ẽeff34

C̃eff
15 C̃eff

25 C̃eff
35 C̃eff

45 C̃eff
55 C̃eff

56 −ẽeff15 −ẽeff25 −ẽeff35
C̃eff

16 C̃eff
26 C̃eff

36 C̃eff
46 C̃eff

56 C̃eff
66 −ẽeff16 −ẽeff26 −ẽeff36

ẽeff11 ẽeff12 ẽeff13 ẽeff14 ẽeff15 ẽeff16 κeff11 κeff12 κeff13
ẽeff21 ẽeff22 ẽeff23 ẽeff24 ẽeff25 ẽeff26 κeff21 κeff22 κeff23
ẽeff31 ẽeff32 ẽeff33 ẽeff34 ẽeff35 ẽeff36 κeff31 κeff32 κeff33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3-93)

sind. Hierbei kennzeichnet der Ausdruck 〈·〉 makroskopische Größen, der durch eine inte-
grale Mittelung auf Mikroebene über den repräsentativen Volumenelementbereich gebildet
wird. Die Gl. (3-91) ist eine Darstellung des makroskopischen Materialgesetzes für piezo-
elektrische Kompositwerkstoffe in der M-V-Notation.
Im elastischen Fall ist die Interpretierbarkeit der effektiven Elastizitätskoeffizienten an die
HILL-Bedingung geknüpft, die die Äquivalenz der mittleren Formänderungsenergie der
Mikroebene mit der Formänderungsenergie der Makroebene beschreibt. Die analoge Be-
schreibung für piezoelektrische Materialien lautet [66]

〈σijεij〉 = 〈σij〉〈εij〉 ,
〈DiEi〉 = 〈Di〉〈Ei〉 .

(3-94)

Diese Bedingungen der Gleichheit auf Mikro- und Makroebene gelten dabei als erfüllt,
wenn zulässige Randbedingungen für das zu betrachtende RVE formuliert sind.
Die makroskopischen Größen 〈σij〉, 〈εij〉, 〈Di〉 und 〈Ei〉 berechnen sich aus

〈σij〉 = 1

|Ω|
∫
Ω

σij dΩ ,

〈εij〉 = 1

|Ω|
∫
Ω

εij dΩ
(3-95)

und

〈Di〉 = 1

|Ω|
∫
Ω

Di dΩ ,

〈Ei〉 = 1

|Ω|
∫
Ω

Ei dΩ .
(3-96)

Für die Homogenisierung nichtperiodischer, piezoelektrischer Kompositstrukturen lassen
sich analytische Verfahren nutzen, um die effektiven Materialeigenschaften zu bestimmen.
Dazu werden homogene oder lineare Randbedingungen, ähnlich wie im Abschnitt 3.1 Gl.
(3-15) verwendet. In [30] und [74] werden beispielsweise lineare Randbedingungen (für die
Verschiebungen und das elektrische Potential) verwendet.
Im Fall von periodischen Mikrostrukturen werden die Randbedingungen aus Abschnitt 3.1
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Gl. (3-22) wie folgt erweitert [78], [2]

ui = ε0
ijyj + uperi auf Γ ,

φ = −E0
j yj + φper auf Γ ,

uperi periodisch auf Γ ,
φper periodisch auf Γ .

(3-97)

Hier sind ε0
ij und E0

i vorgegebene Komponenten eines symmetrischen Tensors ε0 bezie-
hungsweise eines Vektors E0.
Durch die Betrachtung piezoelektrischer Probleme erhöht sich die Anzahl der effektiven
Materialeigenschaften. Für den allgemeinsten Fall eines anisotropen Kompositwerkstoffes
ergeben sich 45 unabhängige, effektive Koeffizienten C

eff
ij , i, j = 1, ..., 9 (siehe Gl. (3-91)).

Für die Bestimmung aller Koeffizienten C
eff
ij sind neun unabhängige Randwertprobleme

zu lösen. Dazu werden unter Verwendung der periodischen Randbedingungen Gl. (3-97)
neun spezielle Randwertprobleme formuliert. Für jedes Randwertproblem wird ein spezi-
eller Tensor ε0 und ein spezieller Vektor E0 vorgegeben. Für die neun Randwertprobleme
sehen diese Größen wie folgt aus

Fall 1: ε0 =

⎛
⎝ ε0

11 0 0
0 0 0
0 0 0

⎞
⎠ , E0 =

⎛
⎝ 0

0
0

⎞
⎠ , (3-98)

Fall 2: ε0 =

⎛
⎝ 0 0 0

0 ε0
22 0

0 0 0

⎞
⎠ , E0 =

⎛
⎝ 0

0
0

⎞
⎠ , (3-99)

Fall 3: ε0 =

⎛
⎝ 0 0 0

0 0 0
0 0 ε0

33

⎞
⎠ , E0 =

⎛
⎝ 0

0
0

⎞
⎠ , (3-100)

Fall 4: ε0 =

⎛
⎝ 0 ε0

12 0
ε0
21 0 0
0 0 0

⎞
⎠ , E0 =

⎛
⎝ 0

0
0

⎞
⎠ , (3-101)

Fall 5: ε0 =

⎛
⎝ 0 0 0

0 0 ε0
23

0 ε0
32 0

⎞
⎠ , E0 =

⎛
⎝ 0

0
0

⎞
⎠ , (3-102)

Fall 6: ε0 =

⎛
⎝ 0 0 ε0

13

0 0 0
ε0
31 0 0

⎞
⎠ , E0 =

⎛
⎝ 0

0
0

⎞
⎠ , (3-103)

Fall 7: ε0 =

⎛
⎝ 0 0 0

0 0 0
0 0 0

⎞
⎠ , E0 =

⎛
⎝ E0

1

0
0

⎞
⎠ , (3-104)

Fall 8: ε0 =

⎛
⎝ 0 0 0

0 0 0
0 0 0

⎞
⎠ , E0 =

⎛
⎝ 0

E0
2

0

⎞
⎠ , (3-105)
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Fall 9: ε0 =

⎛
⎝ 0 0 0

0 0 0
0 0 0

⎞
⎠ , E0 =

⎛
⎝ 0

0
E0

3

⎞
⎠ , (3-106)

wobei ε0
31 = ε0

13, ε
0
32 = ε0

23 und ε0
21 = ε0

12 gilt.
Aus den Randwertproblemen lassen sich jeweils ein Vektor 〈ε〉 und ein Vektor 〈σ〉 (siehe
Gl. (3-91)) bestimmen, wobei nur eine Komponente von 〈ε〉 ungleich Null ist. Dadurch ist
man in der Lage nach einer Spalte von 〈Ceff〉 aufzulösen und die effektiven Koeffizienten
zu ermitteln.
In Analogie zu Abschnitt 3.3 werden nachfolgend für eine RUC mit einer rechteckigen
Querschnittsgeometriebeschreibung (siehe Abb. 3-7) die Randbedingungen der neun spe-
ziellen Randwertprobleme angegeben, welche in Form von Zwangsbedingungen zwischen
Verschiebungen und zwischen elektrischen Potentialen auf dem Rand Γ formuliert sind

Fall 1:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u
A+

1
1 − u

A−
1

1 = ε0
11b, u

A+
2

1 − u
A−

2
1 = 0, u

A+
3

1 − u
A−

3
1 = 0 ,

u
A+

1
2 − u

A−
1

2 = 0, u
A+

2
2 − u

A−
2

2 = 0, u
A+

3
2 − u

A−
3

2 = 0 ,

u
A+

1
3 − u

A−
1

3 = 0, u
A+

2
3 − u

A−
2

3 = 0, u
A+

3
3 − u

A−
3

3 = 0 ,

φA
+
1 − φA

−
1 = 0, φA

+
2 − φA

−
2 = 0, φA

+
3 − φA

−
3 = 0 ,

(3-107)

Fall 2:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u
A+

1
1 − u

A−
1

1 = 0, u
A+

2
1 − u

A−
2

1 = 0, u
A+

3
1 − u

A−
3

1 = 0 ,

u
A+

1
2 − u

A−
1

2 = 0, u
A+

2
2 − u

A−
2

2 = ε0
22h, u

A+
3

2 − u
A−

3
2 = 0 ,

u
A+

1
3 − u

A−
1

3 = 0, u
A+

2
3 − u

A−
2

3 = 0, u
A+

3
3 − u

A−
3

3 = 0 ,

φA
+
1 − φA

−
1 = 0, φA

+
2 − φA

−
2 = 0, φA

+
3 − φA

−
3 = 0 ,

(3-108)

Fall 3:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u
A+

1
1 − u

A−
1

1 = 0, u
A+

2
1 − u

A−
2

1 = 0, u
A+

3
1 − u

A−
3

1 = 0 ,

u
A+

1
2 − u

A−
1

2 = 0, u
A+

2
2 − u

A−
2

2 = 0, u
A+

3
2 − u

A−
3

2 = 0 ,

u
A+

1
3 − u

A−
1

3 = 0, u
A+

2
3 − u

A−
2

3 = 0, u
A+

3
3 − u

A−
3

3 = ε0
33t ,

φA
+
1 − φA

−
1 = 0, φA

+
2 − φA

−
2 = 0, φA

+
3 − φA

−
3 = 0 ,

(3-109)

Fall 4:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u
A+

1
1 − u

A−
1

1 = 0, u
A+

2
1 − u

A−
2

1 = ε0
12h, u

A+
3

1 − u
A−

3
1 = 0 ,

u
A+

1
2 − u

A−
1

2 = ε0
21b, u

A+
2

2 − u
A−

2
2 = 0, u

A+
3

2 − u
A−

3
2 = 0 ,

u
A+

1
3 − u

A−
1

3 = 0, u
A+

2
3 − u

A−
2

3 = 0, u
A+

3
3 − u

A−
3

3 = 0 ,

φA
+
1 − φA

−
1 = 0, φA

+
2 − φA

−
2 = 0, φA

+
3 − φA

−
3 = 0 ,

(3-110)

Fall 5:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u
A+

1
1 − u

A−
1

1 = 0, u
A+

2
1 − u

A−
2

1 = 0, u
A+

3
1 − u

A−
3

1 = 0 ,

u
A+

1
2 − u

A−
1

2 = 0, u
A+

2
2 − u

A−
2

2 = 0, u
A+

3
2 − u

A−
3

2 = ε0
23t ,

u
A+

1
3 − u

A−
1

3 = 0, u
A+

2
3 − u

A−
2

3 = ε0
32h, u

A+
3

3 − u
A−

3
3 = 0 ,

φA
+
1 − φA

−
1 = 0, φA

+
2 − φA

−
2 = 0, φA

+
3 − φA

−
3 = 0 ,

(3-111)

Fall 6:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u
A+

1
1 − u

A−
1

1 = 0, u
A+

2
1 − u

A−
2

1 = 0, u
A+

3
1 − u

A−
3

1 = ε0
13t ,

u
A+

1
2 − u

A−
1

2 = 0, u
A+

2
2 − u

A−
2

2 = 0, u
A+

3
2 − u

A−
3

2 = 0 ,

u
A+

1
3 − u

A−
1

3 = ε0
31b, u

A+
2

3 − u
A−

2
3 = 0, u

A+
3

3 − u
A−

3
3 = 0 ,

φA
+
1 − φA

−
1 = 0, φA

+
2 − φA

−
2 = 0, φA

+
3 − φA

−
3 = 0 ,

(3-112)
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Fall 7:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u
A+

1
1 − u

A−
1

1 = 0, u
A+

2
1 − u

A−
2

1 = 0, u
A+

3
1 − u

A−
3

1 = 0 ,

u
A+

1
2 − u

A−
1

2 = 0, u
A+

2
2 − u

A−
2

2 = 0, u
A+

3
2 − u

A−
3

2 = 0 ,

u
A+

1
3 − u

A−
1

3 = 0, u
A+

2
3 − u

A−
2

3 = 0, u
A+

3
3 − u

A−
3

3 = 0 ,

φA
+
1 − φA

−
1 = −E0

1b, φA
+
2 − φA

−
2 = 0, φA

+
3 − φA

−
3 = 0 ,

(3-113)

Fall 8:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u
A+

1
1 − u

A−
1

1 = 0, u
A+

2
1 − u

A−
2

1 = 0, u
A+

3
1 − u

A−
3

1 = 0 ,

u
A+

1
2 − u

A−
1

2 = 0, u
A+

2
2 − u

A−
2

2 = 0, u
A+

3
2 − u

A−
3

2 = 0 ,

u
A+

1
3 − u

A−
1

3 = 0, u
A+

2
3 − u

A−
2

3 = 0, u
A+

3
3 − u

A−
3

3 = 0 ,

φA
+
1 − φA

−
1 = 0, φA

+
2 − φA

−
2 = −E0

2h, φA
+
3 − φA

−
3 = 0 ,

(3-114)

Fall 9:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u
A+

1
1 − u

A−
1

1 = 0, u
A+

2
1 − u

A−
2

1 = 0, u
A+

3
1 − u

A−
3

1 = 0 ,

u
A+

1
2 − u

A−
1

2 = 0, u
A+

2
2 − u

A−
2

2 = 0, u
A+

3
2 − u

A−
3

2 = 0 ,

u
A+

1
3 − u

A−
1

3 = 0, u
A+

2
3 − u

A−
2

3 = 0, u
A+

3
3 − u

A−
3

3 = 0 ,

φA
+
1 − φA

−
1 = 0, φA

+
2 − φA

−
2 = 0, φA

+
3 − φA

−
3 = −E0

3t ,

(3-115)

Die Formulierungen der ersten sechs Fälle (Gl. (3-107) bis (3-112)) enthalten die gleichen
Verschiebungszwangsbedingungen wie die Gln. (3-54), (3-56), (3-58), (3-60), (3-62) und
(3-64). Die übrigen Zwangsbedingungen in Gl. (3-107) bis (3-112) beziehen sich auf das
elektrische Potential. Sie sind in allen sechs Fällen von gleicher Form und haben als rechte
Seite den Wert Null.
Die Verschiebungszwangsbedingungen der Fälle 7, 8 und 9 haben die gleiche Form mit
einer rechten Seite vom Wert Null. Der Unterschied in den Fällen besteht in verschiedenen
Zwangsbedingungen des elektrischen Potentials.
Wie bereits in Abschnitt 3.3.1 erläutert wurde, sind bei einer RUC mit einem parallelo-
grammförmigen Querschnitt andere Randbedingungen als bei einer quaderförmigen RUC
(Rechteckquerschnitt) erforderlich. Hierfür müssen in den Gln. (3-107) bis (3-112) die Ver-
schiebungszwangsbedingungen durch die Gln. (3-66) bis (3-71) und in den Gln. (3-113) bis
(3-115) die Zwangsbedingungen der elektrischen Potentiale durch die Gleichungen

Fall 7:

⎧⎪⎨
⎪⎩

φA
+
1 − φA

−
1 = −E0

1b ,

φA
+
2 − φA

−
2 = −E0

1w sin(90− α) ,

φA
+
3 − φA

−
3 = 0 ,

(3-116)

Fall 8:

⎧⎪⎨
⎪⎩

φA
+
1 − φA

−
1 = 0 ,

φA
+
2 − φA

−
2 = −E0

2h ,

φA
+
3 − φA

−
3 = 0 ,

(3-117)

Fall 9:

⎧⎪⎨
⎪⎩

φA
+
1 − φA

−
1 = 0 ,

φA
+
2 − φA

−
2 = 0 ,

φA
+
3 − φA

−
3 = −E0

3t

(3-118)

ersetzt werden.
Wie im elastischen Fall lassen sich infolge der Gültigkeit der Stetigkeitsbedingungen aus
Gl. (3-88) und (3-89) die Größen 〈σij〉, 〈εkl〉, 〈Di〉, 〈Ej〉 durch Randintegrale ausdrücken.
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Für 〈εkl〉 und 〈Ei〉 gelten zusätzlich die Beziehungen

〈εkl〉 = 1

2|Ω|
∫
Γ

uknl + ulnk dΓ = ε0
kl ,

〈Ei〉 = − 1

|Ω|
∫
Γ

φni dΓ = E0
i .

(3-119)

3.5.1 Imperfekter Phasenübergang

Wie bereits in Abschnitt 3.4 erwähnt wurde, kann eine Modellierung eines Kompositwerk-
stoffes unter Einbeziehung imperfekter Phasenübergänge auf piezoelektrische Materialien
erweitert werden [36], [91], [92], [14]. Im Fall eines zweiphasigen, faserverstärkten Kom-
positwerkstoffes kann sowohl die Phase der Faser als auch die der Matrix piezoelektrische
Eigenschaften aufweisen. Der imperfekte Übergang ist durch Unstetigkeiten in den physi-
kalischen Größen gekennzeichnet. Wie im elastischen Fall soll hier ein Modell mit einem
speziellen imperfekten Phasenübergang behandelt werden, der sich unter einem überschau-
baren Aufwand realisieren lässt.
Der spezielle imperfekte Übergang wird durch die Kopplung von Spannungen mit Ver-
schiebungsdifferenzen beziehungsweise von dielektrischen Verschiebungen mit Differenzen
des elektrischen Potentials beschrieben. Zusätzlich erfüllen die Spannungen und die dielek-
trischen Verschiebungen die Bedingungen aus Gl. (3-89). Im Fall einer zylinderförmigen
Oberfläche lassen sich die imperfekten Übergangsbedingungen in Zylinderkoordinaten wie
folgt darstellen [92]

σfrr = σmrr, σfrθ = σmrθ, σfrz = σmrz, Df
r = Dm

r ,
σfrr = Kε

r‖ur‖, σfrθ = Kε
θ‖uθ‖, σfrz = Kε

z‖uz‖, Df
r = −KE‖φ‖ .

(3-120)

Zur Erinnerung sei hier noch einmal erwähnt, dass mit || · || die Differenz einer Größe „ · “
auf Γmf bezeichnet wird (siehe Abschnitt 3.4).
Der Phasenübergang (Gl. (3-120)) enthält neben den Bedingungen aus Gl. (3-74) noch zu-
sätzliche Bedingungen für das elektrische Potential und die dielektrischen Verschiebungen.
Diese zusätzlichen Bedingungen kennzeichnen einen stetigen Übergang der radialen dielek-
trischen Verschiebung und Unstetigkeiten in dem elektrischen Potential. Die Kopplung der
Größen erfolgt mit Hilfe des skalaren Parameters KE, welcher als Proportionalitätsfaktor
dient. Dieser Faktor besitzt die physikalische Einheit [Kapazität/Fläche]. Diese Kopplungs-
gleichung ähnelt der Gleichung eines Kondensators (zum Beispiel eines Plattenkondensa-
tor) aus der Elektrostatik. Hier ist der elektrische Verschiebungsfluss mit der elektrischen
Spannung (Differenz elektrischer Potentiale zweier Punkte eines Mediums) über die Ka-
pazität gekoppelt [102], [4]. Durch Variation des Parameters KE lässt sich die elektrische
Isolierung zwischen Faser und Matrix modifizieren.
Zwischen den Kopplungsgleichungen in Gl. (3-120) besteht keine physikalische Verknüp-
fung. Sie setzen sich jeweils aus rein mechanischen oder elektrischen Größen zusammen.
Diese fehlende Verknüpfung der Größen lässt sich auch im Materialgesetz eines nicht-
piezoelektrischen Materials wiederfinden. Daher wird angenommen, dass der imperfekte
Übergang als eine sehr dünne Zwischenphase interpretiert werden kann. In Analogie zu
Abschnitt 3.4 werden im Fall einer isotropen Drei-Phasen-Modellierung, wobei die sehr
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dünne Zwischenphase nicht-piezoelektrisch ist, die folgenden Beziehungen in dem imper-
fekten Phasenübergang verwendet

Kε
r =

Ei(1− ν i)

ti(1− 2ν i)(1 + ν i)
,

Kε
θ =

Gi

ti
,

Kε
z =

Gi

ti
,

KE =
κi

ti
.

(3-121)

Hier wird mit κi (κi11 = κi22 = κi33 = κi) die dielektrische Konstante der isotropen Zwi-
schenphase bezeichnet.
Die effektiven materialbeschreibenden Tensoren eines Kompositwerkstoffes mit dem im-
perfekten Phasenübergang aus Gl. (3-120) ergeben sich aus den Beziehungen

〈σij〉 = Ceff
ijkl〈εkl〉 − eeffkij〈Ek〉 ,

〈Di〉 = eeffikl〈εkl〉+ κeffij 〈Ej〉 ,
(3-122)

wobei 〈σij〉 und 〈Di〉, aufgrund der Gültigkeit der Stetigkeitsbedingungen aus Gl. (3-89),
mit den Ausdrücken aus den Gln. (3-95) beziehungsweise (3-96) übereinstimmen. 〈εkl〉
stimmt mit dem Ausdruck aus der Gl. (3-77) überein

〈εkl〉 = 1

|Ω|
∫
Ωf

εkl dΩ +
1

|Ω|
∫

Ωm

εkl dΩ +
1

2|Ω|
∫

Γmf

‖uk‖nl + ‖ul‖nk dΓ . (3-123)

Das elektrische Potential φ ist auf Γmf unstetig. Die Komponenten der makroskopischen
elektrischen Feldstärke berechnen sich aus

〈Ei〉 =
1

|Ω|

⎛
⎝∫

Ωf

Ei dΩ +

∫
Ωm

Ei dΩ−
∫

Γmf

‖φ‖ni dΓ
⎞
⎠ . (3-124)

Die dritten Terme in den Gln. (3-123) und (3-124) spiegeln den Verzerrungsanteil be-
ziehungsweise den elektrischen Feldstärkeanteil des imperfekten Phasenübergangs infolge
der Verschiebungs- und Potentialdifferenzen auf Γmf wider. Die Terme lassen sich auch so
interpretieren, dass sie die jeweiligen Anteile der Zwischenphase Ωi aus einer Drei-Phasen-
Modellierung repräsentieren.
Die Größen 〈σij〉, 〈Di〉, 〈εkl〉 und 〈Ei〉 lassen sich auch über Randintegrale auf Γ aus-
drücken. Im Fall von 〈σij〉 und 〈Di〉 wird dabei in analoger Weise wie in Abschnitt 3.4 für
die Herleitung der Gl. (3-83) vorgegangen. Man erhält die Beziehungen

〈σij〉 = 1

|Ω|
∫
Γ

σiknkyj dΓ ,

〈Di〉 = 1

|Ω|
∫
Γ

Dknkyi dΓ .
(3-125)
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Die Vorgehensweise für 〈εkl〉 und 〈Ei〉 ist analog wie für die Herleitung der Gl. (3-80). Es
ergeben sich die Beziehungen

〈εkl〉 = 1

2|Ω|
∫
Γ

uknl + ulnk dΓ ,

〈Ei〉 = − 1

|Ω|
∫
Γ

φni dΓ .
(3-126)

Werden im Fall periodischer Mikrostrukturen die Randbedingungen aus Gl. (3-97) auf dem
Rand Γ einer RUC vorgegeben, erhält man

〈εkl〉 = 1

2|Ω|
∫
Γ

uknl + ulnk dΓ = ε0
kl ,

〈Ei〉 = − 1

|Ω|
∫
Γ

φni dΓ = E0
i .

(3-127)

Dies bedeutet, dass durch die Wahl von ε0 und E0 in den Randbedingungen die makro-
skopischen Komponenten 〈εkl〉 und 〈Ei〉 bereits bestimmbar sind.
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4 Modellbildung unter Verwendung der
FEM

Für das Lösen von Differentialgleichungsproblemen stehen die verschiedensten Methoden
zur Verfügung. Man unterscheidet zwischen analytischen und numerischen Methoden. In
den Ingenieurwissenschaften überwiegt die Verwendung von numerischen Methoden, weil
viele Probleme von komplexer Struktur sind, die nicht mehr analytisch gelöst werden kön-
nen.
Die am häufigsten genutzte Methode ist die Finite-Elemente-Methode (FEM, auch Metho-
de der finiten Elemente genannt) [109], [57], [9]. Die Idee dieser Methode besteht darin,
ein zu untersuchendes Gebiet in Teilgebiete (finite Elemente) zu unterteilen und in jedem
Teilgebiet die unbekannte „wahre“ Lösung einer physikalischen Problemstellung mittels ei-
nes Funktionsansatzes zu approximieren. Der Funktionsansatz besteht aus Formfunktionen
und unbekannten Koeffizienten, welche in der klassischen FEM einen Stützstellencharak-
ter haben. Es wird nicht das eigentliche Differentialgleichungsproblem gelöst, sondern eine
schwache Form (integrale Formulierung), welche sich aus der Differentialgleichung ableiten
lässt, zum Beispiel in Form der Methode der gewichteten Residuen (siehe Abschnitt 2.1).
Die resultierende FEM-Lösung, die bei statischen Systemen aus dem Lösen eines Glei-
chungssystems herrührt, unterscheidet sich um einen gewissen Fehler von der exakten Lö-
sung des Problems. Dieser Fehler kann durch eine feinere Diskretisierung des Gebietes oder
durch eine Erhöhung des Polynomgrads der Formfunktionen reduziert werden.
Die FEM ist nicht auf ein spezielles Gebiet der Physik beschränkt. Mit ihr lassen sich
zum Beispiel Aufgaben aus der Statik oder Dynamik untersuchen. Ebenso ist es möglich,
Mehrfeldprobleme, die durch gekoppelte DGL-Systeme charakterisiert sind, zu lösen.
Die in dieser Arbeit betrachteten Problemstellungen werden unter Verwendung der FEM
abgehandelt. Als Hilfsmittel wird die FE-Software ANSYS verwendet, in welcher die Finite-
Elemente-Methode implementiert ist. Für die Modellgenerierung der in dieser Arbeit unter-
suchten spezifischen Anwendungsfälle wird die Syntaxsprache APDL (ANSYS Parametric
Design Language) verwendet.
Zunächst wird nachfolgend ein kurzer Einblick in die FEM gegeben. Im Anschluss dar-
an wird auf die Überführung der periodischen Randbedingungen und des imperfekten
Phasenübergangs in ein FE-Modell eingegangen. Es ist das Ziel, automatisierte Berech-
nungsmodelle zu erstellen, mit denen eine Homogenisierung der betrachteten heterogenen
Materialsysteme möglich ist.

4.1 Grundlagen der FEM

Wie bereits erwähnt, wird bei der FEM das betrachtete Gebiet in finite Teilgebiete unter-
teilt. Es wird angenommen, dass innerhalb eines jeden Teilgebietes die gesuchte Lösung
des gestellten Problems durch einen Näherungsansatz beschrieben wird, in dem unbekann-
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54 Modellbildung unter Verwendung der FEM

te Parameter enthalten sind, welche diskrete physikalische Lösungswerte an Stützstellen
des Teilgebietes repräsentieren. Die Stützstellen des Elementes werden auch als Knoten
bezeichnet. Es gibt zahlreiche weitere Möglichkeiten für die Definition des Näherungsan-
satzes (beispielsweise die p-FEM, die isogeometrische FEM), auf die aber hier nicht näher
eingegangen werden soll.
In Abb. 4-1 ist ein finites Referenzelement dargestellt. Dieses Element besitzt acht Knoten.
Die diskreten physikalischen Lösungswerte werden in der FEM Freiheitsgrade genannt. Je
nachdem, ob die gesuchte Lösung skalar oder vektorwertig ist, gibt es für jeden Knoten
einen oder mehrere Freiheitsgrade. Für ein räumliches elastisches Problem, bei dem ein Ver-
schiebungsvektor als Lösung gesucht wird, besitzt jeder Knoten die drei Verschiebungen in
jeder Raumrichtung als Freiheitsgrade. Somit hat das Element insgesamt 24 Freiheitsgrade.

1

2

3

4

5

6

7

8

1

23

Abbildung 4-1: Hexaeder-Element mit acht Knoten

Für das dargestellte 8-Knoten-Hexaeder-Element ist der Näherungsansatz der Lösung be-
ziehungsweise der Komponenten des Lösungsvektors durch eine trilineare Polynomfunktion
(Polynomgrad 1) gegeben.
Es lassen sich auch Elemente mit höheren Polynomgraden definieren. Eine Erhöhung des
Polynomgrads hat im Allgemeinen eine Erhöhung der Anzahl der Knoten und somit der
Freiheitsgrade des Elementes zur Folge. Die zusätzlichen Knoten können sich auf den Kan-
ten, den Flächen und auch im Inneren des Elementes befinden. Zu den bekanntesten Ele-
menten in der FEM gehören die LAGRANGE-Elemente und die Serendipity-Elemente.
Während bei LAGRANGE-Elementen die Knoten eines Polynomansatzes sich auf den Kan-
ten, auf den Seitenflächen und im Inneren des Elementes befinden können, liegen die Kno-
ten bei Serendipity-Elementen grundsätzlich auf den Elementkanten [3]. Die Serendipity-
Elemente sind häufig in kommerzieller FE-Software implementiert.
Im Allgemeinen kann der Verschiebungsansatz eines räumlichen elastischen Problems (sie-
he Abschnitt 2.1) für ein Element mit N e Knoten beschrieben werden durch

ue =

⎛
⎝ ue1

ue2
ue3

⎞
⎠ =

Ne∑
i=1

Ni

⎛
⎝ ûi,e1

ûi,e2

ûi,e3

⎞
⎠ = Ne

uû
e , (4-1)

wobei gilt

Ne
u =

⎛
⎝ N1 0 0 · · · NNe 0 0

0 N1 0 · · · 0 NNe 0
0 0 N1 · · · 0 0 NNe

⎞
⎠ , (4-2)
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ûe =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

û1,e
1

û1,e
2

û1,e
3
...

ûN
e,e

1

ûN
e,e

2

ûN
e,e

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4-3)

Die Matrix Ne
u beinhaltet die Formfunktionen Ni, welche spezielle Funktionen sind, die

am Knoten i ihren maximalen Funktionswert annehmen. Für das in Abb. 4-1 dargestellte
Element haben die Formfunktionen bezogen auf ein lokales Elementkoordinatensystem
{ξ1, ξ2, ξ3} die folgende Gestalt [3]

Ni =
1

8
(1 + ξ1iξ1)(1 + ξ2iξ2)(1 + ξ3iξ3), i = 1, · · · , N e , (4-4)

wobei ξ1i, ξ2i und ξ3i die natürlichen Koordinaten des Knotens i sind.
Der Vektor ûe beinhaltet als Komponenten die Knotenfreiheitsgrade, deren Anzahl im Fall
des Hexaeder-Elementes 24 beträgt.
Setzt man den Ansatz aus Gl. (4-1) in die Gl. (2-23) eines elastischen Variationsproblems
bezogen auf den Volumenbereich des Elementes Ωe ein und werden für die Testfunktionen
der Ansatz

v = Ne
uv̂

e , (4-5)

gewählt, wobei der Vektor v̂e beliebige Werte beinhalten kann, so erhält man folgende
Gleichung

(v̂e)TKe
uuû

e = (v̂e)TFe
uu . (4-6)

Da die Gl. (4-6) für beliebige v̂e gelten soll, ergibt sich daraus das Gleichungssystem

Ke
uuû

e = Fe
uu . (4-7)

Hierbei sind
Ke

uu =

∫
Ωe

BT
u C̃Bu dΩ (4-8)

die Elementsteifigkeitsmatrix mit

Bu = ∇Ne
u , (4-9)

und
Fe
uu =

∫
Ωe

(Ne
u)

T f dΩ +

∫
Γe

σ

(Ne
u)

T p̂ dΓ , (4-10)

der Elementlastvektor, welcher sich aus dem Anteil der Volumenlasten und dem Anteil
der Oberflächenlasten zusammensetzt. Mit Hilfe der Gl. (4-6) lässt sich für das Gebiet Ω,
welches durch eine endliche Anzahl M an finiten Elementen diskretisiert ist, ein Gesamt-
system assemblieren. Unter der Verwendung einer elementweisen Zuordnungsmatrix Le,
mit

ûe = Leû ,
v̂e = Lev̂ ,

(4-11)

https://doi.org/10.51202/9783186346186 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:55:08. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186346186


56 Modellbildung unter Verwendung der FEM

die die lokalen Knotennummern eines jeden Elementes den globalen Knotennummern im
Gesamtsystem zuordnet und als Komponenten die Werte 1 oder Null besitzt, folgt

(v̂)TKuuû = (v̂)TFuu . (4-12)

Hierbei sind

Kuu =
M∑
i=1

(Le,i)TKe,i
uuL

e,i (4-13)

und

Fuu =
M∑
i=1

(Le,i)TFe,i
uu (4-14)

die Gesamtsteifigkeitsmatrix beziehungsweise der Lastvektor des Gesamtsystems.
Infolge der Beliebigkeit der Komponenten von v̂ ergibt sich

Kuuû = Fuu . (4-15)

Im Fall einer piezoelektrischen Problemstellung besitzt das Hexaeder-Element aus Abb. 4-1
in jedem Knoten als zusätzlichen Freiheitsgrad das elektrische Potential. Der Lösungsansatz
aus Gl. (4-1) wird um den Ansatz für das elektrische Potential

φe = Ne
φφ̂

e
=

(
N1 · · · N8

)
⎛
⎜⎝

φ̂1
...
φ̂8

⎞
⎟⎠ , (4-16)

erweitert. Durch Einsetzen der Lösungsansätze Gl. (4-1), Gl. (4-16) sowie der Testfunktio-
nen Gl. (4-5) und

we = Ne
φŵ

e (4-17)

in die Gl. (2-38) für ein piezoelektrisches Variationsproblem ergibt sich analog zu Gl. (4-7)
das folgende erweiterte Gleichungssystem

(
Ke

uu Ke
uφ

(Ke
uφ)

T −Ke
φφ

)(
ûe

φ̂
e

)
=

(
Fe
uu

Fe
φφ

)
. (4-18)

Hierbei sind

Ke
uφ =

∫
Ωe

BT
u ẽ

TBφ dΩ , (4-19)

Ke
φφ =

∫
Ωe

BT
φκBφ dΩ , (4-20)

Fe
φφ = −

∫
Γe

D

(Nφ)
T q̂ dΓ , (4-21)

wobei
Bφ = ∇φNφ (4-22)
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ist. Die verbleibenden Teilmatrizen entsprechen denen des rein elastischen Problems. Es
lässt sich wie im elastischen Fall ein piezoelektrisches Gesamtsystem der Form

(
Kuu Kuφ

Kuφ −Kφφ

)(
û

φ̂

)
=

(
Fuu

Fφφ

)
(4-23)

aufstellen, wobei die Teilmatrizen Kuu, Kuφ, Kφφ beziehungsweise Fuu, Fφφ aus der Assem-
blierung der Elementbeiträge analog zu den Gln. (4-13) beziehungsweise (4-14) entstehen.

4.2 Periodische Randbedingungen

In Abschnitt 4.1 sind exemplarisch ausgewählte mathematische Modelle aus der Mechanik
in FE-Modelle überführt worden. Dabei ist jedoch ein Aspekt bei der Überführung unbe-
rücksichtigt geblieben. Es wurde angenommen, dass die gesuchte Lösung die DIRICHLET-
Randbedingungen bereits erfüllt. In dem präsentierten Weg, das FE-Gesamtsystem aus
einer Elementassemblierung aufzubauen, sind die DIRICHLET-Randbedingungen noch
nicht eingearbeitet, was dazu führt, dass die Gesamtsteifigkeitsmatrix singulär ist. Erst
nach einer Einarbeitung der Randbedingungen ergibt sich ein Gleichungssystem, bei dem
die Steifigkeitsmatrix regulär wird und das System eine eindeutige Lösung besitzt.
Die Einarbeitung von Rand- oder Zwangsbedingungen kann durch verschiedene Me-
thoden erfolgen. Die Methode der LAGRANGEschen Multiplikatoren und die Penalty-
Methode sind zwei weit verbreitete Verfahren. Hierbei werden die schwachen Formulie-
rungen mit zusätzlichen integralen Ausdrücken versehen, die eine Erweiterung des FE-
Gesamtgleichungssystems (Methode der LAGRANGEsche Multiplikatoren) beziehungswei-
se eine Platzierung von Straftermen in der Gesamtsteifigkeitsmatrix und in der dazugehö-
rigen Komponente der rechten Seite des Gleichungssystems (Penalty-Methode) zur Folge
haben. Eine weitere weit verbreitete Technik zum Berücksichtigen der Randbedingungen
ist die direkte Manipulation im Gesamtgleichungssystem zum Beispiel durch das Strei-
chen von Zeilen und Spalten bei homogenen DIRICHLET-Randbedingungen. Genauere
Informationen über die Techniken sind zum Beispiel in [32], [27], [109] und [110] zu finden.

Elastisch

Die periodischen Randbedingungen, welche im Rahmen der Homogenisierung zum Bestim-
men der effektiven Materialeigenschaften verwendet werden, sind in Abschnitt 3.3 aus-
führlich dargestellt. Diese Bedingungen spiegeln sowohl einen stetigen und periodischen
Lösungsverlauf beim Übergang von einer RUC zu ihren Nachbarn als auch eine makro-
skopische Belastung wider. Die Randbedingungen aus Gl. (3-50) werden dabei in eine
geeignetere Darstellung für eine FE-Modellierung, Gl. (3-51), überführt. Diese Darstellung
ist durch die Angabe von Verschiebungsdifferenzen auf sich gegenüberliegenden Rändern
charakterisiert. Bei der Anwendung der FEM werden die Randbedingungen durch eine
endliche Anzahl von numerischen Zwangsbedingungen ersetzt. Diese Zwangsbedingungen
lassen sich im elastischen Fall durch Verschiebungsdifferenzen an den Knoten der fini-
ten Elemente ausdrücken. Das bedeutet, dass die Differenzen der Verschiebungsfunktionen
durch Differenzen der Verschiebungsfreiheitsgrade auf den Rändern ersetzt werden. Dies
setzt natürlich voraus, dass die Diskretisierung sich gegenüberliegender Ränder identisch
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ist. Dies ist ein wichtiger Bestandteil bei der Realisierung der Randbedingungen. Die nu-
merischen Zwangsbedingungen haben die Form

û
A+

k
i − û

A−
k

i = C . (4-24)

Auf der linken Seite der Gleichung steht die Differenz eines Verschiebungsfreiheitsgrades
û
A+

k
i , zugehörig zur Randfläche A+

k , mit dem entsprechenden Freiheitsgrad der gegenüber-
liegenden Randfläche A−

k . Der konstante Wert C auf der rechten Seite entspricht dem Wert,
der sich aus der rechten Seite der Gl. (3-51) ergibt.

Abbildung 4-2: Schematische Darstellung der Knotenpaarungen der Zwangsbedingungen für
die Flächen (ohne Kanten- und Eckknoten der RUC)

Abbildung 4-3: Schematische Darstellung der Knotenpaarungen der Zwangsbedingungen für
die Kanten
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Abbildung 4-4: Schematische Darstellung der Knotenpaarungen der Zwangsbedingungen für
die Eckknoten

In Abb. 4-2 bis 4-4 ist schematisch die Paarung der Knotenfreiheitsgrade zum Aufstel-
len der Zwangsbedingungen dargestellt. Es ist erkennbar, dass für die Generierung der
Zwangsbedingungen eine Einteilung des Randes der RUC durchgeführt wird. Diese Eintei-
lung bezieht sich auf die Knoten und die damit verbundenen Verschiebungsfreiheitsgrade.
Der Rand wird in die Mengen SV, SE und SF eingeteilt, die die Eckknoten, die Kanten-
knoten beziehungsweise die Flächenknoten erfassen. Es wird dabei berücksichtigt, dass die
Mengen SV, SE und SF paarweise disjunkt sind, also das SV ∩ SE = ∅, SV ∩ SF = ∅ und
SE∩SF = ∅ gilt. Die Vereinigung der Knotenmengen SV, SE und SF entspricht dann gerade
der Gesamtanzahl aller Knoten auf dem Rand der RUC.
Wie schon in Abschnitt 3.3 erwähnt wurde, ist neben den Randbedingungen noch die zu-
sätzliche Fixierung eines materiellen Punktes der RUC erforderlich. Dies kann durch die
Vorgabe aller Verschiebungsfreiheitsgrade eines Knotens aus dem diskretisierten Modell
gewährleistet werden. Die Wahl des Knotens und die Werte der Fixierung haben keinen
Einfluss auf die Ermittlung der effektiven Eigenschaften. Mit anderen Worten heißt das,
dass die effektiven Eigenschaften invariant gegenüber der Knotenwahl und der Fixierung
der Freiheitsgrade sind.

Piezoelektrisch

Im Fall einer piezoelektrischen Modellierung werden die periodischen Randbedingungen
analog zum elastischen Fall nach den dargestellten Schemata in Abb. 4-2 bis 4-4 definiert.
Somit erhält man für alle Knotenpaarungen auf dem Rand der RUC jeweils vier Typen
von Zwangsbedingungen. Durch den zusätzlichen Freiheitsgrad des elektrischen Potentials
in der Modellierung ist darauf zu achten, dass die Fixierung eines beliebigen Knotens der
RUC ebenfalls um diesen Freiheitsgrad erweitert werden muss.

4.3 Bestimmen der makroskopischen Größen

Um die effektiven Materialeigenschaften berechnen zu können, werden im elastischen Fall
die makroskopischen Spannungen und Verzerrungen benötigt (siehe Gl. (3-11) oder (3-13)).
Infolge der FE-Modellierung werden diese Größen numerisch berechnet. Im Fall eines Mo-
dells mit einem perfekten Phasenübergang ergeben sich die makroskopischen Spannungen
und Verzerrungen aus

〈σ̃k〉� = 1
M∑
i=1

|Ωe,i|

M∑
i=1

σ̃e,ik |Ωe,i|, k = 1, · · · , 6 , (4-25)
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〈ε̃k〉� = 1
M∑
i=1

|Ωe,i|

M∑
i=1

ε̃e,ik |Ωe,i|, k = 1, · · · , 6 . (4-26)

Hierbei sind σ̃e,ik , ε̃e,ik (in M-V-Notation) und |Ωe,i| die abgeleiteten Elementspannungen,
die Elementverzerrungen beziehungsweise das Elementvolumen. In Worten heißt das zu-
sammengefasst, dass sich die makroskopischen Größen aus der Summe der einzelnen ge-
wichteten Elementgrößen ergeben. Die Wichtungsfaktoren sind durch die jeweiligen Ele-
mentvolumenanteile gegeben. Die Elementspannungen und -verzerrungen werden aus den
jeweiligen Größen der beteiligten Knoten des Elements gemittelt.

Piezoelektrisch

In Analogie zu einem elastischen Modell werden bei einem piezoelektrischen Modell die
zusätzlichen makroskopischen Größen der dielektrischen Verschiebung und der elektrischen
Feldstärke wie folgt berechnet

〈Dk〉� = 1
M∑
i=1

|Ωe,i|

M∑
i=1

De,i
k |Ωe,i|, k = 1, 2, 3 , (4-27)

〈Ek〉� = 1
M∑
i=1

|Ωe,i|

M∑
i=1

Ee,i
k |Ωe,i|, k = 1, 2, 3 . (4-28)

4.4 Imperfekter Phasenübergang

In Abschnitt 3.4 ist ein mathematisches Modell für den imperfekten Phasenübergang be-
schrieben worden. Dieser Phasenübergang wird im Folgenden in ein geeignetes FE-Modell
überführt. Da auf eine FE-Software (ANSYS) zurückgegriffen wird, ist man hinsichtlich
der Nutzung eingeschränkt. Im idealen Fall wird der imperfekte Übergang durch ein fini-
tes Element beschrieben. In [76] wird für den zweidimensionalen Fall eine Elementmatrix
abgeleitet, die den imperfekten Übergang beschreibt. Diese Matrix wird im Rahmen der
FEM beim Aufstellen des globalen Gesamtsystems berücksichtigt. Für detaillierte Infor-
mationen wird auf den Artikel [76] verwiesen.
Die FE-Beschreibung des imperfekten Phasenübergangs bei einer rein elastischen Problem-
stellung erfolgt in dieser Arbeit durch Federelemente. Bezogen auf die FE-Software ANSYS
wird der Elementtyp COMBIN14 verwendet. Die Phasen werden mit Hilfe von linearen
Hexaeder- und Pentaeder-Elementen (Abb. 4-1, Formfunktionen haben den Polynomgrad
1) diskretisiert. Des Weiteren wird vorausgesetzt, dass auf den Randflächen der Phasen,
die für die Übergangsbeschreibung relevant sind, eine Knotenanordnung der diskretisier-
ten Matrix- und Faserphase derart realisiert wird, dass sich zu jedem Knoten der Matrix-
ein Knoten der Faserphase finden lässt, der die gleiche geometrische Position besitzt. Das
verwendete Federelement ist durch die folgende eindimensionale Gleichung charakterisiert

F = K�,ε(ûj − ûi) , (4-29)
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wobei j ein Knoten der Matrixphase und i der entsprechende Faserknoten sind. Mit F und
K�,ε werden die Federkraft beziehungsweise die Federsteifigkeit bezeichnet. In Anlehnung
an die Gl. (3-74) werden pro Knotenpaar im dreidimensionalen Fall drei Federelemente
verwendet, die jeweils durch ein Kraftgesetz beschrieben sind. Diese sind durch

Fr = K�,ε
r ‖ur‖� ,

Fθ = K�,ε
θ ‖uθ‖� ,

Fz = K�,ε
z ‖uz‖�

(4-30)

gegeben. Mit ‖·‖� wird in Analogie zu ‖·‖ (siehe Abschnitt 3.4) die Differenz von Verschie-
bungsfreiheitsgraden bezeichnet. Die Parameter K�,ε

i , i = r, θ, z sind die Federsteifigkeiten,
welche über die Beziehungen [105]

K�,ε
i = Kε

iA
n, i = r, θ, z (4-31)

mit den imperfekten Kontaktparametern aus Gl. (3-74) in Relation stehen. Die Größe An

bezeichnet den auf den Knoten n bezogenen resultierenden Flächeninhalt aus der Diskre-
tisierung der Kontaktoberfläche einer der beiden Phasen (siehe Abb. 4-5). Der Knoten n
ist sowohl einem Volumenelement als auch einem Federelement zugeordnet.

n

n

Abbildung 4-5: Ausschnitt der diskretisierten Kontaktoberfläche der Faser mit linearen
Elementen (ein Element in Faserlängsrichtung) mit Markierung des Flächeninhalts An

Unter der Annahme, dass die FE-Diskretisierung der Faserphase geometrisch durch ein
Prisma mit der Grundfläche eines gleichseitigen Polygons repräsentiert wird und in Faser-
längsrichtung die Elementunterteilung 1 beträgt, ist der Flächeninhalt An durch

An = rft sin

(
π

ccs

)
(4-32)

gegeben, wobei die Größen rf, t und ccs den Faserradius, die Faserlänge beziehungsweise die
Anzahl der Eckknoten des Polygons beschreiben. Zur Herleitung der Gleichung kann die
Abb. 4-6, in der ein exemplarischer Querschnitt eines Prismas dargestellt ist, verwendet
werden. Es ist zu bemerken, dass für die Gültigkeit der Gleichung vorausgesetzt wird, dass
sich der diskretisierte Faserquerschnitt komplett innerhalb des RUC-Querschnitts befindet.
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f

= °/180 cs

/2

Abbildung 4-6: Querschnitt eines Prismas (gleichseitiges Hexagon) mit Kantenlänge a und
ccs = 6

Dies gilt zum Beispiel für eine RUC, bei der sich der Faserquerschnitt zentriert im RUC-
Querschnitt befindet (siehe Abb. 4-7). Wird stattdessen eine RUC betrachtet, bei der
die Fasergeometrie geteilt ist, so ist die Gl. (4-32) nicht uneingeschränkt auf alle Kno-
ten anwendbar. Knoten, die sich auf dem Querschnittsrand der RUC befinden, wird ein
Flächeninhalt zugeordnet, der durch

An =
1

2
rft sin

(
π

ccs

)
(4-33)

gegeben ist. Den restlichen Knoten wird der Flächeninhalt nach Gl. (4-32) zugeordnet. Für
die Berechnung der gemittelten Spannungen und Verzerrungen wird wie im vorherigen
Abschnitt 4.3 vorgegangen. Die makroskopischen Größen werden numerisch berechnet.
Für die makroskopischen Spannungen (siehe Abschnitt 3.4 Gl. (3-77)) wird die Gl. (4-25)
verwendet. Die makroskopischen Verzerrungen ergeben sich aus

〈ε̃k〉� = 1
M∑
i=1

|Ωe,i|

⎛
⎝ M f∑

i=1

ε̃e,f,ik |Ωe,f,i|+
Mm∑
i=1

ε̃e,m,ik |Ωe,m,i|+R

⎞
⎠ , k = 1, · · · , 6 (4-34)

mit

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2ccs∑
o=1

‖uok‖�nkAo, falls k = 1, 2, 3 ,

2ccs∑
o=1

(‖uo1‖�n2 + ‖uo2‖�n1)A
o, falls k = 4 ,

2ccs∑
o=1

(‖uo2‖�n3 + ‖uo3‖�n2)A
o, falls k = 5 ,

2ccs∑
o=1

(‖uo1‖�n3 + ‖uo3‖�n1)A
o, falls k = 6 .

(4-35)

Die GrößenM f,Mm, |Ωe,f,i|, |Ωe,m,i|, ‖uok‖� und nk, k = 1, 2, 3 bezeichnen die Elementanzahl
der jeweiligen Phase (Faser oder Matrix), das Elementvolumen der jeweiligen Phase, die
Differenzen der kartesischen Verschiebungsfreiheitsgrade der Knotenpaarung, welche den
Knoten o beinhaltet, und die Komponenten des äußeren Normalenvektors der Faser. Mit
M wird die Summe von M f und Mm bezeichnet.
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Abbildung 4-7: Unterschiedliche RUC-Querschnitte, links: Faser zentriert in der RUC, rechts:
geteilte Fasergeometrien an den RUC-Ecken

Piezoelektrisch

In Abschnitt 3.5.1 sind die Modellierungsbedingungen für den imperfekten Phasenübergang
unter Berücksichtigung piezoelektrischer Materialien beschrieben worden. Dieser Übergang
ist gekennzeichnet durch unstetige Verläufe der Verschiebungen und des elektrischen Po-
tentials. Für eine Überführung des Phasenübergangs in eine FE-Beschreibung werden Fe-
derelemente verwendet, die den elastischen Anteil des Übergangs widerspiegeln. Für den
elektrischen Anteil werden die Phasen durch Elemente gekoppelt, die Kondensatorcha-
rakter haben [82]. Für die numerische Modellierung werden die Phasengeometrien durch
lineare Hexaeder- und Pentaeder-Elemente diskretisiert. Die Kontaktflächen der Phasen
besitzen eine identische Knotenverteilung.
Die Umsetzung des imperfekten Phasenübergangs bei einer piezoelektrischen Problemstel-
lung erfolgt bezogen auf die Softwareanwendung ANSYS durch COMBIN14-Elemente und
CIRCU94-Elemente. Der Elementtyp COMBIN14 spiegelt den elastischen Anteil des im-
perfekten Phasenübergangs wider. Der Elementtyp CIRCU94, welcher ein Zwei-Knoten-
Element beschreibt, spiegelt den elektrischen Anteil des Phasenübergangs wider. Dieses
Element besitzt die Möglichkeit, ein kondensatorähnliches Verhalten zu simulieren

Q = K�,E(φ̂i − φ̂j) . (4-36)

Hiebei sind Q, K�,E und (φ̂i − φ̂j) die elektrische Ladung, die Kapazität beziehungsweise
die Differenz der elektrischen Knotenfreiheitsgrade, die das elektrische Potential repräsen-
tieren. In Anlehnung an die Gl. (3-120) werden pro Knotenpaarung drei Federlemente und
ein Kondensatorelement verwendet. Diese werden beschrieben durch

Fr = K�,ε
r ‖ur‖� ,

Fθ = K�,ε
θ ‖uθ‖� ,

Fz = K�,ε
z ‖uz‖� ,

Q = K�,E‖φ‖�� .

(4-37)

Während ‖ui‖�, i = r, θ, z die Verschiebungsdifferenz von Matrix zu Faser widerspiegelt,
kennzeichnet ‖φ‖�� die elektrische Potentialdifferenz von Faser zu Matrix. Die Parameter
K�,ε

i sind die Federsteifigkeiten, die über die Gl.(3-74) gegeben sind. Für den Parameter
K�,E gilt die Beziehung

K�,E = KEAn . (4-38)

Die Größe An ist der Flächeninhalt der zum Knoten n gehörenden Kontaktoberfläche (siehe
Abb. 4-5).
Für die Bestimmung der makroskopischen Größen, die für die Berechnung der effektiven
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Materialeigenschaften benötigt werden, wird wie in den vorherigen Abschnitten vorgegan-
gen. Die Integrale werden numerisch ermittelt. Die makroskopischen Spannungen und die
dielektrischen Verschiebungen ergeben sich aus den Gln. (4-25) und (4-27). Die makro-
skopischen Verzerrungen 〈ε̃k〉�, bei denen die Verschiebungsunstetigkeit beachtet werden
muss, berechnen sich aus Gl. (4-34). Für die makroskopischen Komponenten der elektri-
schen Feldstärke, welche aus Gl. (3-124) folgen, wird die folgende Gleichung verwendet

〈Ek〉� = 1
M∑
i=1

|Ωe,i|

⎛
⎝ M f∑

i=1

Ee,f,i
k |Ωe,f,i|+

Mm∑
i=1

Ee,m,i
k |Ωe,m,i|+RE

⎞
⎠

(4-39)

mit

RE =
2ccs∑
o=1

‖φo‖��nkAo . (4-40)
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5 Berechnung effektiver
Materialeigenschaften

Dieses Kapitel befasst sich mit der Berechnung und der Auswertung der effektiven Materia-
leigenschaften von Faserverbundwerkstoffen mit Hilfe der in Kapitel 3 näher beschriebenen
Homogenisierungsmodelle unter Nutzung einer RUC. Es werden der Einfluss der Faserver-
teilung und der Einfluss des imperfekten Phasenübergangs auf die effektiven Koeffizienten
untersucht.
Die Homogenisierungsmodelle werden mit anderen Modellen aus der Literatur hinsichtlich
der berechneten Koeffizienten verglichen und bewertet. Die verwendeten Materialkompo-
nenten für die betrachteten Verbundwerkstoffe werden dabei Literaturquellen entnommen.
In einigen Fällen basiert die Beschreibung auf fiktiven Ausgangsstoffen oder lediglich auf
Verhältnisangaben von Materialeigenschaften von Faser zu Matrix.
In [7], [22], [49] und [31] sind für verschiedene Werkstoffe Materialkonstanten angegeben.
Beispielsweise liegt der Wert des Elastizitätsmoduls für einige Metalle/Metalllegierungen
im zwei- bis dreistelligen GPa-Bereich. Für Epoxidharze liegt der Wert im einstelligen GPa-
Bereich. Die Elastizitätsmoduln für Kohlenstofffasern können je nach Herstellungsprozess
Werte im zweistelligen bis hohen dreistelligen GPa-Bereich annehmen [77]. Das bedeutet,
dass sich Materialkennwerte von Phasen um das Hundertfache oder höher unterscheiden
können. In den nachfolgenden Berechnungsmodellen kann es vorkommen, dass die verwen-
deten fiktiven Phasen des Verbundwerkstoffes in einigen Fällen durch einen Unterschied
des Schubmoduls von bis zu 120 charakterisiert werden. Da die physikalische Beschreibung
der Berechnungsmodelle linear ist, lassen sich trotzdem grundlegende Aussagen aus den
Berechnungsmodellen auf heterogene Werkstoffmodelle mit realen Ausgangsstoffen über-
tragen.
Zum Anfang des Kapitels wird der Einfluss unterschiedlicher Randbedingungsarten auf
die effektiven Materialeigenschaften untersucht. Im ersten Abschnitt werden Berechnungs-
modelle für rein elastische Faserverbundmaterialien behandelt. Die periodische heterogene
Mikrostruktur wird so verändert, dass Verbundwerkstoffe mit verschiedenen Faservertei-
lungen entstehen, die Periodizität der RUC aber dennoch gewährleistet bleibt. Es werden
RUC-Modelle mit einem rhombus- beziehungsweise parallelogrammförmigen Querschnitt
verwendet. Des Weiteren werden die Eigenschaften des Phasenkontaktes variiert und de-
ren Einfluss auf die effektiven Koeffizienten untersucht. Im letzten Abschnitt werden Be-
rechnungsmodelle für Verbundwerkstoffe behandelt, bei denen die Fasern piezoelektrische
Eigenschaften besitzen.
Ein Einblick in den Einfluss der Netzfeinheit auf die Berechnung der effektiven Materialei-
genschaften ist im Anhang B zu finden.
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Einfluss der Randbedingungen auf die Ergebnisse

Im Allgemeinen wird in Homogenisierungsmodellen Bezug auf ein RVE genommen. Dabei
sollte das RVE eine ausreichende Anzahl an heterogenen Einschlüssen beinhalten, damit es
als repräsentativ gilt, weil reale Kompositwerkstoffe in der Regel eine zufällige heterogene
Einschlussverteilung aufweisen.
Die in dieser Arbeit entwickelten Berechnungsmodelle zum Bestimmen der effektiven Ma-
terialeigenschaften von Verbundwerkstoffen basieren auf der Annahme, dass der heterogene
Strukturaufbau des Kompositwerkstoffes periodisch ist. Das bedeutet, dass das RVE durch
eine RUC beschrieben werden kann.
Im Folgenden wird für den elastischen Fall der Einfluss unterschiedlicher Randbedingungen
in Kombination mit einer variierenden RVE-Größe auf die berechneten effektiven Materi-
aleigenschaften exemplarisch an Ceff

1212 näher untersucht. Dies gibt einen Einblick, ab wann
ein RVE mit den linearen Verschiebungsrandbedingungen oder den homogenen Spannungs-
randbedingungen als repräsentativ gelten kann.
Es wird ein unidirektionaler Faserverbundwerkstoff betrachtet, dessen periodische Mi-
krostruktur durch eine RUC mit einem quadratischen Querschnitt widergespiegelt wird
(siehe Abb. 5-1). Die Faser ist zentral in die RUC eingebettet. Um die Rechenzeit und den
Modellierungsaufwand gering zu halten, werden 2-D-Berechnungsmodelle verwendet.
Die verwendeten Randbedingungen sind die linearen Verschiebungsrandbedingungen und
die homogenen Spannungsrandbedingungen entsprechend Gl. (3-15) sowie die periodischen
Randbedingungen nach Gl. (3-22).

Abbildung 5-1: RUC (α = 90◦) mit einem quadratischen Querschnitt und einer zentriert
eingebetteten Faser

Für die Phasen des Kompositwerkstoffes werden fiktive isotrope Materialien benutzt, wobei
deren Eigenschaften durch den Schubmodul G und die Querkontraktionszahl ν gegeben
sind (siehe Tabelle 5-1). Es werden zwei unterschiedliche Faservolumenanteile betrachtet,
0.4 und 0.7.

Tabelle 5-1: Materialtabellen mit (a) kleinem Schubmodulverhältnis, (b) großem
Schubmodulverhältnis

Phase G in [GPa] ν
Matrix 1 0.35
Faser 10 0.2

(a)

Phase G in [GPa] ν
Matrix 1 0.35
Faser 120 0.2

(b)
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Abbildung 5-2: Unterschiedliche RVE-Größen: links: RVE besteht aus einer RUC, mitte: RVE
besteht aus 3 × 3 RUCs, rechts: RVE besteht aus 5 × 5 RUCs

Es wird angenommen, dass entweder ein ebener Verzerrungszustand oder ein ebener Span-
nungszustand vorliegt. Im Fall der ebenen Verzerrung werden die linearen Verschiebungs-
randbedingungen oder die periodischen Randbedingungen verwendet. Im Fall der ebenen
Spannung werden die homogenen Spannungsrandbedingungen genutzt. Diese unterschied-
lichen Zustände gewährleisten nur eine makroskopische Nicht-Null-Komponente der Ver-
zerrungen (ebener Verzerrungszustand) beziehungsweise eine makroskopische Nicht-Null-
Komponente der Spannungen (ebener Spannungszustand). Die effektiven Materialeigen-
schaften lassen sich dann aus einer zweidimensionalen Formulierung der Gl. (3-13) oder
Gl. (3-14) ableiten.
Die entwickelten Berechnungsmodelle lassen sich unter Verwendung der FEM so verändern,
dass die Größe des RVE-Bereiches erhöht werden kann. Angefangen wird mit einem RVE
mit einem Fasereinschluss, was der kleinsten RUC entspricht. Die RVE-Betrachtung wird
dann in y1- und y2-Richtung um jeweils eine weitere RUC erweitert. Das bedeutet, dass
sich das RVE nach der ersten Erweiterung aus vier RUCs zusammensetzt. Der betrachtete
Verbundwerkstoff verändert sich dadurch nicht. In Abb. 5-2 sind exemplarisch verschiedene
RVE-Größen dargestellt.

Abbildung 5-3: Skizziertes Verformungsbild eines RVE bestehend aus 3 × 3 RUCs, links:
Periodische Randbedingungen, mitte: Lineare Verschiebungsrandbedingungen, rechts: Homogene

Spannungsrandbedingungen

Für die FE-Diskretisierung werden lineare Viereck- und Dreieck-Elemente verwendet. Die
Elementkantenlänge wird auf ein Zehntel der Breite der RUC festgelegt, da nicht die Ge-
nauigkeit, sondern der Vergleich der effektiven Elastizitätskoeffizienten der unterschiedli-
chen Randbedingungsmodellierungen im Vordergrund steht. Des Weiteren bleibt zusätzlich
der Berechnungsaufwand, der sich mit jeder RUC-Erweiterung erhöht, überschaubar. Die
FE-Diskretisierung eines aus mehreren RUCs bestehenden RVE erfolgt durch das Kopie-
ren des FE-Netzes einer einzigen RUC. Die linearen Verschiebungsrandbedingungen, die
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homogenen Spannungsrandbedingungen und die periodischen Randbedingungen werden
durch das Festlegen von Verschiebungsfreiheitsgraden, das Aufbringen von Knotenlasten
beziehungsweise durch Zwangsbedingungen realisiert.
In Abb. 5-4 und 5-5 sind die normierten Koeffizienten Ceff

1212 bezüglich unterschiedlicher
Randbedingungen und Phaseneigenschaften dargestellt. Die effektiven Koeffizienten sind
im Fall der linearen Verschiebungsrandbedingungen mit „LVRB“, im Fall der homogenen
Spannungsrandbedingungen mit „USRB“ und im Fall der periodischen Randbedingungen
mit „per. RB“ gekennzeichnet. Die Normierung erfolgt anhand der Koeffizienten bei peri-
odischen Randbedingungen. Im Fall der periodischen Randbedingungen hat die Größe der
RVE (Anzahl der RUCs) keinen Einfluss auf die effektiven Elastizitätskoeffizienten.
Aus den Abbildungen erkennt man, dass die Werte bei linearen Verschiebungsrandbedin-
gungen größer sind im Vergleich zu den Werten bei periodischen Randbedingungen. Die
linearen Verschiebungsrandbedingungen verformen das RVE derart, dass die Randflächen
eben bleiben (siehe Abb. 5-3). Dieser Zwang ist verantwortlich dafür, dass die effektiven
Koeffizienten ein „steiferes“ Materialverhalten charakterisieren. Mit einer zunehmenden
Anzahl an Einheitszellen innerhalb des RVE ist eine Tendenz zu den Ergebnissen bei pe-
riodischen Randbedingungen erkennbar. Dies ist dadurch erklärbar, dass sich durch die
RVE-Vergrößerung (Erhöhung der Anzahl der RUC) der Einfluss der Randbedingungen
auf die Spannungen und Verzerrungen im Inneren des RVE reduziert. RUCs, welche im
ausreichenden Abstand zum Rand liegen, besitzen eine fast identische Spannungs- und
Verzerrungsverteilung.
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Abbildung 5-4: Vergleich von Ceff
1212 zu unterschiedlichen Randbedingungen mit variierendem

RVE, bestehend aus N ×N RUCs, verwendetes Koordinatensystem {y1, y2, y3},
Schubmodulverhältnis Gf/Gm = 10
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Abbildung 5-5: Vergleich von Ceff
1212 zu unterschiedlichen Randbedingungen mit variierendem

RVE, bestehend aus N ×N RUCs, verwendetes Koordinatensystem {y1, y2, y3},
Schubmodulverhältnis Gf/Gm = 120

Bei homogenen Spannungsrandbedingungen kann sich der RVE-Rand frei verformen. Durch
den Zwang der homogenen Randspannungen werden im Vergleich zu den periodischen
Randbedingungen effektive Koeffizienten ermittelt, die ein „weicheres“ Materialverhalten
charakterisieren. Mit einer zunehmenden RVE-Größe wird auch hier der Einfluss der Rand-
bedingungen auf die inneren RUCs kleiner. Es stellen sich fast identische Spannungs- und
Verzerrungsfelder ein. Die effektiven Koeffizienten nähern sich daher asymptotisch den Er-
gebnissen bei periodischen Randbedingungen an.
Die Höhe der Abweichung der effektiven Koeffizienten bei linearen Verschiebungsrandbe-
dingungen beziehungsweise bei homogenen Spannungsrandbedingungen zu den Koeffizien-
ten bei periodischen Randbedingungen ist abhängig vom betrachteten Faservolumenanteil
und dem Materialverhältnis der Phasen (siehe dazu Tab. 5-2). Die in der Tab. 5-2 präsen-
tierten prozentualen Abweichungen ergeben sich aus der Formel

diff1 =

∣∣∣Ceff,i
1212 − Ceff,per. RB

1212

∣∣∣
Ceff,per. RB

1212

100% , i = „LVRB“ , „USRB“ . (5-1)

Die Größen Ceff,LVRB
1212 , Ceff,USRB

1212 und Ceff,per. RB
1212 kennzeichnen die berechneten Koeffizienten

zu den drei verschiedenen Randbedingungen. Es wurde ein RVE verwendet, das sich aus
100 (10× 10) RUCs zusammensetzt.
Auf Grundlage der Berechnung von Ceff

1212 und der realisierten FE-Modellierung kann ge-
schlussfolgert werden, dass eine Berechnung der effektiven Elastizitätskoeffizienten für
Kompositwerkstoffe mit periodischer Mikrostruktur näherungsweise auch über die Rand-
bedingungen aus Gl. (3-15) erfolgen kann. Dabei muss das zur Berechnung verwendete
RVE eine hinreichende Größe aufweisen (Anzahl an RUCs). Ein Vorteil ist, dass sich die
Randbedingungen einfacher in einem FE-Modell realisieren lassen. Ein Nachteil ergibt sich
durch den erhöhten Rechenaufwand infolge der RVE-Größe. Aufgrund der besseren Ge-
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nauigkeit und des reduzierten Zeitaufwands werden daher in dieser Arbeit die periodischen
Randbedingungen verwendet.

Tabelle 5-2: Prozentuale Abweichung (gerundet auf eine Stelle nach dem Komma) von Ceff,i
1212 zu

dem Referenzwert Ceff,per. RB
1212 bei einem RVE, bestehend aus 10 × 10 RUCs; siehe Gl. (5-1);
verwendete Faservolumenanteile vf = 0.4 und vf = 0.7

Gf/Gm Ceff,LVRB
1212 Ceff,USRB

1212

0.4 0.7 0.4 0.7
10 1.61 % 2.62 % 0.09 % 1.08 %
120 2.30 % 4.53 % 1.23 % 2.02 %

5.1 Elastische unidirektionale Faserverbundstrukturen

5.1.1 Rhombischer RUC-Querschnitt mit perfektem
Phasenübergang

In der Literatur werden häufig unter der Annahme von periodischen Mikrostrukturen uni-
direktionaler Faserverbundwerkstoffe hexagonale oder quadratische Verteilungen der Fa-
serquerschnittsgeometrie betrachtet. Charakteristisch für solche Strukturen ist, dass die
benachbarten Fasern in einem Winkel α von 60◦ (Abb. 5-6) beziehungsweise 90◦ (Abb. 5-
1) zueinander orientiert sind. Eine Verallgemeinerung der Faseranordnung lässt sich durch
die Annahme eines variablen Winkels erreichen. Der Querschnitt der Kompositstruktur,
der aus einer solchen Annahme entsteht, kann im Allgemeinen durch eine Aneinanderrei-
hung von Rhomben beschrieben werden.
In Abb. 5-7 ist eine solche rhombische Anordnung dargestellt. Der Winkel α beträgt hier
45◦. Aus der Abbildung kann man erkennen, dass die periodische Faseranordnung auch über
einen rechteckigen Strukturbereich beschreibbar ist. Anstelle einer rhombischen periodi-
schen Mikrozelle wird, wie in [104] veröffentlicht, eine RUC mit einem Rechteckquerschnitt
gewählt. Eine entsprechende physikalische Modellbeschreibung für diese RUC-Geometrie
ist in Abschnitt 3.3 zu finden.

Abbildung 5-6: Hexagonale Faseranordnung, α = 60◦

Es ist zu beachten, dass für die Modellbetrachtung anstelle des Koordinatensystems
{y1, y2, y3} ein gedrehtes System {y′1, y′2, y′3} genutzt wird. Das bedeutet, dass effektive
Materialeigenschaften bezüglich {y′1, y′2, y′3} berechnet werden und im Anschluss daran auf
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das ursprünglichen Koordinatensystem transformiert werden können (siehe dazu Gl. (2-
42)), wobei für die Richtungskosinus in Gl. (2-40) der Winkel α′ = α/2 verwendet wird.
Im weiteren Verlauf werden das ursprüngliche und das gedrehte Koordinatensystem als
globales Koordinatensystem beziehungsweise lokales Koordinatensystem bezeichnet. Unter
der Annahme, dass die rhombische Querschnittsgeometrie eine (normierte) Einheitskan-
tenlänge besitzt, ergeben sich die Abmessungen des neuen RUC-Querschnitts aus [104]

b = 2 cos
(α
2

)
,

h = 2 sin
(α
2

)
.

(5-2)

Dabei ist b die Breite und h die Höhe der quaderförmigen RUC. Bei der Entwicklung eines
FE-Berechnungsmodells ist darauf zu achten, dass der Faservolumenanteil geometrische
Restriktionen erfüllen muss, da es ansonsten zu einer topologischen Überlappung der Pha-
sen beim periodischen Fortsetzen der Struktur kommt. Daher wird bei der Berechnung die
Abbruchbedingung [104]

rf > min

{
h

2
, 0.5

}
(5-3)

genutzt.

/2

/2 1

2'

2

1'

bh

Abbildung 5-7: Rhombische Faseranordnung (links) und Darstellung der verwendeten RUC
mit Rechteckquerschnitt (rechts)

Für die Berechnung der effektiven Eigenschaften wird das FE-Modell der betrachteten
RUC mittels Hexaeder- und Pentaeder-Elementen diskretisiert, welche durch Ansatzfunk-
tionen mit dem Polynomgrad 2 charakterisiert sind. Durch die Symmetrie des RUC in
der Querschnittsebene wird zuerst ein Viertel der Geometrie diskretisiert. Im Anschluss
werden das FE-Modell und die dazugehörigen Modelldaten bezüglich der Symmetrieach-
sen gespiegelt, um das gesamte FE-Modell zu erhalten. Für die Berechnung der effektiven
Elastizitätskoeffizienten werden die Randbedingungen aus den Gln. (3-54), (3-56), (3-58),
(3-60), (3-62) und (3-64) verwendet. Zum Verhindern der Starrkörperbewegungen werden
die Verschiebungsfreiheitsgrade im Querschnittsmittelpunkt einer der Randflächen der zen-
trierten Faser zu Null gesetzt.
Das effektive Materialverhalten eines Verbundwerkstoffes aus isotropen Phasen, dessen
Faserverteilung durch eine RUC nach Abb. 5-7 beschrieben wird, ist im Allgemeinen or-
thotrop. Der dazugehörige Elastizitätstensor in M-V-Notation ist in Gl. (2-44) dargestellt.
Diese Darstellung bezieht sich dabei auf das lokale Koordinatensystem. Bei einer Transfor-
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mation auf globale Koordinaten verändert sich die Darstellung des Tensors zu Gl. (2-43).
Das Materialverhalten ändert sich nicht durch die Transformation.

Validierung der Berechnungsmodelle

Zum Validieren der entwickelten Berechnungsmodelle werden die effektiven Materialeigen-
schaften mit Ergebnissen aus der Literatur verglichen [104]. Im Fall von Faserverbund-
werkstoffen mit rhombischer Faseranordnung lassen sich nur wenige Artikel finden, die
sich mit der Herleitung effektiver Materialeigenschaften beschäftigen und dazu Werte prä-
sentieren. Außerdem beziehen sich diese Werte meistens nur auf wenige Komponenten
des Materialtensors. In [56], [34], [86] und [38] sind effektive Werte für die longitudinalen
Schubkoeffizienten angegeben.
In [38] wird die Methode AHM („asymptotic homogenization method“) verwendet, bei
der basierend auf einer asymptotischen Reihenentwicklung Differentialgleichungsproble-
me hergeleitet werden, aus deren periodischer Lösung die effektiven Materialeigenschaften
gewonnen werden. Diese Probleme werden mittels harmonischer, komplexwertiger Funk-
tionsansätze und Taylor- und Laurent-Reihenentwicklungen gelöst. Die Methode in [56]
(in Tabellen abgekürzt mit „Jiang“) kombiniert das Konzept des äquivalenten Einschlusses
mit der Verwendung von Reihenentwicklungen komplexwertiger Potentiale.
In [34] wird eine weitere Methode (in Tabellen abgekürzt mit „G&N“) zum Lösen eines
Schubproblems eines faserverstärkten Materials präsentiert. In [86] werden zwei Methoden
zur Ermittlung effektiver Schubkoeffizienten für unterschiedliche periodische Mikrostruk-
turen behandelt. Eine Methode ist die AHM, die schon weiter oben erläutert worden ist.
Die andere Methode ist die EEVM („eigenfunction expansion-variational method“). Diese
Methode wird auch in [107] genutzt und basiert auf der Kombination einer Reihenentwick-
lung komplexwertiger Potentiale mit einem variationellen Funktional.
Für den Fall, dass die Faserlängsrichtung in y′3-Richtung zeigt und der Faserquerschnitt
in der y′1-y

′
2-Ebene liegt, sind die longitudinalen Schubkoeffizienten die Koeffizienten Ceff

2323

und Ceff
1313. Für die Berechnung dieser Koeffizienten werden auf dem Rand der RUC aus

Abb. 5-7 die periodischen Randbedingungen Gl. (3-62) beziehungsweise (3-64) verwendet.
In [56] und [38] werden unidirektional faserverstärkte Verbundmaterialien aus isotropen
Phasen untersucht, wobei die zugrundeliegende rhombische Faseranordnung durch den
Winkel α ∈ {45, 60, 90} charakterisiert ist. Der Volumenanteil der Fasern variiert dabei
von 0.1 bis 0.6. Für den Verbundwerkstoff wird ein Schubmodulverhältnis

Gf

Gm = 120 (5-4)

zwischen Faser und Matrix angenommen. Da eine solche Materialbeschreibung für eine
dreidimensionale FE-Analyse unzureichend ist, werden zusätzlich die Querkontraktions-
zahlen

νf = νm = 0.3 (5-5)

für beide Phasen angenommen. Durch das Festlegen eines der Schubmoduln aus Gl. (5-4)
und der Annahme der Isotropie ist die Materialbeschreibung der Phasen eindeutig.
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Tabelle 5-3: Normierte effektive Elastizitätskoeffizienten (drei Nachkommastellen), verwendetes
Koordinatensystem {y′1, y′2, y′3}, α ∈ {60◦, 90◦}

vf
Ceff,60◦

2323

Gm =
Ceff,60◦

1313

Gm

Ceff,90◦
2323

Gm =
Ceff,90◦

1313

Gm

FEM Jiang FEM Jiang
0.1 1.218 1.218 1.218 1.218
0.2 1.489 1.489 1.490 1.490
0.3 1.837 1.837 1.840 1.839
0.4 2.297 2.297 2.313 2.313
0.5 2.939 2.939 3.009 3.008
0.6 3.904 3.903 4.187 4.186

In Tab. 5-3 sind normierte effektive Koeffizienten, die mittels der FEM berechnet wur-
den, Ergebnissen aus [56] gegenübergestellt. Die Tabelle beinhaltet Werte für Modelle von
Kompositwerkstoffen mit einer Faseranordnung von 60◦ und 90◦. Man erkennt eine sehr
gute Übereinstimmung der Koeffizienten. Dies gilt auch für höhere Faservolumenantei-
le. Des Weiteren ergibt sich, dass die Schubkoeffizienten Ceff

2323 und Ceff
1313 identisch sind,

weshalb nur ein Schubkoeffizient aufgelistet wird. Dies ist dadurch begründet, dass ein
Kompositwerkstoff mit hexagonaler Faseranordnung im homogenisierten Sinn ein trans-
versal isotropes Materialverhalten aufweist. Im Fall der 90◦-Anordnung der Fasern ist das
Materialverhalten tetragonal [85], [97], [39]. Die Gleichheit der Koeffizienten bei 90◦ kann
man sich dadurch veranschaulichen, dass die y′2-y

′
3-Beanspruchung einer um 90◦ gedrehten

y′1-y
′
3-Beanspruchung entspricht.

Tabelle 5-4: Normierte effektive Elastizitätskoeffizienten (drei Nachkommastellen), verwendetes
Koordinatensystem {y′1, y′2, y′3}, α = 45◦

vf
Ceff,45◦

2323

Gm

Ceff,45◦
1313

Gm

FEM Jiang FEM Jiang
0.1 1.225 1.225 1.211 1.211
0.2 1.526 1.525 1.458 1.458
0.3 1.951 1.950 1.751 1.751
0.4 2.606 2.606 2.107 2.106
0.5 3.803 3.803 2.555 2.554

In Tabelle 5-4 und 5-5 werden die mittels FEM berechneten effektiven Schubkoeffizienten
für Modelle von Kompositwerkstoffen mit einer 45◦ Faseranordnung Vergleichsergebnissen
aus [38] und [56] gegenübergestellt.
Die Koeffizienten werden wie in den Modellen zuvor aus longitudinalen Schubbelastungen
abgeleitet und sind bezüglich lokaler (siehe Tab. 5-4) und globaler Koordinaten (siehe Tab.
5-5) dargestellt. In Tab. 5-5 taucht neben den Koeffizienten Ceff

2323 und Ceff
1313 ein weiterer

Koeffizient Ceff
2313 auf, welcher sich aus der Koordinatentransformation auf globale Koordi-

naten nach Gl. (2-42) ergibt. Man erkennt in den Tabellen eine sehr gute Übereinstimmung
der Ergebnisse der unterschiedlichen Methoden; die Werte der beiden Methoden aus der
Literatur („Jiang“ und „AHM“) sind identisch.
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Tabelle 5-5: Normierte effektive Elastizitätskoeffizienten (vier Nachkommastellen), verwendetes
Koordinatensystem {y1, y2, y3}, α = 45◦

vf 0.1 0.2 0.3 0.4 0.5

Ceff,45◦
2323

Gm

FEM
Jiang
AHM

1.2231
1.2230
1.2230

1.5162
1.5160
1.5160

1.9220
1.9217
1.9217

2.5337
2.5334
2.5334

3.6210
3.6206
3.6206

Ceff,45◦
2313

Gm

FEM
Jiang
AHM

-0.0047
-0.0047
-0.0047

-0.0238
-0.0238
-0.0238

-0.0706
-0.0706
-0.0706

-0.1767
-0.1767
-0.1767

-0.4414
-0.4414
-0.4414

Ceff,45◦
1313

Gm

FEM
Jiang
AHM

1.2137
1.2136
1.2136

1.4685
1.4684
1.4684

1.7806
1.7804
1.7804

2.1802
2.1800
2.1800

2.7382
2.7378
2.7378

Tabelle 5-6: Normierte effektive Elastizitätskoeffizienten, verwendetes Koordinatensystem
{y1, y2, y3}, α = arccos(1/4), Gf/Gm = 20

vf 0.3 0.5 0.7

Ceff
2323

Gm

FEM
G&N
AHM
EEVM

1.74
1.74
1.74
1.74

2.66
2.66
2.66
2.66

4.83
4.83
4.83
4.83

Ceff
2313

Gm

FEM
G&N
AHM
EEVM

0.02
0.02
0.02
0.02

0.08
0.08
0.08
0.08

0.34
0.34
0.34
0.34

Ceff
1313

Gm

FEM
G&N
AHM
EEVM

1.75
1.75
1.75
1.75

2.70
2.70
2.70
2.70

5.00
5.00
5.00
5.00

Für eine weitere Validierung werden die Modelle aus [86] und [34] benutzt. Die Validie-
rung bezieht sich ebenfalls auf die longitudinalen Schubkoeffizienten. Die in Tab. 5-6 und
5-7 dargestellten normierten Koeffizienten, welche auf das globale Koordinatensystem be-
zogen sind, charakterisieren das effektive Materialverhalten von Kompositwerkstoffen mit
einer Faseranordnung, die durch den Winkel α = arccos(1/4) beschrieben wird. Dies ist
ca. 75.5◦. Die Phasen der Verbundwerkstoffe sind in der Literatur über ein Schubmodul-
verhältnis von 20 und 120 angegeben. Der Faservolumenanteil variiert von 0.3 bis 0.7 mit
einem Inkrement von 0.2. Für eine FE-Analyse werden die Querkontraktionszahlen aus Gl.
(5-5) verwendet.
Die dargestellten Koeffizienten der in dieser Arbeit entwickelten Berechnungsmodelle (Tab.
5-6 und 5-7) sind auf die zweite Nachkommastelle gerundet. Die Ergebnisse der drei Metho-
den („G&N“, „AHM“, „EEVM“) aus der Literatur stimmen sehr gut mit den berechneten
Werten („FEM“) überein. Dies gilt auch im Fall hoher Faservolumenanteile.
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Tabelle 5-7: Normierte effektive Elastizitätskoeffizienten, verwendetes Koordinatensystem
{y1, y2, y3}, α = arccos(1/4), Gf/Gm = 120

vf 0.3 0.5 0.7

Ceff
2323

Gm

FEM
G&N
AHM
EEVM

1.83
1.83
1.83
1.83

2.96
2.96
2.96
2.96

6.16
6.16
6.16
6.16

Ceff
2313

Gm

FEM
G&N
AHM
EEVM

0.02
0.02
0.02
0.02

0.11
0.11
0.11
0.11

0.60
0.60
0.60
0.60

Ceff
1313

Gm

FEM
G&N
AHM
EEVM

1.84
1.84
1.84
1.84

3.01
3.01
3.01
3.01

6.47
6.47
6.47
6.47

Diese gute Übereinstimmung mit Homogenisierungsmethoden aus der Literatur zeigt, dass
sich die entwickelten Berechnungsmodelle für die Bestimmung der effektiven longitudinalen
Schubkoeffizienten eignen.

Tabelle 5-8: Materialeigenschaften der Faser und Matrix nach [42]

Matrix Faser
Epoxid Kohlenstoff

Em [GPa] νm Ef
l [GPa] νfl Ef

t [GPa] νft Gf
l [GPa]

3.45 0.35 345 0.2 9.66 0.3 2.07

Da sich mit dem in dieser Arbeit entwickelten Berechnungskonzept alle Koeffizienten ei-
nes Elastizitätstensors ermitteln lassen, ist die oben angegebene Validierung noch nicht
vollständig, weil nur die Schubkoeffizienten betrachtet wurden. Daher wird das entwickelte
Berechnungskonzept mit einer weiteren Methode validiert [104]. In [42] werden unidirektio-
nal faserverstärkte Verbundwerkstoffe (zwei Phasen), welche durch ein transversal isotropes
Materialverhalten charakterisiert werden, betrachtet und die dafür effektiven Materialei-
genschaften angegeben. Für die Berechnung der Eigenschaften wurde in [42] die CCA-
Modellierung genutzt, welche in Abschnitt 3.2.1 näher dargestellt ist. Durch sie lassen
sich explizite Formeln für longitudinale Materialkonstanten und Schranken für transver-
sale Konstanten herleiten. Eine Ausnahme bildet der transversale Kompressionsmodul.
Ein äquivalentes transversal isotropes Modell eines Kompositwerkstoffes kann in der FEM
durch eine geeignete RUC gebildet werden. Für den folgenden Vergleich wird eine hexago-
nale Faseranordnung (α = 60◦) genutzt. Die Materialeigenschaften der Faser- und Matrix-
phase sind der Tab. 5-8 zu entnehmen. Die Phasen besitzen ein isotropes beziehungsweise
ein transversal isotropes Materialverhalten. Zur Beschreibung des Phasenmaterials reichen
daher zwei beziehungsweise fünf unabhängige Materialkonstanten (siehe Abschnitt 2.3)
aus, um den jeweiligen Elastizitätstensor bilden zu können.
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Abbildung 5-8: Longitudinale Moduli, links: Elastizitätsmodul, rechts: Schubmodul, α = 60◦

In den Abb. 5-8 bis 5-10 sind die berechneten effektiven Materialkonstanten in Abhän-
gigkeit vom Faservolumenanteil dargestellt. Mit „Hashin1979“ sind die Koeffizienten aus
der CCA-Modellierung nach [42] gekennzeichnet. Ein hochgestellter Index „−“ oder „+“
kennzeichnet die Ergebnisse als untere beziehungsweise obere Schranke. Infolge des trans-
versal isotropen effektiven Materialverhaltens lässt sich der zugehörige Elastizitätstensor
aus fünf voneinander unabhängigen Materialkonstanten bilden. Diese sind zum Beispiel
der Elastizitätsmodul Eeff

l , der Schubmodul Geff
l und die Querkontraktionszahl νeffl in lon-

gitudinaler Richtung sowie der Elastizitätsmodul Eeff
t und die Querkontraktionszahl νefft in

transversaler Richtung (siehe Abschnitt 2.3).
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Abbildung 5-9: Elastizitätskonstanten, links: longitudinale Querkontraktionszahl, rechts:
transversaler Elastizitätsmodul, α = 60◦

Die Abb. 5-8 und 5-9 zeigen die longitudinalen Konstanten in Abhängigkeit vom Faservo-
lumenanteil. Es ist zu erkennen, dass sich die Querkontraktionszahl in umgekehrter Weise
wie der Elastizitätsmodul und der Schubmodul verhält. Während mit einem zunehmen-
den Volumenanteil die Elastizitätsmoduln ansteigen, sinkt die Querkontraktionszahl ab.
Ebenso ist zu erkennen, dass der longitudinale Elastizitätsmodul und die longitudinale
Querkontraktionszahl einen ausgeprägten linearen Verlauf aufweisen. Betrachtet man die
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Berechnungsformeln der CCA-Modellierung Gl. (3-25) und (3-26) für diese Größen, wird
dies aus den ersten beiden Termen der jeweiligen Formel offensichtlich. Ohne Berücksichti-
gung des dritten Terms würde man als Formel den arithmetischen Mittelwert bekommen.
Dies würde der Mischungsregel nach VOIGT entsprechen. Hinsichtlich des Vergleichs mit
der CCA-Modellierung nach Hashin ist eine gute Übereinstimmung für alle Faservolumen-
anteile zu erkennen.
In Abb. 5-9 und 5-10 sind transversale Konstanten (FE-Modell) beziehungsweise Schran-
ken (nach [42]) dargestellt. Die Berechnungsformeln für die Schranken sind den Gln. (3-
28) bis (3-31) zu entnehmen. Wie im longitudinalen Fall ist ein umgekehrtes Verhalten
der Kurven der Elastizitätsmoduln/Schubmoduln (steigend) und der Querkontraktions-
zahl (fallend) bei einem zunehmenden Faservolumenanteil zu erkennen. Die Ergebnisse für
den Schubmodul aus der FE-Modellierung verlaufen anfangs nahe der unteren Schranke
und nähern sich mit zunehmendem Faservolumenanteil der oberen Schranke an. Im Fall
der Querkontraktionszahl ist dies gerade anders herum. Die Kurven der FEM-Rechnung
liegen innerhalb der analytischen Schranken.
Es lässt sich zusammenfassen, dass sich die entwickelten Berechnungsmodelle im Großen
und Ganzen zum Ermitteln der effektiven Materialeigenschaften eignen.
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Abbildung 5-10: Elastizitätskonstanten, links: transversaler Schubmodul, rechts: transversale
Querkontraktionszahl, α = 60◦

Weitere Untersuchungen

Nachdem die Berechnungsmodelle validiert worden sind, wird im Folgenden der Einfluss der
Faseranordnung auf die effektiven Koeffizienten für unterschiedliche Faservolumenanteile
untersucht. Dazu wird eine Parameterstudie durchgeführt, wobei der Winkel α und der
Faservolumenanteil vf variiert werden [104]. Die Faservolumenanteile wurden exemplarisch
gewählt. Es werden Volumenanteile von 0.1 bis 0.7 genutzt. Die verwendeten Materialdaten
sind der Tabelle 5-8 zu entnehmen.
In den Abb. 5-11 bis 5-13 sind die effektiven Materialkonstanten in Abhängigkeit vom Win-
kel α angegeben. Die Konstanten werden aus den Komponenten C̃eff

ij der Elastizitätsmatrix
abgeleitet, welche bezüglich des lokalen Koordinatensystems berechnet wurden. Da ein un-
idirektional faserverstärkter Verbundwerkstoff mit einer rhombischen Faseranordnung im
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Allgemeinen orthotrope Eigenschaften hat, und da die Achsen des lokalen Koordinatensys-
tems Symmetrieachse sind, lassen sich die Konstanten aus der Gl. (2-45) bestimmen.
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Abbildung 5-11: Effektive transversale Elastizitätsmoduln unterschiedlicher
Faservolumenanteile vf in Abhängigkeit von α

30 40 50 60 70 80 90
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

α

S
ch

ub
m

od
ul

 [G
P

a]

 

 

Geff
23

, vf=0.1

Geff
13

, vf=0.1

Geff
23

, vf=0.3

Geff
13

, vf=0.3

Geff
23

, vf=0.5

Geff
13

, vf=0.5

Geff
23

, vf=0.7

Geff
13

, vf=0.7

Abbildung 5-12: Effektive longitudinale Schubmoduln unterschiedlicher Faservolumenanteile
vf in Abhängigkeit von α

In Abb. 5-11 und 5-12 sind die effektiven transversalen Elastizitätsmoduln in der y′1-y
′
2-

Ebene beziehungsweise die longitudinalen Schubmoduln in Faserlängsrichtung dargestellt.
Man erkennt, dass bei einer Faseranordnung von 60◦ und 90◦ eine Übereinstimmung der
Werte von Eeff

1 und Eeff
2 im numerischen Sinn vorliegt, was plausibel ist, da bei 60◦ und 90◦
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ein transversal isotropes beziehungsweise tetragonales Materialverhalten vorliegt. Für den
Winkelbereich zwischen 60◦ bis 90◦ ist zu erkennen, dass sich die transversalen Moduln
mit einem höheren Faservolumenanteil zunehmend voneinander unterscheiden. Ab einem
Winkel von 60◦ ist ein Wechsel des größten Elastizitäts- beziehungsweise Schubmoduls zu
beobachten.
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Abbildung 5-13: Effektive transversale Querkontraktionszahlen unterschiedlicher
Faservolumenanteile vf in Abhängigkeit von α
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Abbildung 5-14: Effektive longitudinale Querkontraktionszahlen unterschiedlicher
Faservolumenanteile vf in Abhängigkeit von α
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Der größte Unterschied zwischen Eeff
1 und Eeff

2 oder Geff
13 und Geff

23 herrscht vor, wenn der
Winkel α am kleinsten ist. Des Weiteren erkennt man, dass die Elastizitätsmoduln mit
zunehmendem Winkel eher fallen.
In Abb. 5-13 und 5-14 sind die transversalen und longitudinalen Querkontraktionszahlen
dargestellt. Wie im Fall der Moduln sind die paarweise dargestellten Querkontraktionszah-
len für 60◦ und 90◦ von gleicher Größenordnung. Ebenso ist der Einfluss des zunehmenden
Faservolumenanteils auf die Konstanten und der Wechsel der dominierenden Querkontrak-
tionszahl erkennbar.

Tabelle 5-9: Prozentuale Abweichung (gerundet auf eine Stelle nach dem Komma) vom
Minimum zum Maximum für ausgewählte Materialkonstanten

Vol.-anteil Eeff
1 Eeff

2 Geff
12 Geff

23 νeff32 νeff12
0.5 6.0 % 10.2 % 10.2 % 1.5 % 5.1 % 12.1 %
0.7 3.6 % 6.9 % 7.2 % 1.2% 4.4 % 9.6 %

Dass die Berechnungsmodelle bei den verschiedenen Volumenanteilen unterschiedliche
Winkelbereiche durchlaufen, liegt an der Abbruchbedingung Gl. (5-3) für die Geometrie-
erstellung, da sich ansonsten die Randfasergeometrien überschneiden oder die zentrierte
Faser aus der Rechteckgeometrie herausragen würden.
Die Elastizitätsmoduln/Schubmoduln steigen und die Querkontraktionszahlen fallen mit
einem zunehmenden Faservolumenanteil.
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Abbildung 5-15: Effektiver Elastizitätsmodul Eeff
3 unterschiedlicher Faservolumenanteile vf in

Abhängigkeit von α

Aus den Abbildungen ist erkennbar, dass der Faservolumenanteil einen größeren Einfluss
auf die Materialkonstanten besitzt als die Faseranordnung. Dennoch darf der Einfluss der
Faseranordnung nicht vernachlässigt werden. In Tab. 5-9 ist exemplarisch für ausgewählte
Konstanten zu einem festen Faservolumenanteil die prozentuale Abweichung des Minimums
zum Maximum einer Konstante über alle Faseranordnungen dargestellt. Die Formel, welche
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zur Berechnung des Unterschieds benutzt wurde, wird am Beispiel des Elastizitätsmoduls
Eeff

1 erläutert. Sie lautet

diff2 =

∣∣∣Eeff,max
1 − Eeff,min

1

∣∣∣
Eeff,max

1

100% . (5-6)

Die Größen Eeff,max
1 und Eeff,min

1 sind der maximale beziehungsweise der minimale effektive
Elastizitätsmodul Eeff

1 für alle Faseranordnungen zu einem konkreten Faservolumenanteil.
Die Unterschiede der anderen Konstanten werden analog zu Gl. (5-6) berechnet.
Die Faseranordnung beeinflusst die effektiven Konstanten unterschiedlich. Eine Konstante,
auf die die Faseranordnung keinen erkennbaren Einfluss ausübt, ist der effektive Elastizi-
tätsmodul Eeff

3 (siehe Abb. 5-15).

5.1.2 Rhombischer RUC-Querschnitt mit imperfektem
Phasenübergang

Die bisherigen Ergebnisse resultieren aus einem RUC-Modell mit Rechteckquerschnitt und
einem perfekten Phasenübergang zwischen Matrix und Faser. Dieser Phasenübergang wird
nun durch den in Abschnitt 3.4 beschriebenen imperfekten Phasenübergang ersetzt. Im
Rahmen der FE-Modellierung ist die imperfekte Phasenübergangsbeschreibung, welche
auch in [105] verwendet wurde, in Abschnitt 4.4 zu finden.
Für eine Validierung der in diesem Teilabschnitt entwickelten Berechnungsmodelle wird auf
die in Abschnitt 3.2 beschriebenen Methoden (CCA, GSCS) zurückgegriffen. Im Anschluss
daran wird der Einfluss von Materialveränderungen auf die effektiven Elastizitätskoeffizi-
enten untersucht.

Validierung der Berechnungsmodelle

Die Berechnungsmodelle mit einem imperfekten Phasenübergang werden anhand von Mo-
dellen aus dem Artikel von Hashin [46] validiert [105]. Diese Modelle wurden bereits im
Abschnitt 3.2 beschrieben. Dabei handelt es sich um das CCA-Modell und das verallge-
meinerte Selbstkonsistenzschema (GSCS). Die Modelle aus der Literatur basieren auf Drei-
Phasen-Beschreibungen des Kompositwerkstoffes, die einen perfekten Übergang von einer
Phase zur nächsten besitzen. Der Verbundwerkstoff setzt sich aus einer Matrix-, einer Faser-
und einer Zwischenphase, welche Matrix und Faser voneinander trennt, zusammen. Die
Materialeigenschaften der Phasen werden als elastisch und isotrop angenommen. Das re-
sultierende effektive Materialverhalten des Verbundwerkstoffes aus der CCA-Modellierung
und der GSCS-Modellierung ist transversal isotrop.
Die elastischen Materialeigenschaften der Matrix und der Faser, die hier zur Validierung
genutzt werden, wurden dem Artikel [46] entnommen. Diese Eigenschaften sind durch ein
Schubmodulverhältnis von Gf/Gm = 10 und die Querkontraktionszahlen νm = 0.35 und
νf = 0.2 angegeben. Die Zwischenphase besitzt eine Querkontraktionszahl von ν i = 0.3.
Der Schubmodul Gi der Zwischenphase wird variiert.
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Abbildung 5-16: Diskretisierung des Drei-Phasen-Modells mit separater Darstellung der
Zwischenphase, α = 60◦ und vf = 0.4

Der Faservolumenanteil beträgt vf = 0.4. Die Zwischenphase, welche die zylinderförmi-
ge Faser von der Matrix trennt, besitzt eine konstante Dicke ti. Die Dicke ist durch die
Beziehung [46]

ti = ηrf , (5-7)

gegeben, wobei η ein vorgegebener Parameter und rf der Faserradius sind.
Für die Validierung werden zusätzlich FE-Berechnungsmodelle entwickelt, welche ebenfalls
drei Phasen aufweisen. Die Zwischenphase wird durch einen Ring aus finiten Elementen
diskretisiert. Da die Geometrie dieser Phase einen sehr dünnen Ring bildet, erfolgt die
Diskretisierung in radialer Richtung mit einem finiten Element (siehe Abb. 5-16). Das
in Abb. 5-16 dargestellte, diskretisierte Modell einer RUC repräsentiert einen unidirek-
tionalen Faserverbundwerkstoff mit einer hexagonalen Faseranordnung, dessen effektives
Materialverhalten transversal isotrop ist.

Abbildung 5-17: Diskretisierung des imperfekten Modells mit separater Darstellung der
Knoten der Federelemente (imperfekter Phasenübergang), α = 60◦ und vf = 0.4
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In Abb. 5-17 ist das disketisierte RUC-Modell dargestellt, welches sich aus einer Matrixpha-
se, einer Faserphase und einer imperfekten Phasenübergangsbeschreibung zusammensetzt.
Für die Volumendiskretisierung werden Hexaeder- und Pentaeder-Elemente mit einem Po-
lynomgrad von 1 verwendet. Der imperfekte Phasenübergang wird durch Federelemente
beschrieben (siehe Abschnitt 4.4). Zur Erinnerung, die Matrix und die Faser besitzen eine
identische Knotenverteilung an den jeweiligen Phasenrandflächen, die zu Γmf gehören. Die
Federelemente verknüpfen die Knotenpaarungen miteinander (siehe Abb. 5-17).
Um einen Vergleich des imperfekten RUC-Modells mit einem Drei-Phasen-Modell zu ge-
währleisten, müssen die Steifigkeiten der Federelemente entsprechend gewählt werden. Da
die Zwischenphase der Drei-Phasen-Modellierung isotrop ist, lassen sich die Beziehungen
aus den Gln. (3-75) und (4-31) nutzen.
In den Abb. 5-18 bis 5-23 sind die Ergebnisse der Berechnung in Form normierter effekti-
ver Materialkonstanten dargestellt. Die Ergebnisse aus den in dieser Arbeit entwickelten
FE-Modellierungen sind durch den Zusatz „FEM“ gekennzeichnet. Die dargestellten Kon-
stanten sind der transversale Kompressionsmodul, der longitudinale Schubmodul und der
transversale Schubmodul. Alle weiteren Konstanten lassen sich ebenfalls berechnen, wer-
den aber hier nicht angegeben. Für die Validierung sind die ausgewählten Konstanten
ausreichend.
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Abbildung 5-18: Normierter effektiver transversaler Kompressionsmodul bei η = 0.001 in
Abhängigkeit von Gi/Gm

Für die dargestellten Konstanten wurde eine Zwischenphasendicke von einem Tausends-
tel des Faserradius verwendet. Der transversale Kompressionsmodul und der longitudinale
Schubmodul stimmen bis zu einemWert von log10(G

i/Gm) < 2 sehr gut mit den Vergleichs-
ergebnissen („CCA“, „3P-Modell FEM“) überein. Für sehr kleine Gi wird im Fall der Drei-
Phasen-Modellierung infolge der Randbedingungen der Lasttransfer zwischen Matrix- und
Faserphase reduziert. Ähnlich verhält es sich bei der Modellierung mit dem imperfekten
Phasenübergang. Die versteifende Wirkung der Fasern kommt somit kaum zum Tragen.
Für log10(G

i/Gm) > 2 zeigt sich zwischen den Drei-Phasen-Modellierungen und dem Fe-

https://doi.org/10.51202/9783186346186 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:55:08. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186346186


84 Berechnung effektiver Materialeigenschaften

dermodell eine immer größer werdende Abweichung. Die imperfekte Phasenübergangsmo-
dellierung führt im Grenzfall Gi = ∞ zu Ergebnissen eines aus zwei Phasen bestehenden
Verbundwerkstoffes mit einem perfekten Kontakt. Bei der Drei-Phasen-Modellierung wird
die Zwischenphase nahezu ein starres Medium im Vergleich zu den anderen beiden beteilig-
ten Phasen. Dadurch ergibt sich ein nicht zu vernachlässigender Anteil bei der Ermittlung
der gemittelten Spannungen, welcher in die Berechnung der effektiven Materialeigenschaf-
ten eingeht. Werden nur die Ergebnisse der Drei-Phasen-Modellierungen miteinander ver-
glichen, erkennt man, dass über den gesamten dargestellten Bereich von Gi/Gm eine gute
Übereinstimmung der Ergebnisse vorliegt. Bei allen drei Abbildungen der Materialkon-
stanten liegt der Bereich, bei dem sich die Werte der effektiven Werkstoffeigenschaften
signifikant ändern, zwischen ca. log10(G

i/Gm) = −4 und log10(G
i/Gm) = −1. Die Ursache

dafür ist die Isotropie der Zwischenphase.
In Abb. 5-20 sind die transversalen Schubmoduln zu sehen. Anstelle einer CCA-
Modellierung wird zur Validierung das verallgemeinerte Selbstkonsistenzschema (GSCS)
aus Abschnitt 3.2.2 verwendet, welches in [46] näher erläutert ist. Zur Erinnerung, dies
war dadurch begründet, dass für transversale Konstanten (Ausnahme: transversaler Kom-
pressionsmodul) keine Lösung nach einer CCA-Modellierung existiert.
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Abbildung 5-19: Normierter effektiver longitudinaler Schubmodul bei η = 0.001 in
Abhängigkeit von Gi/Gm

Vergleicht man die Ergebnisse der Drei-Phasen-Modellierungen miteinander, so ist eine
Abweichung zwischen den berechneten Werten erkennbar. Da die Ergebnisse aus den FE-
Modellierungen in Abb. 5-18, 5-19 sowie in Abb. 5-20 für weite Teile eine gute Überein-
stimmung zeigen, wird ein Modellierungsfehler ausgeschlossen. In [46] wird festgehalten,
dass das GSCS im Allgemeinen als Näherungsmethode aufzufassen ist, was als Ursache für
die Abweichung zu deuten ist. Dies wird bestärkt durch einen annähernd parallelen Verlauf
der Drei-Phasen-Modellierungen im Bereich −1 < log10(G

i/Gm) < −5.
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Abbildung 5-20: Normierter effektiver transversaler Schubmodul bei η = 0.001 bezüglich
Gi/Gm
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Abbildung 5-21: Normierter effektiver transversaler Kompressionsmodul bei η = 0.01 in
Abhängigkeit von Gi/Gm

Die Abweichungen der Ergebnisse zwischen den Drei-Phasen-Modellierungen betragen ca.
23.3% bei log10(G

i/Gm) = −5 beziehungsweise ca. 2.2% bei log10(G
i/Gm) = 5. Werden die

Ergebnisse der FE-Berechnungsmodelle miteinander verglichen, so ist eine gute Überein-
stimmung bis ca. log10(G

i/Gm) < 2.5 zu erkennen.
Eine Erhöhung der Dicke der Zwischenphase führt zu einem höheren Phasenvolumenanteil.
Dadurch nimmt der Einfluss der Zwischenphase in der Berechnung der makroskopischen
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Spannungen zu und die Ergebnisse der Drei-Phasen-Modelle und des Federmodells weichen
stärker von einander ab (siehe Abb. 5-21 bis 5-23).
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Abbildung 5-22: Normierter effektiver longitudinaler Schubmodul bei η = 0.01 in
Abhängigkeit von Gi/Gm
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Abbildung 5-23: Normierter effektiver transversaler Schubmodul bei η = 0.01 in Abhängigkeit
von Gi/Gm

Materialkennwerte (Elastizitätsmodul, Schubmodul, Querkontraktionszahl) von realen Ma-
terialien können sich um das Hundertfache unterscheiden. Somit ist ein Schubmodulver-
hältnis von (Gf/Gm) = 10 für die Phasen eines Kompositwerkstoffes aus Sicht der Pra-
xis durchaus realistisch. Im Fall einer Zwischenphase ist es naheliegend, den Bereich des
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Zwischenphasenschubmoduls auf −1 < log10(G
i/Gm) < 1 (−2 < log10(G

i/Gf) < 0) zu
begrenzen. Bei einer Einschränkung auf diesen Bereich lässt sich eine gute bis sehr gu-
te Übereinstimmung der FE-Ergebnisse (Drei-Phasen-Modell/Federmodell) aus den Ab-
bildungen erkennen. Im Fall einer Zwischenphasendicke von einem Hundertstel des Fa-
serradius (η = 0.01) ist die prozentuale Abweichung der Federmodellergebnisse von den
Drei-Phasen-Modellergebnissen für den eingeschränkten Bereich aus der Tab. 5-10 zu ent-
nehmen. Die Berechnungsformel für die Abweichung lautet

diff3 =

∣∣P eff − P eff,ref
∣∣

P eff,ref 100% . (5-8)

Die Größe P eff kennzeichnet eine beliebige effektive Konstante. Als Referenzwerte P eff,ref

dienen die effektiven Konstanten der Drei-Phasen-Modellierung (3P-Modell FEM).

Tabelle 5-10: Prozentuale Abweichung der Ergebnisse des Federmodells von dem
Drei-Phasen-Modell (3P-Modell FEM) (gerundet auf zwei Stellen nach dem Komma) im

Intervall −1 < log10(Gi/Gm) < 1

log10(G
i/Gm) kefft Geff

l Geff
t

-1 0.91 % 1.21 % 1.16 %
0 1.16 % 1.45 % 1.53 %
1 1.30 % 1.61 % 1.66 %

Es lässt sich zusammenfassen, dass die Ergebnisse der Federmodellierung über weite Stre-
cken von gleicher Größenordnung wie die der Drei-Phasen-Modellierung mit einer sehr
dünnen Zwischenschicht sind. Mit einer zunehmenden Steifigkeit und Dicke der Zwischen-
phase weichen die Ergebnisse stärker voneinander ab. Eingeschränkt auf das Intervall
−1 < log10(G

i/Gm) < 1 lässt sich im Rahmen der Homogenisierung die Drei-Phasen-
Modellierung bis zu einer gewissen Zwischenphasendicke näherungsweise durch die Feder-
modellierung ersetzen. Bei einer deutlichen Ausprägung der Zwischenphase ist ein Drei-
Phasen-Modell einem Federmodell vorzuziehen.

Weitere Untersuchungen

Nachfolgend werden weitere Untersuchungen zu den Berechnungsmodellen mit einem im-
perfekten Phasenübergang durchgeführt. Diese haben das Ziel, den Einfluss des Mate-
rialunterschieds der beteiligten Phasen auf die effektiven Werkstoffeigenschaften näher
zu untersuchen. Im Zusammenhang mit einer Drei-Phasen-Modellierung kann zusätzlich
festgestellt werden, wie die Materialveränderung die Vergleichbarkeit der Modelle beein-
flusst. Dies wird anhand exemplarisch ausgewählter effektiver Elastizitätskoeffizienten ver-
anschaulicht.

Tabelle 5-11: Fixierte Geometrie- und Materialeigenschaften

α vf νf νm ν i

60◦ 0.4 0.2 0.35 0.3

Für die Untersuchung des Einflusses der beteiligten Phaseneigenschaften auf die effek-
tiven Elastizitätskoeffizienten wird angenommen, dass die Phase der Matrix, der Faser
und der Zwischenschicht (für die imperfekte Phasenübergangsbeschreibung) ein isotropes
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Materialverhalten besitzen. Es werden die in der Tab. 5-11 aufgeführten Geometrie- und
Materialinformationen in den Berechnungsmodellen verwendet. Diese Informationen sind
der Winkel α, der Faservolumenanteil vf und die Querkontraktionszahlen der Faser νf, der
Matrix νm und der Zwischenphase ν i. Zusätzlich werden die Schubmoduln der Matrix- und
Faserphase über ein Verhältnis Gf/Gm (Gm hat den Wert 1) vorgegeben. Die Zwischen-
phasendicke wird auf ein Tausendstel und ein Hundertstel des Faserradius festgelegt.
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Abbildung 5-24: Normierte Koeffizienten Ceff
1111/G

m und Ceff
2323/G

m, verwendetes
Koordinatensystem {y′1, y′2, y′3}, α = 60◦, vf = 0.4, η = 0.001
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Abbildung 5-25: Normierte Koeffizienten Ceff
1111/G

m und Ceff
2323/G

m, verwendetes
Koordinatensystem {y′1, y′2, y′3}, α = 60◦, vf = 0.4, η = 0.01

In Abb. 5-24 und 5-25 sind die normierten Elastizitätskoeffizienten Ceff
1111 und C

eff
2323 in Ab-

hängigkeit von Gi/Gm für drei verschiedene Schubmodulverhältnisse zwischen Faser und
Matrix dargestellt. Die Verhältnisse sind durch die Werte 10, 50 und 100 angegeben.
Die Veränderung des Schubmodulverhältnisses von 10 zu 100 bewirkt eine Vergrößerung
des Wertebereiches von Ceff

1111/G
m und Ceff

2323/G
m. Des Weiteren lässt sich ein Einfluss auf

die Vergleichbarkeit der Federmodellierung mit der Drei-Phasen-Modellierung feststellen
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(siehe Tab. 5-12). Bei einer Einschränkung des Zwischenphasenmaterials auf das Intervall
−1 < log(Gi/Gm) < 1 ist mit einem zunehmenden Materialverhältnis Gf/Gm eine leichte
Erhöhung in der prozentualen Abweichung der Modellergebnisse erkennbar. Für die Be-
rechnung der Abweichung wird die Gl. (5-8) verwendet. Die Größe P eff kennzeichnet hier
einen beliebigen effektiven Elastizitätskoeffizienten der Federmodellierung. Als Referenz-
wert P eff,ref dient der jeweilige effektive Koeffizient der Drei-Phasen-Modellierung.

Tabelle 5-12: Prozentuale Abweichung der Ergebnisse des Federmodells von dem
Drei-Phasen-Modell (3P-Modell FEM) (gerundet auf zwei Stellen nach dem Komma) im

Intervall −1 < log10(Gi/Gm) < 2, Zwischenphasendicke beträgt ein Hundertstel des Faserradius

log10(G
i/Gm) Gf/Gm = 10 Gf/Gm = 50 Gf/Gm = 100

Ceff
1111 Ceff

2323 Ceff
1111 Ceff

2323 Ceff
1111 Ceff

2323

-1 0.98 % 1.21 % 1.19 % 1.47 % 1.22 % 1.51 %
0 1.26 % 1.45 % 1.53 % 1.77 % 1.57 % 1.81 %
1 1.40 % 1.61 % 1.57 % 1.81 % 1.61 % 1.85 %
2 2.36 % 2.83 % 1.63 % 1.88 % 1.63 % 1.87 %

5.1.3 Parallelogrammförmiger RUC-Querschnitt mit perfektem
Phasenübergang

In den vorherigen Abschnitten wurden Kompositwerkstoffe mit einer rhombischen Faser-
anordnung untersucht. Die periodische Verteilung der unidirektionalen Faser kann dabei
durch einen Rhombus beschrieben werden. Verändert man nun eine Kantenlänge des Rhom-
bus, so entsteht ein Parallelogramm.
Dieser Teilabschnitt befasst sich mit Berechnungsmodellen unter Verwendung einer RUC
mit einem Parallelogramm-Querschnitt und einem perfekten Phasenübergang. Zuerst wer-
den die Berechnungsmodelle anhand von Modellen aus der Literatur validiert. Im Anschluss
daran wird der Einfluss des parallelogrammförmigen RUC-Querschnitts auf die effektiven
Elastizitätskoeffizienten untersucht.

1

2

Abbildung 5-26: Spezielle Querschnitte für die RUC, die durch den Algorithmus erzeugt
werden können: Links - Rechteck, Mitte - Rhombus, Rechts - Parallelogramm

In Abb. 5-26 sind einige spezielle Formen des Parallelogramms dargestellt, die mit dem
entwickelten Berechnungsalgorithmus betrachtet werden können. Dies sind das Rechteck,
der Rhombus und das allgemeine Parallelogramm. Die Geometrieeigenschaften eines Par-
allelogramms und somit die Verteilung der Fasern im Verbundwerkstoff werden durch das
Festlegen zweier Kantenlängen, welche nicht parallel zueinander liegen, und eines Winkels
beschrieben. In Abb. 3-10 aus Teilabschnitt 3.3.1 sind diese Eigenschaften durch b, w und
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α gekennzeichnet. Zur Bestimmung der effektiven Elastizitätskoeffizienten eines Komposit-
werkstoffes ist es ausreichend, eine normierte Geometrie zu betrachten. Der Kantenlänge
b wird die Einheitslänge zugewiesen. Somit lässt sich die Geometrie durch ein Kantenlän-
genverhältnis und einen Winkel α beschreiben.
Die RUC-Geometrie wird mit Hexaeder- und Pentaeder-Elementen vom Polynomgrad 2
diskretisiert. Das FE-Netz muss eine gleiche Flächendiskretisierung gegenüberliegender
RUC-Ränder gewährleisten, damit die periodischen Randbedingungen Gl. (3-66) bis (3-71)
in das FE-Modell integriert werden können. Für die Verhinderung der Starrkörperbewe-
gungen der RUC werden die drei Verschiebungsfreiheitsgrade im Querschnittsmittelpunkt
einer der beiden Faserrandflächen zu Null gesetzt.

Validierung der Berechnungsmodelle

Hinsichtlich einer Validierung der entwickelten Berechnungsmodelle werden die effektiven
Elastizitätskoeffizienten mit Koeffizienten aus der Literatur verglichen. Für den Vergleich
der Ergebnisse werden in den Berechnungsmodellen die in Abb. 5-26 dargestellten RUC-
Querschnitte verwendet. Im Fall des Parallelogramms (siehe Abb. 5-26 rechts) stehen lei-
der nur wenige Arbeiten zur Verfügung, die für Vergleichszwecke genutzt werden können.
Es werden hier für den Vergleich effektive Elastizitätskoeffizienten herangezogen, für die
sich in [34], [86] und [83] Werte finden lassen. Für eine Validierung der entwickelten Be-
rechnungsmodelle im Fall der beiden anderen RUC-Querschnitte lassen sich in [34], [83]
entsprechende Vergleichsmöglichkeiten finden.
Die effektiven Koeffizienten der Methoden aus der Literatur sind mit „AHM“ [86], [83] und
„G&N“ [34] und die Ergebnisse der in dieser Arbeit entwickelten Berechnungsmodelle mit
„FEM“ gekennzeichnet.

Tabelle 5-13: Materialeigenschaften der Faser und Matrix

Em, [GPa] νm Ef, [GPa] νf

2.6 0.3 312 0.3

Tabelle 5-14: Normierte effektive Elastizitätskoeffizienten, verwendetes Koordinatensystem
{y1, y2, y3}, α = 90◦

w/b vf Ceff
1111/G

m Ceff
1122/G

m Ceff
1133/G

m Ceff
2233/G

m

AHM FEM AHM FEM AHM FEM AHM FEM
1.1 0.1 4.0757 4.0756 1.6972 1.6971 1.7319 1.7318 1.7288 1.7287

0.3 5.9477 5.9460 2.1087 2.1091 2.4169 2.4165 2.3596 2.3598
0.5 10.347 10.321 2.4968 2.5095 3.8533 3.8498 3.4096 3.4198

1.25 0.1 4.0847 4.0847 1.6957 1.6957 1.7341 1.7340 1.7268 1.7267
0.3 6.1334 6.1324 2.0892 2.0900 2.4668 2.4667 2.3256 2.3258
0.5 12.207 12.333 2.3617 2.4520 4.3705 4.4358 3.2052 3.2289

1.5 0.1 4.1016 4.1016 1.6917 1.6917 1.7380 1.7380 1.7236 1.7235
0.3 6.5184 6.5535 2.0439 2.0406 2.5687 2.5782 2.2780 2.2757

Für die Validierung der entwickelten Berechnungsmodelle werden die Phaseneigenschaften
aus [34] und [83] verwendet. Diese Eigenschaften sind in Tab. 5-13 aufgelistet. Die isotro-
pen Phasen sind durch ein Schubmodulverhältnis der Faser zur Matrix von 120 (Verhältnis
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wie in [34]) charakterisiert. Diese Materialdaten werden für alle entwickelten Berechnungs-
modelle zur Validierung verwendet. In Tab. 5-14 bis 5-19 sind die effektiven Koeffizienten
aufgelistet.

Tabelle 5-15: Normierte effektive Elastizitätskoeffizienten, verwendetes Koordinatensystem
{y1, y2, y3}, α = 90◦

w/b vf Ceff
3333/G

m Ceff
2323/G

m Ceff
1313/G

m Ceff
1212/G

m

AHM FEM AHM FEM AHM FEM AHM FEM
1.1 0.1 34.578 34.578 1.2152 1.2152 1.2212 1.2211 1.1567 1.1567

0.3 96.853 96.853 1.7984 1.7983 1.8864 1.8864 1.5287 1.5285
0.5 159.48 159.48 2.7861 2.7860 3.3100 3.3099 2.1612 2.1595

1.25 0.1 34.578 34.578 1.2113 1.2113 1.2255 1.2254 1.1556 1.1556
0.3 96.858 96.857 1.7476 1.7476 1.9611 1.9611 1.5231 1.5226
0.5 159.57 159.59 2.5576 2.5576 3.9762 3.9762 2.1992 2.1624

1.5 0.1 34.578 34.578 1.2054 1.2054 1.2326 1.2325 1.1528 1.1528
0.3 96.874 96.876 1.6808 1.6808 2.1114 2.1114 1.5090 1.5090

In Tab. 5-14 und 5-15 sind effektive Elastizitätskoeffizienten in Abhängigkeit von verschie-
denen Kantenlängenverhältnissen und Faservolumenanteilen für Verbundwerkstoffe, deren
Faseranordnung durch den rechteckigen RUC-Querschnitt charakterisiert wird (siehe Abb.
5-26, rechts), dargestellt. Neben den Ergebnissen der in dieser Arbeit entwickelten Berech-
nungsmodelle („FEM“) sind zusätzlich Vergleichsergebnisse („AHM“) angegeben. Die acht
aufgelisteten effektiven Koeffizienten beschreiben das Materialverhalten in Faserlängsrich-
tung und in der Faserquerschnittsebene. Infolge der Veränderung des Kantenlängenver-
hältnisses w/b ist zu einem festen Faservolumenanteil ein monotoner Anstieg oder Abfall
für fast alle Koeffizienten zu erkennen.
Vergleicht man die Ergebnisse der unterschiedlichen Methoden miteinander, so erkennt
man eine gute Übereinstimmung bei niedrigen Faservolumenanteilen (vf = 0.1) bis hin zu
einem Wert von 0.3. Für 0.5 sind kleine Unterschiede in einigen Koeffizienten erkennbar.

Tabelle 5-16: Normierte effektive Elastizitätskoeffizienten bei einer rhombischen
RUC-Querschnittsgeometrie, verwendetes Koordinatensystem {y1, y2, y3}

α vf Ceff
1111/G

m Ceff
1122/G

m Ceff
2222/G

m Ceff
3333/G

m

AHM FEM AHM FEM AHM FEM AHM FEM
30◦ 0.1 4.0376 4.0377 1.6980 1.6979 4.1106 4.1109 34.579 34.578
50◦ 0.1 4.0494 4.0494 1.7145 1.7145 4.0572 4.0572 34.578 34.578

0.3 5.5696 5.5723 2.3232 2.3191 5.7018 5.7085 96.853 96.852
70◦ 0.1 4.0609 4.0609 1.7075 1.7074 4.0595 4.0595 34.578 34.578

0.3 5.7209 5.7228 2.2425 2.2405 5.6993 5.7009 96.851 96.851
0.5 8.9147 8.9576 3.0557 3.0157 8.7726 8.8073 159.44 159.44

In Tab. 5-16 und 5-17 sind acht effektive Koeffizienten für Kompositwerkstoffe, deren Fa-
seranordnung durch den rhombischen RUC-Querschnitt nach Abb. 5-26 (Bildmitte) cha-
rakterisiert wird, dargestellt. Die Koeffizienten beschreiben das effektive Materialverhalten
längs und quer zur Faserrichtung. Durch die rhombische Querschnittsgeometrie der RUC
und das in Abb. 5-26 verwendete Koordinatensystem ergibt sich ein Elastizitätstensor, des-
sen Darstellung in M-V-Notation der des Tensors bezüglich monokliner Symmetrie in Gl.
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(2-43) entspricht. Wie bereits in Abschnitt 5.1.1 erwähnt wurde, ist das effektive Material-
verhalten im Allgemeinen orthotrop. Durch eine Transformation in ein geeignetes lokales
Koordinatensystem kann der Tensor in M-V-Notation die Darstellung aus Gl. (2-44) an-
nehmen. Die Koeffizienten der Tab. 5-17 (außer Ceff

1212) würden in diesem Fall den Wert
Null besitzen.
Die berechneten Koeffizienten („FEM“) in Tab. 5-16 und 5-17 zeigen eine gute Überein-
stimmung mit den Vergleichsergebnissen („AHM“). Wie in den vorherigen zwei Tabellen
sind bei einem höheren Faservolumenanteil beim Vergleich einiger Koeffizienten kleine Un-
terschiede erkennbar.

Tabelle 5-17: Normierte effektive Elastizitätskoeffizienten bei einer rhombischen
RUC-Querschnittsgeometrie, verwendetes Koordinatensystem {y1, y2, y3}

α vf Ceff
1112/G

m Ceff
2212/G

m Ceff
3312/G

m Ceff
1212/G

m

AHM FEM AHM FEM AHM FEM AHM FEM
30◦ 0.1 0.0124 0.0123 -0.0335 -0.0334 -0.0063 -0.0063 1.1616 1.1617
50◦ 0.1 0.0056 0.0056 -0.0103 -0.0102 -0.0014 -0.0013 1.1722 1.1721

0.3 0.0479 0.0482 -0.1267 -0.1293 -0.0236 -0.0243 1.6870 1.6919
70◦ 0.1 -0.0038 -0.0038 0.0057 0.0057 0.0006 0.0005 1.1651 1.1650

0.3 -0.0378 -0.0378 0.0674 0.0679 0.0089 0.0090 1.6085 1.6097
0.5 -0.0987 -0.1017 0.2939 0.3086 0.0586 0.0620 2.4261 2.4445

Tabelle 5-18: Normierte effektive Elastizitätskoeffizienten bei einer
RUC-Querschnittsgeometrie in Parallelogrammform, verwendetes Koordinatensystem {y1, y2, y3}

w/b vf Ceff
1111/G

m Ceff
1122/G

m Ceff
2222/G

m Ceff
1212/G

m

AHM FEM AHM FEM AHM FEM AHM FEM
1.1 0.1 4.0621 4.0621 1.7086 1.7084 4.0561 4.0561 1.1657 1.1658

0.3 5.7327 5.7478 2.2659 2.2555 5.6394 5.6465 1.6077 1.6152
0.5 8.9137 9.1808 3.2075 3.0681 8.3894 8.4718 2.3723 2.4555

1.25 0.1 4.0741 4.0742 1.7026 1.7025 4.0565 4.0565 1.1607 1.1607
0.3 5.9190 5.9446 2.1924 2.1819 5.6245 5.6289 1.5625 1.5680

1.4 0.1 4.0861 4.0861 1.6978 1.6978 4.0551 4.0551 1.157 1.1570
0.3 6.1396 6.1817 2.1311 2.1203 5.5872 5.5901 1.5344 1.5389

Auf der rechten Seite in Abb. 5-26 ist die allgemeinste Querschnittsform einer RUC dar-
gestellt, welche sich mit dem entwickelten Berechnungsalgorithmus betrachten lässt. Diese
Form ist das Parallelogramm. Unidirektionale Faserverbundwerkstoffe, die durch eine RUC
mit einem solchen Querschnitt charakterisiert werden und deren Phasen ein isotropes Ma-
terialverhalten aufweisen, besitzen ein effektives monoklines Materialverhalten. Die Dar-
stellung des Elastizitätstensors in M-V-Notation bezogen auf das in Abb. 5-26 dargestellte
Koordinatensystem entspricht der Gl. (2-43).
Die effektiven Koeffizienten in Tab. 5-18 und 5-19 gehören zu Berechnungsmodellen, in
denen eine RUC mit einem Parallelogramm-Querschnitt genutzt wird. Die Tabellen zeigen
die Abhängigkeit der Koeffizienten von dem Kantenlängenverhältnis und dem Faservolu-
menanteil. Der verwendete Winkel α des Parallelogramms berechnet sich aus der Annahme,
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dass b Einheitslänge hat, und der Formel [34]

α = arccos

(
b

2w

)
. (5-9)

Es ergeben sich Winkel von ca. 63◦ (bei w/b = 1.1), 66◦ (bei w/b = 1.25) und 69◦ (bei
w/b=1.4).
Die Tab. 5-18 enthält Koeffizienten, welche das effektive Verhalten in der Querschnittsebe-
ne beschreiben. Im Fall vf = 0.5 weichen die berechneten Koeffizienten Ceff

1111, C
eff
2222 und

Ceff
1122 („FEM“) deutlicher von den Vergleichsergebnissen („AHM“, [83]) ab als der Koeffi-

zient Ceff
2222. Ansonsten ist eine gute Übereinstimmung der berechneten Ergebnisse mit den

Vergleichsergebnissen erkennbar.
Die Koeffizienten Ceff

1313 und Ceff
2323 in Tab. 5-19 beschreiben das Schubverhalten des Ver-

bundwerkstoffes längs zur Faserrichtung. Zusätzlich zu den eigenen Ergebnissen sind Ver-
gleichsergebnisse aus [34] („G&N“) und [83] („AHM“) angegeben. Im Unterschied zu den
Koeffizienten aus Tab. 5-18 stimmen die berechneten Ergebnisse auch für höhere Faservo-
lumenanteile (vf = 0.5) sehr gut mit den Vergleichsergebnissen überein.

Tabelle 5-19: Normierte effektive Elastizitätskoeffizienten bei einer
RUC-Querschnittsgeometrie in Parallelogrammform, verwendetes Koordinatensystem {y1, y2, y3}

w/b vf Ceff
1313/G

m Ceff
2323/G

m

G&N AHM FEM G&N AHM FEM
1.1 0.3 1.87 1.8657 1.8657 1.81 1.811 1.8109

0.5 3.11 3.1088 3.1088 2.81 2.8088 2.8087
1.25 0.3 1.92 1.9245 1.9245 1.77 1.7674 1.7674
1.4 0.3 2.00 1.9998 1.9998 1.72 1.7252 1.7252

Es lässt sich zusammenfassen, dass die Elastizitätskoeffizienten der Berechnungsmodelle
mit den unterschiedlichen RUC-Querschnitten im Großen und Ganzen eine gute Über-
einstimmung mit den Vergleichsergebnissen aufweisen. Diese Übereinstimmung mit den
Homogenisierungsmethoden aus der Literatur zeigt, dass sich die entwickelten Berech-
nungsmodelle für die Bestimmung der effektiven Elastizitätskoeffizienten eignen.

Weitere Untersuchungen

Wie schon vorher erwähnt wurde, wird im Fall des parallelogrammförmigen RUC-
Querschnitts die Faseranordnung über das Kantenlängenverhältnis w/b und den Winkel
α gesteuert. Die nachfolgenden Betrachtungen haben das Ziel, den Einfluss des Kanten-
längenverhältnisses und des Winkels auf die effektiven Elastizitätskoeffizienten näher zu
untersuchen. Dies wird anhand ausgewählter Koeffizienten veranschaulicht.
Für die Untersuchungen werden die Materialphasen der Matrix und der Faser als isotrop
angenommen. Die Eigenschaften der Phasen sind durch das Schubmodulverhältnis

Gf

Gm = 120 , (5-10)
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und die Querkontraktionszahlen νf = 0.2 beziehungsweise νm = 0.35 gegeben (Gm wird 1
gewählt). Der Faservolumenanteil wird auf vf = 0.3 festgelegt.
In den Abb. 5-27 bis 5-30 sind ausgewählte Elastizitätskoeffizienten in Abhängigkeit vom
Winkel α und dem Kantenlängenverhältnis w/b dargestellt. Der Winkel variiert von 50◦

bis 90◦ und das Kantenlängenverhältnis beträgt 1.0, 1.1 beziehungsweise 1.2.
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Abbildung 5-27: Normierte effektive Koeffizienten Ceff
1111/G

m und Ceff
2222/G

m in Abhängigkeit
von α und w/b, verwendetes Koordinatensystem {y1, y2, y3}, vf = 0.3
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Abbildung 5-28: Normierte effektive Koeffizienten Ceff
1111/G

m und Ceff
2222/G

m in Abhängigkeit
von α und w/b, verwendetes Koordinatensystem {y1, y2, y3}, vf = 0.3
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Bei einem Kantenlangenverhältnis von w/b = 1.0 und einem Winkel α = 60◦ beziehungs-
weise α = 90◦ ergibt sich ein hexagonales beziehungsweise tetragonales Materialverhalten
des Verbundwerkstoffes. Die effektiven Koeffizienten Ceff

1111 und C
eff
2222 haben im numerischen

Sinn den gleichen Wert. Gleiches gilt für die anderen paarweise dargestellten Koeffizienten
(zum Beispiel Ceff

2323 und Ceff
1313). Die Koeffizienten Ceff

1211 und Ceff
1222 sind Null.
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Abbildung 5-29: Normierte effektive Koeffizienten Ceff
1111/G

m und Ceff
2222/G

m in Abhängigkeit
von α und w/b, verwendetes Koordinatensystem {y1, y2, y3}, vf = 0.3

50 60 70 80 90
-0.15

-0.1

-0.05

0

0.05

0.1

α

C
ef

f
ijk

k/G
m

 

 

ijkk=1211, w/b=1.0
ijkk=1211, w/b=1.1
ijkk=1211, w/b=1.2
ijkk=1222, w/b=1.0
ijkk=1222, w/b=1.1
ijkk=1222, w/b=1.2

Abbildung 5-30: Normierte effektive Koeffizienten Ceff
1211/G

m und Ceff
1222/G

m in Abhängigkeit
von α und w/b, verwendetes Koordinatensystem {y1, y2, y3}, vf = 0.3
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Die Veränderung des Kantenlängenverhältnisses wirkt sich unterschiedlich auf die effekti-
ven Koeffizienten aus. Die Werte einiger Koeffizienten (Ceff

1111, C
eff
1133) werden größer, wäh-

rend andere kleiner werden (Ceff
2233, C

eff
2323). Die Hauptursache dafür liegt in dem veränderten

Faserabstand. Eine weitere Ursache ist, dass mit einem größer werdenden Kantenlängenver-
hältnis das Faservolumen in der RUC steigt, da der Faservolumenanteil (vf = 0.3) konstant
gehalten wird. Der Volumenanstieg in Kombination mit dem veränderten Faserabstand be-
einflusst die elastische Interaktion zwischen benachbarten RUCs in y1- und y2-Richtung.
Der Einfluss der Interaktion ist dabei zurückzuführen auf die verwendeten periodischen
Randbedingungen, die die Stetigkeit der Spannungen und Verschiebungen am gemeinsa-
men Rand benachbarter Zellen gewährleisten. All das lässt sich am Beispiel der RUC mit
Rechteckquerschnitt (α = 90◦) näher verdeutlichen. Die Fasern liegen hier in y1- und y2-
Richtung auf einer Linie. Mit einem größer werdenden Kantenlängenverhältnis nimmt der
Faserabstand zwischen benachbarten RUCs in y1-Richtung ab und in y2-Richtung zu. Das
bedeutet, dass die Erhöhung des Kantenlängenverhältnisses in der Regel zu einem aniso-
troperen Materialverhalten des Verbundwerkstoffes führt.
Wie bereits erwähnt wurde, haben die Koeffizienten Ceff

1111 und Ceff
2222 aus Abb. 5-27 bei

w/b = 1.0, α = 60◦ den gleichen Wert. Die Gleichheit der Koeffizienten lässt sich auch
bei den Kantenlängenverhältnissen w/b = 1.1 und w/b = 1.2 wiederfinden, jedoch zu
bestimmten Winkeln α 
= 60◦. Für die paarweise dargestellten Koeffizienten der ande-
ren Abbildungen lässt sich Ähnliches beobachten. Dies ist damit zu erklären, dass sich
zu diesen Winkelkonfigurationen Faseranordnungen ergeben, bei denen man anstelle des
Parallelogramm-Querschnitts einen Rechteck-Querschnitt wählen kann (siehe Abb. 5-31).
Infolge der neuen Geometrie der RUC und dessen Symmetrieebenen ergibt sich, dass das
effektive Materialverhalten im Allgemeinen orthotrop ist. Die Übereinstimmung in den
Koeffizientenwerten aus Abb. 5-27, 5-28 und 5-29 kann dem rechten RUC-Querschnitt aus
Abb. 5-31 zugeordnet werden. Bei Verwendung des linken RUC-Querschnitts aus Abb. 5-31
werden die Koeffizienten Ceff

1211 und Ceff
1222 (siehe Abb. 5-30) zu Null.

2

1

2

1

Abbildung 5-31: RUC-Querschnitte mit speziellen Winkelvorgaben α bei einem
Kantenlängenverhältnis von w/b = 1.1, links: α > 60◦, rechts: α < 60◦

5.1.4 Parallelogrammförmiger RUC-Querschnitt mit imperfektem
Phasenübergang

Dieser Teilabschnitt beschäftigt sich mit unidirektionalen elastischen Faserverbundstruk-
turen, die durch eine RUC mit einem Parallelogramm-Querschnitt repräsentiert werden.
Im Unterschied zum vorherigen Teilabschnitt wird der Kontakt zwischen der Faser- und
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Matrixphase durch einen imperfekten Phasenübergang beschrieben.
Ziel dieses Teilabschnittes ist es, die veränderten Berechnungsmodelle zu validieren.
Zur Bestimmung der effektiven Materialeigenschaften werden wie in Teilabschnitt 5.1.3
RUC-Querschnitte berücksichtigt, bei denen die Kante b Einheitslänge hat (siehe Abb.
3-10).
Für die FE-Modellierung der Phasen werden lineare Hexaeder- und Pentaeder-Elemente
(Polynomgrad 1) verwendet. Die imperfekte Phasenübergangsbeschreibung wird durch Fe-
derelemente realisiert (siehe Abschnitt 4.4).

Validierung der Berechnungsmodelle

Die Validierung der Berechnungsmodelle erfolgt anhand bereits betrachteter Modelle. Als
Vergleichsmodelle dienen die Berechnungsmodelle aus dem Teilabschnitt 5.1.2. Die ver-
wendeten RUC-Querschnitte in den Vergleichsmodellen und in den aktuellen Berechnungs-
modellen sind der Abb. 5-32 zu entnehmen. Mit den beiden Modellvarianten lassen sich
effektive Elastizitätskoeffizienten von Verbundwerkstoffen mit einer rhombischen Faseran-
ordnung berechnen. Für die verschiedenen Berechnungsmodelle werden unterschiedliche
Koordinatensysteme verwendet. Daraus entstehen Vorteile in der Realisierung der peri-
odischen Randbedingungen. Im Fall des RUC-Querschnitts aus der Parallelogrammbe-
schreibung wird das globale Koordinatensystem {y1, y2, y3} genutzt, während im anderen
Fall das lokale Koordinatensystem {y′1, y′2, y′3} verwendet wird. Es werden die effektiven
Elastizitätskoeffizienten der Modelle berechnet, auf ein gemeinsames Koordinatensystem
transformiert und anschließend miteinander verglichen.
Für die Validierung werden die Materialphasen aus der Tab. 5-8 verwendet. Die Faserver-
teilung wird durch den Winkel α = 45◦ beschrieben. Der Faservolumenanteil beträgt 0.4.
Die verwendete imperfekte Phasenübergangsbeschreibung in den beiden Modellvarianten
wird durch Gi (variierbar), ν i = 0.3 und η = 0.001 charakterisiert.

1

2

2'
1'

Abbildung 5-32: Darstellung der RUC-Querschnitte und die jeweils betrachteten
Koordinatensysteme, links: RUC-Querschnitt aus der Parallelogrammbeschreibung (w/b = 1.0),

rechts: RUC-Querschnitt aus Abschnitt 5.1.2

In Abb. 5-33 sind exemplarisch normierte effektive Elastizitätskoeffizienten in Abhängigkeit
von log10(G

i/Gm) präsentiert. Dies sind Ceff
1111/G

m, Ceff
2222/G

m, Ceff
2323/G

m und Ceff
1313/G

m. Die
Koeffizienten der verschiedenen Modellvarianten sind mit „Para“ (linker RUC-Querschnitt
in Abb. 5-32) und „Rect“ (rechter RUC-Querschnitt in Abb. 5-32) gekennzeichnet. Für die
Darstellung der Koeffizienten wurde das lokale Koordinatensystem {y′1, y′2, y′3} verwendet.
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Man erkennt über den gesamten Bereich von log10(G
i/Gm) eine sehr gute Übereinstimmung

der effektiven Koeffizienten.
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Abbildung 5-33: Normierte effektive Koeffizienten Ceff
iiii/G

m und Ceff
ijij/G

m, verwendetes
Koordinatensystem {y′1, y′2, y′3}, η = 0.001, vf = 0.4, α = 45◦

Eine sehr gute Übereinstimmung ist auch bei einer Variation des Winkels zu erkennen
(siehe Abb. 5-34). Für den imperfekten Phasenübergang wurden die Werte Gi = 10 GPa,
ν i = 0.3 und η = 0.001 verwendet.
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Abbildung 5-34: Normierte effektive Koeffizienten Ceff
iiii/G
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Es lässt sich zusammenfassen, dass die Berechnungsmodelle aus diesem Teilabschnitt in der
Lage sind, die Betrachtungen aus allen vorherigen Teilabschnitten des Kapitels abzudecken.
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5.2 Piezoelektrische unidirektionale
Faserverbundstrukturen

Dieser Abschnitt beschäftigt sich mit der Berechnung und der Bewertung von effektiven
Materialeigenschaften piezoelektrischer Verbundwerkstoffe. Dabei wird der Einfluss der
Faserverteilung und der Einfluss des Phasenübergangs auf die effektiven Materialeigen-
schaften untersucht. Wie im elastischen Fall wird die Faserverteilung über geometrische
Größen der RUC gesteuert. Für den in dieser Arbeit allgemeinsten Fall der periodischen
Faserverteilung (Parallelogramm-Querschnitt) sind das der Winkel α und die Kantenlän-
gen des RUC-Querschnitts. Der Phasenübergang wird durch die Angabe eines perfekten
beziehungsweise imperfekten Phasenübergangs beschrieben.
Im Abschnitt 3.5 sind die wichtigsten Grundlagen hinsichtlich der theoretischen Betrach-
tung festgehalten. Da für die Untersuchung das numerische Verfahren der FEM verwendet
wird, sind im Kapitel 4 wichtige Informationen hinsichtlich der Modellierung und der Be-
rechnung von Untersuchungsergebnissen festgehalten.

5.2.1 Rhombischer RUC-Querschnitt mit perfektem
Phasenübergang

Im Abschnitt 5.1.1 wurden Berechnungsmodelle für unidirektionale elastische Verbund-
werkstoffe, die durch einen rhombischen RUC-Querschnitt und einen perfekten Phasen-
übergang charakterisiert werden, behandelt. Diese Berechnungsmodelle werden so verän-
dert, dass sich effektive Materialeigenschaften von piezoelektrischen Faserverbundwerkstof-
fen berechnen lassen. Ziel dieses Teilabschnittes ist es, den Einfluss der Winkelvariation
und somit der Faserverteilung und den Einfluss des Faservolumenanteils auf das effektive
Materialverhalten zu untersuchen.
Zuerst werden die Berechnungsmodelle validiert. Dies geschieht durch einen Vergleich der
berechneten effektiven Materialeigenschaften mit Ergebnissen aus vorhandener Literatur.
Im Anschluss daran wird untersucht, wie sich eine Variation des Faservolumenanteils und
der Faseranordnung auf die effektiven Koeffizienten auswirkt.
Die RUC-Geometrie wird mit Hexaeder- und Pentaeder-Elementen vom Polynomgrad 2
diskretisiert. Infolge der piezoelektrischen Modellierung werden für die Berechnung der ef-
fektiven Koeffizienten die Randbedingungen aus Gl. (3-107) bis (3-115) verwendet. Des
Weiteren werden die drei Verschiebungsfreiheitsgrade und der elektrische Freiheitsgrad im
Querschnittsmittelpunkt einer der beiden Faserrandflächen der zentrierten Faser zu Null
gesetzt.

Validierung der Berechnungsmodelle

Für die Validierung der Berechnungsmodelle wird auf eine Beschreibung eines Kompo-
sitwerkstoffes aus [78] zurückgegriffen. In Tab. 5-20 sind die Materialeigenschaften der
Phasen, der Matrix (Epoxidharz) und der Fasern (PZT-5), festgehalten. Die elastischen
Eigenschaften der Fasern spiegeln dabei ein isotropes Materialverhalten wider, während
die piezoelektrischen und dielektrischen ein transversal isotropes Verhalten charakterisie-
ren. Das Materialverhalten der Matrix ist isotrop. Die Fasern sind unidirektional in einer
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hexagonalen Anordnung (α = 60◦) in die Matrix eingebettet. Zwischen Faser und Matrix
existiert ein perfekter Phasenübergang. Der Faservolumenanteil beträgt 0.5.

Tabelle 5-20: Materialdaten der Phasen des betrachteten Kompositwerkstoffes aus [78]

Phase
E

ν
e311 e333 e223 κ11 κ33

[GPa] [C/m2] [C/m2] [C/m2] 10−9[C2/(Nm2)] 10−9[C2/(Nm2)]
Faser 87 0.34 -2.1 9.5 9.2 4.071 2.079
Matrix 3 0.33 0 0 0 0.079 0.079

In Tab. 5-21 und 5-22 sind ausgewählte effektive Koeffizienten (gekennzeichnet mit „FEM“)
und Vergleichsergebnisse aus [78] (gekennzeichnet mit „Pastor“) aufgelistet. Die erste Tabel-
le beinhaltet die elastischen Eigenschaften. Die zweite Tabelle enthält die piezoelektrischen
und dielektrischen Eigenschaften. Das effektive Materialverhalten ist transversal isotrop.
Da in diesem Fall Ceff

1111 = Ceff
2222, C

eff
1133 = Ceff

2233, C
eff
2323 = Ceff

1313, e
eff
311 = eeff322, e

eff
223 = eeff113 und

κeff11 = κeff22 gilt, enthalten die Tabellen alle von Null verschiedenen effektiven Koeffizienten.

Tabelle 5-21: Effektive elastische Materialeigenschaften sowie Vergleichsergebnisse aus [78]

Ceff
1111 Ceff

1122 Ceff
1133 Ceff

3333 Ceff
2323 Ceff

1212

[GPa] [GPa] [GPa] [GPa] [GPa] [GPa]
FEM 10.2710 4.5236 4.9661 48.3341 3.2047 2.8738
Pastor 10.4017 4.4771 4.9952 48.3542 3.2466 2.9623

Tabelle 5-22: Effektive piezoelektrische Materialeigenschaften sowie Vergleichsergebnisse aus
[78]

eeff311 eeff333 eeff223 κeff11 κeff33
[C/m2] [C/m2] [C/m2] 10−9[C2/(Nm2)] 10−9[C2/(Nm2)]

FEM -0.0873 5.4053 0.0276 0.2299 1.0996
Pastor -0.0882 5.4047 0.0287 0.2330 1.0996

Bei dem Vergleich der gelisteten Werte erkennt man, dass sie nahe beieinander liegen.
Da in [78] für die Berechnung der Koeffizienten auch die FEM verwendet wird, liegt die
Vermutung nahe, dass die Diskrepanz in den Werten zum Teil aus der FE-Diskretisierung
resultiert. Die FE-Diskretisierung der RUC aus [78] ist gröber als die Diskretisierung der
RUC in dieser Arbeit. Der hexagonale RUC-Querschnitt aus der Literatur ist in 192 Ele-
mente unterteilt, der RUC-Querschnitt in dieser Arbeit in 4784 Elemente. Hinzu kommt,
dass in [78] lineare Elemente anstelle von quadratischen verwendet werden.
Nichtdestotrotz kann festgestellt werden, dass sich die entwickelten Modelle für die Be-
rechnung der effektiven Eigenschaften eignen.

Weitere Untersuchungen

Nach der Validierung der Berechnungsmodelle soll im Folgenden der Einfluss der Faser-
verteilung auf die effektiven Eigenschaften untersucht werden. Dabei wird wie in den vor-
angegangenen Abschnitten die Faserverteilung über die Veränderung des Winkels α (siehe
dazu Abb. 5-7) gesteuert.
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Für die Untersuchung werden die Materialdaten aus Tab. 5-20 verwendet. Um den Ein-
fluss des Faservolumenanteils auf die effektiven Koeffizienten mitzuberücksichtigen, werden
exemplarisch die Volumenanteile vf = 0.3 und vf = 0.5 genutzt.
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Abbildung 5-35: Effektive Elastizitätskoeffizienten in Abhängigkeit von α, verwendetes
Koordinatensystem {y′1, y′2, y′3}, vf = 0.3 und vf = 0.5
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Abbildung 5-36: Effektive Elastizitätskoeffizienten in Abhängigkeit von α, verwendetes
Koordinatensystem {y′1, y′2, y′3}, vf = 0.3 und vf = 0.5

In Abb. 5-35 bis 5-40 sind exemplarisch ausgewählte effektive Werkstoffeigenschaften dar-
gestellt. Diese Eigenschaften beziehen sich auf das Materialverhalten in Faserlängsrichtung
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und quer dazu. Im Allgemeinen lässt sich das effektive Verhalten in den lokalen Koordina-
ten {y′1, y′2, y′3} durch die folgende Matrix ausdrücken

C
eff
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ 0 0 0 0 0 ∗
∗ ∗ ∗ 0 0 0 0 0 ∗
∗ ∗ ∗ 0 0 0 0 0 ∗
0 0 0 ∗ 0 0 0 0 0
0 0 0 0 ∗ 0 0 ∗ 0
0 0 0 0 0 ∗ ∗ 0 0
0 0 0 0 0 ∗ ∗ 0 0
0 0 0 0 ∗ 0 0 ∗ 0
∗ ∗ ∗ 0 0 0 0 0 ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5-11)

die die materialbeschreibende effektive Matrix in M-V-Notation für piezoelektrische Kom-
positwerkstoffe aus Gl. (3-91) widerspiegelt. Mit „ ∗ “ sind in der Matrix effektive Kompo-
nenten gekennzeichnet, die von Null verschieden sind. Für den Fall, dass die Matrix auf
das globale Koordinatensystem bezogen wird, ergibt sich

C
eff
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ 0 0 0 0 ∗
∗ ∗ ∗ ∗ 0 0 0 0 ∗
∗ ∗ ∗ ∗ 0 0 0 0 ∗
∗ ∗ ∗ ∗ 0 0 0 0 ∗
0 0 0 0 ∗ ∗ ∗ ∗ 0
0 0 0 0 ∗ ∗ ∗ ∗ 0
0 0 0 0 ∗ ∗ ∗ ∗ 0
0 0 0 0 ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ 0 0 0 0 ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5-12)
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Abbildung 5-37: Effektive Elastizitätskoeffizienten in Abhängigkeit von α, verwendetes
Koordinatensystem {y′1, y′2, y′3}, vf = 0.3 und vf = 0.5
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Abbildung 5-38: Effektive Elastizitätskoeffizienten in Abhängigkeit von α, verwendetes
Koordinatensystem {y′1, y′2, y′3}, vf = 0.3 und vf = 0.5
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Abbildung 5-39: Effektive Elastizitätskoeffizienten in Abhängigkeit von α, verwendetes
Koordinatensystem {y′1, y′2, y′3}, vf = 0.3 und vf = 0.5

Die in den Abbildungen paarweise dargestellten effektiven Koeffizienten weisen für α = 60◦

und für α = 90◦ im numerischen Sinn gleiche Werte auf. Eine Erhöhung des Faservolumen-
anteils bewirkt eine Erhöhung der effektiven Elastizitätskoeffizienten und der dielektrischen
Koeffizienten. Die Werte der piezoelektrischen Koeffizienten werden größer (im Fall von
eeffijk) beziehungsweise kleiner (im Fall von eeffijj). Ebenso ist erkennbar, dass die anisotrope
Ausprägung der Koeffizienten mit einem zunehmenden Volumenanteil der Faser stärker
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zur Geltung kommt. Wie bei der elastischen Betrachtung aus Abschnitt 5.1.1 zeigen sich
bei sehr kleinen Winkeln die größten Wertunterschiede in den paarweise auftretenden Ko-
effizienten.
Wie groß der Einfluss der Faseranordnung auf das effektive Materialverhalten ist, verdeut-
lichen die Tab. 5-23 und 5-24. Die hier aufgelisteten Werte im Fall von vf = 0.5 spiegeln die
prozentuale Abweichung des Minimalwertes zum Maximalwert eines effektiven Koeffizien-
ten wider. Der Minimal- und Maximalwert wird aus einem Vergleich der Koeffizientenwerte
für alle Winkelkonfigurationen bestimmt. Für die Berechnung der Abweichung wird die
Formel in Gl. (5-6) verwendet. Für die meisten Koeffizienten lässt sich eine deutliche Ab-
weichung feststellen. Selbst bei einer Einschränkung auf 60◦ ≤ α ≤ 90◦ ist im Fall einiger
Koeffizienten ein noch ausgeprägter Einfluss der Faserverteilung zu erkennen.

Tabelle 5-23: Prozentuale Abweichung des Minimalwertes zum Maximalwert für ausgewählte
Koeffizienten, vf = 0.5

Ceff
1111 Ceff

2222 Ceff
2323 Ceff

1212 eeff311 eeff322 eeff223 κeff11 κeff22
7.2 % 40.5 % 39.5 % 34.9 % 26.2 % 69.1 % 78.0 % 21.9 % 41.8 %

Tabelle 5-24: Prozentuale Abweichung des Minimalwertes zum Maximalwert für ausgewählte
Koeffizienten bei einer Einschränkung des Winkels auf 60◦ ≤ α ≤ 90◦, vf = 0.5

Ceff
1111 Ceff

2222 Ceff
2323 Ceff

1212 eeff311 eeff322 eeff223 κeff11 κeff22
4.2 % 5.5 % 4.6 % 22.7 % 3.8 % 4.0 % 15.0 % 4.7 % 4.9 %
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Abbildung 5-40: Effektive Elastizitätskoeffizienten in Abhängigkeit von α, verwendetes
Koordinatensystem {y′1, y′2, y′3}, vf = 0.3 und vf = 0.5

Es gibt effektive Koeffizienten, die nahezu unabhängig vomWinkel α und somit unabhängig
von der Faseranordnung sind. Zu diesen gehören die Koeffizienten eeff333, κ

eff
33 und C

eff
3333 (siehe

Abb. 5-41). Die Ursache dafür ist die unidirektionale Anordnung der Fasern.
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Abbildung 5-41: Effektive Koeffizienten eeff333 und κ
eff
33 in Abhängigkeit von α, verwendetes

Koordinatensystem {y′1, y′2, y′3}, vf = 0.3 und vf = 0.5

5.2.2 Parallelogrammförmiger RUC-Querschnitt mit perfektem
Phasenübergang

In diesem Teilabschnitt werden Berechnungsmodelle für piezoelektrische Verbundwerkstof-
fe behandelt, deren Faserverteilung durch eine RUC mit einem parallelogrammförmigen
Querschnitt repräsentiert wird. Der Phasenkontakt zwischen Matrix und Faser wird als
perfekt angenommen. Wie bereits aus dem Teilabschnitt 5.1.3 bekannt ist, wird die Faser-
verteilung über den Winkel α und das Kantenlängenverhältnis des RUC-Querschnitt w/b
gesteuert. Das erste Ziel dieses Teilabschnittes ist die Validierung der Berechnungsmodelle.
Im Anschluss daran wird der Einfluss des Winkels und des Kantenlängenverhältnisses auf
die effektiven Werkstoffeigenschaften untersucht.
Für die FE-Diskretisierung werden quadratische Hexaeder- und Pentaeder-Elemente (Poly-
nomgrad 2) genutzt. Die verwendeten Randbedingungen für die Berechnung der effektiven
Materialeigenschaften sind in Abschnitt 3.5 näher erläutert.

Validierung der Berechnungsmodelle

Die Validierung der Berechnungsmodelle erfolgt anhand bereits behandelter Modelle aus
dem Teilabschnitt 5.2.1. Dazu werden die berechneten effektiven Materialeigenschaften der
verschiedenen Modelle miteinander verglichen. Dabei ist es ausreichend, den Vergleich auf
ausgewählte effektive Koeffizienten zu beschränken. In Abb. 5-32 sind die Querschnitte der
RUCs der zwei Modellvarianten dargestellt. Da in den Berechnungsmodellen unterschied-
liche Koordinatensysteme verwendet werden, ist eine Koordinatentransformation der be-
rechneten effektiven Koeffizienten erforderlich.
Für die Validierung werden die Phaseneigenschaften aus der Tab. 5-20 verwendet. Der
Faservolumenanteil ist auf vf = 0.3 festgelegt.
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Abbildung 5-42: Effektive Elastizitätskoeffizienten in Abhängigkeit von α, verwendetes
Koordinatensystem {y′1, y′2, y′3}, vf = 0.3

In Abb. 5-42 und 5-43 sind die effektiven Koeffizienten der zwei Modellvarianten in Ab-
hängigkeit des Winkels α dargestellt. Es ist unabhängig von der Faseranordnung eine gute
Übereinstimmung für alle Koeffizienten erkennbar.
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Abbildung 5-43: Effektive piezoelektrische und dielektrische Koeffizienten in Abhängigkeit von
α, verwendetes Koordinatensystem {y′1, y′2, y′3}, vf = 0.3

Daraus lässt sich schlussfolgern, dass sich die Berechnungsmodelle auf Basis der RUC mit
dem parallelogrammförmigen Querschnitt zum Berechnen der effektiven Werkstoffeigen-
schaften eignen.

Weitere Untersuchungen

Unter Verwendung der validierten Berechnungsmodelle wird nachfolgend der Einfluss der
Faseranordnung auf die effektiven Koeffizienten untersucht. Wie bereits bekannt, lässt sich
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die Faseranordnung über den Winkel α und das Kantenlängenverhältnis w/b des RUC-
Querschnitts steuern. Die verwendeten Phasen für die Beschreibung des Kompositwerk-
stoffes sind die gleichen wie bei der Validierung (Tab. 5-20). Der Winkel α variiert von 50◦

bis 90◦. Das Kantenlängenverhältnis w/b nimmt Werte von 1.0, 1.1 oder 1.2 an.
Im Allgemeinen lässt sich das effektive Materialverhalten, bezogen auf das Koordinaten-
system {y1, y2, y3}, durch die folgende Matrix in M-V-Notation beschreiben

C
eff
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ 0 0 0 0 ∗
∗ ∗ ∗ ∗ 0 0 0 0 ∗
∗ ∗ ∗ ∗ 0 0 0 0 ∗
∗ ∗ ∗ ∗ 0 0 0 0 ∗
0 0 0 0 ∗ ∗ ∗ ∗ 0
0 0 0 0 ∗ ∗ ∗ ∗ 0
0 0 0 0 ∗ ∗ ∗ ∗ 0
0 0 0 0 ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ 0 0 0 0 ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5-13)

wobei mit „ ∗ “ die Komponenten der Matrix gekennzeichnet sind, die nicht Null sind.
In Abb. 5-44 sind ausgewählte piezoelektrische und dielektrische Koeffizienten paarweise
dargestellt. Die effektiven Koeffizienten beschreiben das Verhalten des Kompositwerkstof-
fes quer zur Faserrichtung. Bei einem Kantenlängenverhältnis von 1.0 und einem Winkel
von 60◦ und 90◦ haben die paarweise dargestellten Koeffizienten im numerischen Sinn den
gleichen Wert. Gleiche Koeffizientenwerte lassen sich auch bei höheren Kantenlängenver-
hältnissen beobachten. Je höher das Verhältnis wird, desto kleiner ist der Winkel α, bei
dem sich die Gleichheit ergibt. Der größte Wertunterschied in den paarweise dargestellten
Koeffizienten tritt jeweils bei 90◦ und w/b = 1.2 ein.
Zusammenfassend lässt sich sagen, dass der Einfluss des Winkels und des Kantenlängen-
verhältnisses in Analogie zu dem elastischen Fall aus Teilabschnitt 5.1.1 zu bewerten ist.
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Abbildung 5-44: Effektive piezoelektrische und dielektrische Koeffizienten in Abhängigkeit von
α und w/b, verwendetes Koordinatensystem {y1, y2, y3}, vf = 0.3
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5.2.3 Parallelogrammförmiger RUC-Querschnitt mit imperfektem
Phasenübergang

Die Berechnungsmodelle aus dem vorherigen Teilabschnitt werden nun so verändert, dass
anstelle des perfekten Phasenübergangs ein imperfekter Phasenübergang verwendet wird.
Der imperfekte Übergang wird durch die Beziehungen in der Gl. (3-120) und (3-121) be-
schrieben. In [84] wurde der Einfluss eines abgewandelten imperfekten Phasenübergangs
für unidirektionale piezoelektrische Faserverbundwerkstoffe behandelt. Anstelle der elektri-
schen Beziehung in Gl. (3-120) wurde ein elektrisch perfekter Übergang verwendet. Zusätz-
lich wurde kein Bezug zu einer isotropen Zwischenphasenmodellierung hergestellt, wodurch
zwischen den Parametern Kε

i , i = r, θ, z keine Abhängigkeit bestand. Daher konnte der
Einfluss von jedem Kε

i auf die effektiven Koeffizienten separat untersucht werden.
Das Ziel dieses Teilabschnittes ist es, den Einfluss des imperfekten Phasenübergangs nach
Gl. (3-120) und (3-121) auf die effektiven Koeffizienten zu untersuchen.
Die Beziehung aus Gl. (3-121) verknüpft die Parameter der imperfekten Phasenübergangs-
beschreibung Kε

i , i = r, θ, z,Kε
E mit den Materialeigenschaften einer sehr dünnen isotropen

nichtpiezoelektrischen Zwischenphase. Das ermöglicht es zusätzlich, die Berechnungsmo-
delle anhand von Drei-Phasen-Modellen zu validieren.
Für die FE-Diskretisierung werden lineare Hexaeder- und Pentaeder-Elemente (Polynom-
grad 1) verwendet. Der elastische Teil der imperfekten Phasenübergangsbeschreibung wird
durch Federelemente realisiert. Der elektrische Teil wird durch Kondensatorelemente simu-
liert (siehe Abschnitt 4.4).
Die für die Untersuchung verwendeten Phasen sind der Tab. 5-20 zu entnehmen. Die Fa-
seranordnung soll eine eher untergeordnete Rolle einnehmen. Daher werden das Kanten-
längenverhältnis des RUC-Querschnitts w/b und der Winkel α auf 1.0 beziehungsweise 60◦

festgelegt. Der Faservolumenanteil beträgt 0.4.
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Abbildung 5-45: Effektive Elastizitätskoeffizienten in Abhängigkeit von Gi/Gm, κi/κm = 1,
verwendetes Koordinatensystem {y1, y2, y3}

Für die Validierung der Berechnungsmodelle mit Drei-Phasen-Modellen werden noch In-
formationen hinsichtlich der Zwischenphase benötigt, welche auch in die Gl. (3-121) für
den imperfekten Phasenübergang einfließen. Die Dicke der Zwischenphase wird auf ein Tau-
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sendstel des Faserradius festgelegt. Die Querkontraktionszahl ν i wird mit 0.3 angenommen.
Der Schubmodul Gi und die dielektrische Konstante κi werden in der Untersuchung als va-
riierbare Größen behandelt.
In Abb. 5-45 und 5-46 sind ausgewählte elastische, piezoelektrische und dielektrische Koef-
fizienten dargestellt, die das effektive Materialverhalten des Kompositwerkstoffes bei einem
variierenden Schubmodul Gi und einer festen dielektrischen Konstante κi = κm beschrei-
ben. Die Abkürzung „Feder“ kennzeichnet die Koeffizienten der Berechnungsmodelle mit
dem imperfekten Phasenübergang. Die Koeffizienten der Drei-Phasen-Modelle sind durch
„3P“ gekennzeichnet.
In Abb. 5-45 sind die elastischen Koeffizienten zu betrachten. Es ist eine gute Übereinstim-
mung mit der Drei-Phasen-Modellierung zu erkennen. Ist der Zwischenphasenschubmodul
sehr viel größer (ab Gi/Gm = 3) als die der anderen Phasen des Kompositwerkstoffes, so ist
ein zunehmender Unterschied in den Werten der verschiedenen Modellierungen festzustel-
len. Das liegt daran, dass der Einfluss des Anteils der Zwischenphase auf die Berechnung
der makroskopischen Spannungen zunimmt. Die paarweise dargestellten Koeffizienten Ceff

1111

und Ceff
2222 weisen jeweils für beide Berechnungsmodellierungen den gleichen Wert auf, was

auf die hexagonale Faseranordnung zurückzuführen ist. Analoges lässt sich für Ceff
1313 und

Ceff
2323 sagen.
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Abbildung 5-46: Effektive piezoelektrische und dielektrische Koeffizienten in Abhängigkeit von
Gi/Gm, κi/κm = 1, verwendetes Koordinatensystem {y1, y2, y3}

In Abb. 5-46 sind die piezoelektrischen und dielektrischen Koeffizienten dargestellt. Auch
hier ist eine gute Übereinstimmung der Koeffizienten zu erkennen.
Die Veränderung des Zwischenphasenschubmoduls scheint sich unterschiedlich auf die je-
weiligen Koeffizienten auszuwirken. Der Zwischenphasenschubmodul beeinflusst die elasti-
schen und piezoelektrischen Koeffizienten stärker als die dielektrischen. Eingeschränkt auf
das Intervall −5 < log10(G

i/Gm) < 3 ist nur eine sehr kleine Veränderung in den dielektri-
schen Koeffizienten erkennbar. Des Weiteren zeigt sich, dass mit einem kleiner werdenden
Zwischenphasenschubmodul die piezoelektrischen Koeffizienten kleiner werden. Somit wird
das piezoelektrische Verhalten des Kompositwerkstoffes reduziert. Im Fall der Drei-Phasen-
Modellierung lässt sich dies damit erklären, dass ein im Vergleich zu den anderen beteiligten
Phasen kleinerer Schubmodul der Zwischenphase den elastischen Lasttransfer zwischen der
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Matrix und den Fasern infolge der aufgebrachten Randbedingungen reduziert. Somit wird
auch die Wirkung des piezoelektrischen Effektes der Fasern verringert. Im theoretischen
Grenzfall (log10(G

i/Gm)=-5) sind die piezoelektrischen Eigenschaften der Fasern nahezu
wirkungslos.
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Abbildung 5-47: Effektive Elastizitätskoeffizienten in Abhängigkeit von κi/κm, Gi/Gm = 1,
verwendetes Koordinatensystem {y1, y2, y3}
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Abbildung 5-48: Effektive piezoelektrische und dielektrische Koeffizienten in Abhängigkeit von
κi/κm, Gi/Gm = 1, verwendetes Koordinatensystem {y1, y2, y3}

In Abb. 5-47 und 5-48 sind ausgewählte elastische, piezoelektrische und dielektrische Ko-
effizienten dargestellt, die das effektive Materialverhalten des Kompositwerkstoffes bei ei-
ner variierenden dielektrischen Konstante κi und einem festen Zwischenphasenschubmo-
dul Gi = Gm beschreiben. Die elastischen Koeffizienten lassen sich aus der Abb. 5-47
entnehmen. Man kann eine sehr gute Übereinstimmung der paarweisen Koeffizienten der
unterschiedlichen Modellierungen erkennen. Des Weiteren entsprechen die Werte der Drei-
Phasenmodellierung in gewisser Näherung denen der imperfekten Modellierung. Eine Ver-
änderung der dielektrischen Konstante der Zwischenphase κi übt nahezu keinen Einfluss
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auf die elastischen Koeffizienten aus. Im Fall von Ceff
1313 und Ceff

2323 sind nur leichte Verän-
derungen erkennbar.
In Abb. 5-48 sind die piezoelektrischen und dielektrischen Koeffizienten dargestellt. Es
zeigt sich eine sehr gute Übereinstimmung der paarweise dargestellten Koeffizienten so-
wie eine gute Näherung der Koeffizienten der imperfekten Modellierung mit denen der
Drei-Phasen-Modellierung. Die Veränderung der dielektrischen Konstante κi hat keinen
erkennbaren Einfluss auf die dargestellten piezoelektrischen Koeffizienten. Im Fall der di-
elektrischen Koeffizienten ist jedoch ein deutlicher Einfluss von κi festzustellen.
Es gibt aber auch effektive Koeffizienten, die sowohl von Gi als auch von κi eine ausgeprägte
Abhängigkeit zeigen (siehe Abb. 5-49).
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Abbildung 5-49: Effektive Koeffizienten eeff223 und e
eff
113 in Abhängigkeit von G

i/Gm, κi/κm = 1
(linkes Bild) beziehungsweise in Abhängigkeit von κi/κm, Gi/Gm = 1 (rechtes Bild),

verwendetes Koordinatensystem {y1, y2, y3}

Tabelle 5-25: Prozentuale Abweichung ausgewählter effektiver Koeffizienten der imperfekten
Modellierung zu den Koeffizienten der Drei-Phasen-Modellierung, κi/κm = 1, vf = 0.4, die

verwendete Zwischenphasendicke beträgt ein Hundertstel des Faserradius

log10(G
i/Gm) Ceff

1111 Ceff
2323 eeff311 eeff223 κeff11

-2 0.03 % 0.15 % 3.66 % 3.44 % 1.81 %
-1 1.21 % 1.45 % 4.49 % 4.15 % 1.80 %
0 1.53 % 1.76 % 4.70 % 4.36 % 1.80 %
1 1.58 % 1.81 % 4.60 % 4.21 % 1.80 %

Wie im elastischen Fall weichen die effektiven Koeffizienten der imperfekten Modellierung
und der Drei-Phasen-Modellierung mit einer zunehmenden Zwischenphasendicke stärker
voneinander ab. In Tab. 5-25 sind im Fall einer Zwischenphasendicke von einem Hundertstel
des Faserradius für ausgewählte effektive Koeffizienten die prozentualen Abweichungen
präsentiert. Für die Berechnung der Abweichung wird die folgende Gleichung verwendet

diff4 =

∣∣P eff − P eff,ref
∣∣

|P eff,ref| 100% . (5-14)
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Als Referenzwerte P eff,ref werden die Koeffizienten der Drei-Phasen-Modellierung genutzt.
Bei einer Einschränkung des Zwischenphasenschubmoduls auf einen eher realistischen Wer-
tebereich von −2 < log10(G

i/Gm) < 1 zeigt sich, dass im Fall der piezoelektrischen Koeffi-
zienten die größten Abweichungen auftreten.
Es lässt sich zusammenfassen, dass die Ergebnisse der imperfekten Phasenübergangsmo-
dellierung über weite Strecken näherungsweise denen der Drei-Phasen-Modellierung mit
einer sehr dünnen isotropen nichtpiezoelektrischen Zwischenphase entsprechen. Die Ver-
änderung von Gi oder κi wirkt sich unterschiedlich auf die effektiven Koeffizienten aus.
Im Fall von Gi werden die elastischen und piezoelektrischen Koeffizienten erkennbar be-
einflusst, die dielektrischen Koeffizienten bleiben nahezu konstant. Bei der Variation von
κi bleiben die elastischen und einige piezoelektrischen Koeffizienten nahezu konstant. Die
dielektrischen Koeffizienten zeigen dagegen einen erkennbaren Einfluss. Die effektiven Ko-
effizienten (eeff223, e

eff
113) lassen sich sowohl von Gi als auch von κi beeinflussen. Mit einer

zunehmenden Zwischenphasedicke weichen die berechneten Koeffizienten der imperfekten
Modellierung und der Drei-Phasen-Modellierung deutlicher voneinander ab.
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6 Zusammenfassung und Ausblick

In dieser Arbeit wurden unter der Verwendung der FEM numerische Modelle zum Berech-
nen effektiver Materialeigenschaften von unidirektionalen Faserverbundwerkstoffen mit ei-
ner periodischen Mikrostruktur entwickelt. Die Berechnungsmodelle auf Basis einer RUC
sind in der Lage, verschiedene Faseranordnungen und Phasenübergänge zu simulieren und
deren Einfluss auf die effektiven Materialeigenschaften zu untersuchen. Die simulierbaren
Faseranordnungen lassen sich im Allgemeinen durch einen rhombischen oder einen paral-
lelogrammförmigen RUC-Querschnitt beschreiben. Die Verwendung des imperfekten Pha-
senübergangs, welcher auch als sehr dünne Zwischenphase interpretiert werden kann, bietet
die Möglichkeit der Wichtung des Lasttransfers zwischen der Matrix- und der Faserpha-
se. Diesbezüglich wurden im Rahmen der Doktorarbeit zu Validierungszwecken zusätzlich
Drei-Phasen-Modelle entwickelt.
Die numerischen Berechnungsmodelle wurden sowohl für eine elastische als auch eine pie-
zoelektrische Modellierung von Verbundwerkstoffen entwickelt. Durch die Verwendung von
dreidimensionalen RUCs in Kombination mit den jeweiligen periodischen Randbedingun-
gen lassen sich alle effektiven materialbeschreibenden Koeffizienten der betrachteten Werk-
stoffmodelle berechnen.
Es wurden Berechnungsmodelle für elastische Faserverbundwerkstoffe mit einer rhombi-
schen Faserverteilung und einem perfekten Phasenübergang entwickelt. Dies schließt auch
Verbundwerkstoffe mit einer hexagonalen und quadratischen Faseranordnung mit ein. Da-
zu wurde ein rechteckiger RUC-Querschnitt verwendet, da sich die Modellierung leichter
realisieren lässt. Zur Validierung der Berechnungsmodelle wurde auf analytische Metho-
den aus der Literatur zurückgegriffen. Es konnte eine gute Übereinstimmung der effektiven
Koeffizienten mit Vergleichsergebnissen anderer Berechnungsmethoden („Jiang“, „AHM“,
„EEVM“, „G&N“, CCA-Modell) gezeigt werden. Im Anschluss an die Validierung wurde
der Einfluss der Faserverteilung und des Faservolumenanteils auf die effektiven Koeffizien-
ten untersucht. Dazu wurden isotrope (Matrix) und transversal isotrope (Faser) Phasen
für die Beschreibung des Verbundwerkstoffes verwendet. Das effektive Materialverhalten
konnte im Allgemeinen als orthotrop charakterisiert werden. Es wurde festgestellt, dass
der Faservolumenanteil einen größeren Einfluss auf die effektiven Koeffizienten als die Fa-
serverteilung hat. Der Einfluss der Faserverteilung ist dennoch nicht zu vernachlässigen.
Infolge der Unidirektionalität der Fasern werden nicht alle Koeffizienten gleichermaßen
durch eine veränderte Faseranordnung beeinflusst. Ein Beispiel ist der Koeffizient Ceff

3333,
welcher nahezu konstant bleibt.
Für das Einbeziehen einer sehr dünnen isotropen Zwischenphase in die rein elastischen
Untersuchungen von Faserverbundwerkstoffen wurden die Berechnungsmodelle verändert.
Der bisherige perfekte Phasenübergang wurde durch den imperfekten Phasenübergang,
welcher durch unstetige Randverschiebungen charakterisiert wird, ersetzt. Im Rahmen der
FEM erfolgte die Modellierung des imperfekten Übergangs durch Federelemente, deren Fe-
dersteifigkeiten sich an den Materialeigenschaften der isotropen Zwischenphase orientieren.
Zur Validierung der Berechnungsmodelle wurden sowohl Drei-Phasen-Modelle analytischer
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Methoden aus der Literatur (CCA-Modell, GSCS) als auch eigens entwickelte Drei-Phasen-
Modelle (FEM) verwendet. Der Vergleich von effektiven Materialkonstanten anhand von
Modellbeispielen ergab generell eine gute Übereinstimmung. Es konnte festgestellt wer-
den, dass sich bei einer Einschränkung des Zwischenphasenschubmoduls auf einen realis-
tischen Bereich bis zu einer gewissen Zwischenphasendicke durch die imperfekte Phasen-
übergangsmodellierung eine Näherung an die Koeffizienten der Drei-Phasen-Modellierung
(CCA-Modell, FEM) erzielen lässt. Eine Untersuchung hinsichtlich des Einflusses des Ma-
terialunterschieds der Matrix- und der Faserphase ergab, dass ein zunehmender Unter-
schied in der Regel zu einer Verschlechterung in der Übereinstimmung der Ergebnisse der
Modellierungen führt. Zusätzlich ist zu erwähnen, dass durch die Festlegung sehr hoher
Federsteifigkeiten in den imperfekten Phasenübergangsmodellen ein nahezu perfekter Pha-
senübergang simuliert wird. Somit können die Modelle auch zur Berechnung effektiver
Eigenschaften von Kompositwerkstoffen, die sich aus zwei Phasen zusammensetzen und
einen perfekten Phasenübergang besitzen, verwendet werden.
Eine komplexere Faseranordnung als die rhombische konnte durch die Entwicklung von Be-
rechnungsmodellen auf Basis einer RUC mit einem parallelogrammförmigen Querschnitt
erreicht werden. Durch das Festlegen eines geeigneten Kantenlängenverhältnisses und Win-
kels des Querschnitts lassen sich auch rhombische und rechteckige Faseranordnungen simu-
lieren. Eine Validierung der Berechnungsmodelle erfolgte durch den Vergleich mit Metho-
den aus der Literatur („AHM“, „G&N“) anhand der berechneten effektiven Koeffizienten
von verschiedenen Modellbeispielen, die sich in Faseranordnung und Faservolumen von-
einander unterscheiden. Es konnte im Großen und Ganzen eine gute Übereinstimmung in
den Koeffizienten festgestellt werden. Anschließend wurde eine genauere Untersuchung des
Einflusses des parallelogrammförmigen RUC-Querschnitts auf die effektiven Koffizienten
durchgeführt. Es konnte festgestellt werden, dass im Fall eines parallelogrammförmigen
Querschnitts und einer isotropen Matrix- und Faserphase das effektive Materialverhal-
ten im Allgemeinen monoklin ist. Ein zunehmendes Kantenlängenverhältnis verstärkt zu-
sätzlich die anisotrope Ausrichtung der Elastizität des Verbundwerkstoffes. Des Weiteren
konnte gezeigt werden, dass sich im Fall ungleicher Kantenlängen neben der rechteckigen
(α = 90◦) noch weitere Faseranordnungen finden lassen, denen ein effektives orthotropes
Materialverhalten zugeordnet werden kann.
Die Berechnungsmodelle auf Basis einer RUC mit einem parallelogrammförmigen Quer-
schnitt wurden auf einen imperfekten Phasenübergang erweitert. Daraus ergibt sich der
Vorteil, dass alle Betrachtungen von Verbundwerkstoffen der zuvor entwickelten Modelle
durch diese Berechnungsmodelle simuliert werden können. Dies konnte durch einen Modell-
vergleich (rhombische Faseranordnung und imperfekter Phasenübergang), der gleichzeitig
zur Validierung genutzt wurde, anhand von berechneten effektiven Koeffizienten von Test-
beispielen untermauert werden.
Die entwickelten Berechnungsmodelle für piezoelektrische Verbundwerkstoffe mit einer
rhombischen Faseranordnungen und einem perfekten Phasenübergang basieren auf einer
RUC mit einem rechteckigen Querschnitt. Die Validierung der Modelle erfolgte anhand
eines Simulationsbeispiels eines Verbundwerkstoffes mit hexagonaler Faseranordnung aus
der Literatur. Nach der erfolgreichen Validierung wurde der Einfluss der Faseranordnung
auf die effektiven Koeffizienten untersucht. Analog zum elastischen Fall wurde festgestellt,
dass infolge der Veränderung der Faseranordnung ein Großteil der berechneten Koeffi-
zienten deutlichen Schwankungen unterliegen kann. Dies gilt speziell im Fall eines hohen
Faservolumenanteils und Materialunterschieds der Phasen. Dies zeigt, dass der Einfluss der
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Faseranordnung auf die effektiven Koeffizienten im Allgemeinen nicht zu unterschätzen ist.
Ausnahmen bilden die Koeffizienten Ceff

3333, e
eff
333, und κeff33, die aufgrund der Unidirektiona-

lität der Fasern konstant bleiben.
Die Entwicklung von piezoelektrischen Berechnungsmodellen auf Basis einer RUC mit ei-
nem parallelogramförmigen Querschnitt ermöglichte die Betrachtung komplexerer Faser-
anordnungen. Für die Validierung der Berechnungsmodelle wurden zuvor entwickelte Mo-
delle verwendet. Ein Vergleich der effektiven Koeffizienten für Modellbeispiele ergab eine
sehr gute Übereinstimmung. Anschließend wurde der Einfluss der Faseranordnung auf die
effektiven Koeffizienten untersucht. Dies sollte klären, inwieweit sich ein verändertes Kan-
tenlängenverhältnis und ein veränderter Winkel auf das Materialverhalten des Verbund-
werkstoffes auswirken. Es konnte festgestellt werden, dass das effektive Werkstoffverhalten
in Analogie zum elastischen Fall zu bewerten ist.
Das Einbeziehen einer sehr dünnen Zwischenphase, welche aus Gründen der einfacheren
Realisierung ein nicht-piezoelektrisches Materialverhalten aufweist, in die piezoelektrischen
Betrachtungen erfolgte über einen imperfekten Phasenübergang. Der Übergang ist durch
Unstetigkeiten in den Verschiebungen und in dem elektrischen Potential gekennzeichnet. Im
Rahmen der FEM wurden für die Realisierung des imperfekten Übergangs Federelemente
und Kondensatorelemente verwendet, wobei deren Federsteifigkeiten und deren elektrische
Kapazitäten sich an den Materialeigenschaften der Zwischenphase orientieren. Zum Va-
lidieren der Berechnungsmodelle wurden zusätzlich Drei-Phasen-Modelle entwickelt. Die
Validierung anhand von Modellbeispielen wurde gleichzeitig auch für Untersuchungen hin-
sichtlich des Einflusses der imperfekten Übergangsmodellierung genutzt. Es sollte überprüft
werden, wie sich unterschiedliche Federsteifigkeiten oder elektrische Kapazitäten auf das
effektive Materialverhalten auswirken. Es stellte sich heraus, dass durch die Veränderung
der Federsteifigkeiten die elastischen Koeffizienten deutlich stärker beeinflusst werden als
die dielektrischen. Diese bleiben nahezu konstant. Bei einer Veränderung der elektrischen
Kapazität konnte gerade ein umgekehrter Effekt beobachtet werden. Für die effektiven
piezoelektrischen Koeffizienten konnte festgestellt werden, dass eine Veränderung der Fe-
dersteifigkeit alle Koeffizienten, welche nicht Null sind, deutlich beeinflusst, während ei-
ne Veränderung der elektrischen Kapazität nur eine Wirkung auf gewisse Koeffizienten
zeigt. Einige Koeffizienten bleiben nahezu konstant. Der Vergleich mit einer Drei-Phasen-
Modellierung, wobei die Zwischenphase eine Dicke von einem Tausendstel des Faserradius
hatte, lieferte über weite Bereiche ähnliche Resultate. Ein Koeffizientenvergleich der Mo-
dellierungen im Fall einer Zunahme der Zwischenphasendicke ergab wie im elastischen Fall
eine Verschlechterung der Übereinstimmung. Die größte Abweichung trat bei den piezo-
elektrischen Koeffizienten auf.
Die in dieser Arbeit präsentierten numerischen Homogenisierungskonzepte auf Basis einer
RUC, welche einen parallelogrammförmigen Querschnitt aufweisen, stellen in Kombination
mit der imperfekten Phasenübergangsmodellierung und der Erweiterung auf piezoelektri-
sche Faserverbundwerkstoffe den Neuheitswert der vorliegenden Arbeit dar.

Ausblick

In zukünftigen Arbeiten kann das hier präsentierte numerische Homogenisierungskonzept
auf Basis einer RUC mit einem parallelogrammförmigen Querschnitt auch auf andere (pe-
riodische) Verbundstrukturen übertragen werden. Denkbar sind beispielsweise Verbund-
werkstoffe mit Partikeleinschlüssen. Darüber hinaus können weitere Untersuchungen zu
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einer komplexeren Partikelverteilung durchgeführt werden. Hierfür kann die Verteilung
durch eine RUC in Form eines allgemeinen Parallelepipeds beschrieben werden. Für die
Geometriebeschreibung können drei Kantenlängen und drei Winkel verwendet werden.
Im Rahmen der numerischen Phasenübergangsformulierung werden in dieser Arbeit im
elastischen Fall Federelemente verwendet, die Faserknoten und Matrixknoten koppeln. In
nachfolgenden Arbeiten kann die Entwicklung anderer Strategien zur Realisierung des im-
perfekten Phasenübergangs unter Verwendung der FEM in Betracht gezogen werden.
Die in dieser Arbeit verwendete numerische Modellierung eines imperfekten Übergangs
kann aus pragmatischer Sicht durch eine geeignete Modifizierung der Übergangsbedingun-
gen im elastischen Fall auch dazu verwendet werden, ein approximatives Kohäsivzonenmo-
dell zu entwickeln. In Verbindung mit einem RVE oder einer RUC ließe sich so ein Einstieg
in Untersuchungen zur Rissbildung und zum Rissfortschritt in Verbundwerkstoffen ermög-
lichen.
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A Verallgemeinertes
Selbstkonsistenzschema

Für die Darstellung der 12×12-Matrix L aus dem Abschnitt 3.2.2 werden zuerst die fol-
genden Abkürzungen eingeführt

χ0 = 1− 2ν0, χm = 1− 2νm, χi = 1− 2ν i, χf = 1− 2νf . (A-1)

Somit hat L folgende Gestalt

L =

⎛
⎝ L0m 04×4 04×2

04×2 Lmi 04×2

04×2 04×4 Lif

⎞
⎠ , (A-2)

wobei

L0m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1

(rm)2
− 1

(rm)4
(rm)2

− χ0

(1 + χ0)(rm)2
1

(rm)4
(2 + χm)(rm)2

1− χm

2G0

(1 + χ0)Gm(rm)2
3G0

Gm(rm)4
0

− G0

(1 + χ0)Gm(rm)2
− 3G0

Gm(rm)4
3(rm)2

1− χm

1
1

(rm)2
1

(rm)4

1
χm

(1 + χm)(rm)2
− 1

(rm)4

1 − 2

(1 + χm)(rm)2
− 3

(rm)4

1
1

(1 + χm)(rm)2
3

(rm)4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A-3)
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Lmi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(ri)3 −ri − 1

ri
− 1

(ri)3
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, (A-4)

Lif =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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1
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1
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⎞
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. (A-5)

Die restlichen Teilmatrizen 02×4 und 04×4 sind 2×4- beziehungsweise 4×4-Matrizen mit
NULL-Einträgen.
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B Untersuchungen zur FE-Netzfeinheit

Dieser Abschnitt dient dazu, den Einfluss der FE-Netzfeinheit für die entwickelten Be-
rechnungsmodelle etwas näher zu untersuchen. Für die FE-Diskretisierung der Berech-
nungsmodelle werden lineare und quadratische finite Elemente verwendet. Modelle mit
einem perfekten Phasenübergang (außer die Drei-Phasen-Modelle) werden mit quadrati-
schen Elementen diskretisiert. Im Fall eines imperfekten Phasenübergangs werden lineare
Elemente verwendet.
Für die Berechnung der effektiven Materialeigenschaften unidirektionaler Faserverbund-
werkstoffe werden dreidimensionale RUCs genutzt, wobei die Fasern in y′3-Richtung zeigen.
In diesem Fall kann die Abmessung der RUC in y′3-Richtung aus theoretischer Sicht belie-
big gewählt werden, da die heterogene Beschreibung des Kompositwerkstoffes von dieser
Richtung unabhängig ist. Im FE-Modell der RUC ist eine Elementeinteilung von einem Ele-
ment in dieser Richtung ausreichend, um die effektiven Koeffizienten zu berechnen, da die
resultierenden Spannungen und Verzerrungen aus den Berechnungsmodellen unabhängig
von der y′3-Richtung sind.

1'

2'

1'
2'

b b

Abbildung B-1: Verwendete RUC-Querschnitte der Berechnungsmodelle: links:
Rechteckgeometrie (Faseranordnung α = 60◦), rechts: Rhombusgeometrie (Faseranordnung

α = 75◦)

Die Untersuchungen zur Netzfeinheit werden beispielhaft an ausgewählten Berechnungs-
modellen der Abschnitte 5.1.1 und 5.1.3 durchgeführt. Die verwendeten RUC-Querschnitte
sind der Abb. B-1 zu entnehmen. Aufgrund der oben beschriebenen Abmessung einer RUC
in y′3-Richtung wird die Netzfeinheit nur in der y′1-y

′
2-Ebene untersucht. Die Feinheit des

Netzes wird durch die Vorgabe einer Elementkantenlänge (0.1, 0.075, 0.05, 0.025 oder 0.02)
im FE-Modell gesteuert. Unter der Annahme, dass die Kantenlänge b des rechten RUC-
Querschnitts (Verweis auf Abb. B-1) Einheitslänge aufweist, sind entlang dieser Kante 10,
14, 20, 40 oder 50 Elemente angeordnet. Entlang der Kante des linken RUC-Querschnitts
sind 20, 26, 36, 72 oder 88 Elemente angeordnet. Die verwendeten Materialdaten in den
Modellen sind der Tab. B-1 zu entnehmen. Der Faservolumenanteil ist auf 0.4 festgelegt.
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Tabelle B-1: Materialdaten der Matrix- und der Faserphase

Phase Schubmodul Querkontraktionszahl
Matrix 1 0.3
Faser 120 0.3
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Abbildung B-2: Normierte effektive Koeffizienten Ceff
1111/G

m und Ceff
2323/G

m, verwendetes
Koordinatensystem {y′1, y′2, y′3}, α = 60◦
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Abbildung B-3: Normierte effektive Koeffizienten Ceff
1111/G

m und Ceff
2323/G

m, verwendetes
Koordinatensystem {y′1, y′2, y′3}, α = 75◦

In Abb. B-2 und B-3 sind jeweils die effektiven Koeffizienten Ceff
1111 und Ceff

2323 in Abhän-
gigkeit von der Elementanzahl zu sehen. In Tab. B-2 und B-3 sind die dazugehörigen
prozentualen Abweichungen der Koeffizienten zu einer Referenzlösung festgehalten, wobei
als verwendete Referenzlösung der Koeffizient der feinsten Netzkonfiguration genommen
wurde. Die Formel zur Berechnung der prozentualen Abweichung lautet

diff5 =

∣∣∣Ceff
ijkl − Ceff,ref

ijkl

∣∣∣
Ceff,ref
ijkl

100% . (B-1)
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Aus den Tabellen erkennt man, dass die Abweichungen der Koeffizienten zum Referenzwert
selbst bei einer groben FE-Diskretisierung unter 0.26% liegen.
Eine unzureichende FE-Diskretisierung der Faser zum Beispiel bei der Verwendung linearer
Elemente in Kombination mit einer sehr groben FE-Diskretisierung kann zu schlechten
Näherungsergebnissen führen. Außerdem wird der Volumeninhalt der Faser infolge der
groben Diskretisierung kleiner. Daher ist darauf zu achten, dass die FE-Diskretisierung
des Faservolumens in ausreichender Näherung die ursprüngliche Geometrie widerspiegelt.

Tabelle B-2: Prozentuale Abweichung (gerundet auf drei Stellen nach dem Komma) von Ceff
1111

und Ceff
2323

Ceff
ijkl Elementanzahl Abweichung in %

Ceff
1111 224 0.176

368 0.103
784 0.034
3092 0.005
4624 0

Ceff
2323 224 0.101

368 0.062
784 0.046
3092 0.006
4624 0

Tabelle B-3: Prozentuale Abweichung (gerundet auf drei Stellen nach dem Komma) von Ceff
1111

und Ceff
2323

Ceff
ijkl Elementanzahl Abweichung in %

Ceff
1111 125 0.074

236 0.031
525 0.017
1779 0.001
2840 0

Ceff
2323 125 0.259

236 0.007
525 0.015
1779 0.006
2840 0

Der Zeitaufwand für die Realisierung der Zwangsbedingungen im FE-Modell nimmt mit ei-
ner feiner werdenden FE-Diskretisierung zu, da geeignete Knotenpaarungen für die Zwangs-
gleichungen gefunden werden müssen. Die Berechnungsmodelle sollten daher eine FE-
Diskretisierung besitzen, die einen Kompromiss zwischen Genauigkeit und Zeitaufwand
widerspiegelt. Für die in dieser Arbeit durchgeführten Berechnungen wird eine Element-
kantenlänge kleiner gleich 0.025 (bei quadratischen Elementen) oder kleiner gleich 0.02 (bei
linearen Elementen) verwendet.
Eine weitere Möglichkeit, die Netzfeinheit der Modelle zu untersuchen, besteht in der Be-
rechnung und dem Vergleich der Formänderungsenergien. Dies wurde jedoch nicht in dieser
Arbeit umgesetzt.
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