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Notations

Abbreviations
CUDA Compute Unified Device Architecture by Nvidia
DGPS Differential Global Positioning System
DST Dempster—Shafer Theory of Evidence

DSTMap Dempster—Shafer Theory Map
FAMOD Fast Approximate Morphological Grayscale Dilation
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vHGW-360 Modified van Herk-Gil-Werman Algorithm

WCS World Coordinate System
Conventions

Scalars and vectors are denoted by lower case letters in italic type (a, b, ...). Matrices are
denoted by upper case letters in italic type (4, B,...). Functions are denoted by lower
case letters (f,g,...). Curves and angles are denoted by lower case Greek letters (7,w, . ..).
Number sets are denoted by upper case letters. Special number set, such as the set of
natural numbers, are denoted by blackboard bold letters (N, R, ...). Other sets are denoted
by standard calligraphic letters (A, B,...). Note that in this thesis, it does not make a
difference if the indices are superscripts or subscripts, e.g., x; = xfi Probability density
functions are denoted by p(-). The probability that a random variable Y has value y is
denoted by p(Y = y), but will be abbreviated as p(y). The joint probability p(z1, xa, . . ., z;)
is denoted by p(x14). The belief mass m({A}) of the set {A} in the Dempster—Shafer
theory of evidence is abbreviated as m(A). Single variables within this thesis may deviate
from this notation to be conform with standard notation or to reduce ambiguities. These
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Notations

deviations are, however, clearly highlighted. The mathematical notation that is used is

given in the

following:

AT
A1
det(A)
det(a,b)
diag(a, b)
|||

||

]

ab

transpose of matrix A

inverse of matrix A

determinant of matrix A

determinant of matrix build by vectors a and b
diagonal matrix with scalar entries a and b
Euclidean norm of vector x

absolute value of scalar x

cardinality of set X

scalar or component-wise vector multiplication of a and b
inner (dot) product of two vectors a and b
empty set

angle between two vectors a and b

Symbols

General

ONIONCE

) functions

i,j,k index or integer number

l length index

Ny number of entities x

N(p, o) normal distribution with mean g and variance o
N(z;p,0) normal distribution with mean p and variance o evaluated at x
O() big O notation; Landau notation

q robot configuration

R, rotation matrix of « degrees

t time index

U(z,y) uniform distribution with lower bound z and upper bound y
w weight

T robot state

€ small arbitrary number

n normalizer

I mean

0 orientation of the robot

o standard deviation

B set of boolean values

N set of natural numbers

R set of real-valued numbers

RS set of non-negative real-valued numbers
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Notations

Subscripts
O, O referring to the left and right
Omin, Omax  referring to the minimum and maximum
Or, Or referring to the radial and tangential component
Os, Oc referring to the start and goal
O+ referring to the time instance ¢
0w referring to the velocity component
0z Oy referring to the position component; to the z and y component
O referring to the particle

Mapping and Tracking

a,b scalar parameter

c scalar conflict in Dempster’s rule of combination

D subset of frame of discernment denoting dynamic

F subset of frame of discernment denoting free

m(A) belief mass of set A in Dempster—Shafer theory

mp map grid representing belief masses from particle map

ms, scan grid representing belief masses of sensor s;

mg scan grid representing belief masses after sensor data fusion
my map grid representing final belief masses at time instance t
Nells number of grid cells per dimension

n; actual number of particles in cell ¢

n;des desired number of particles in cell @

nymex maximum number of particles per cell

oMGes origin of map grid coordinate system at time ¢

Psurv(X[ey) survival probability of particle xp

Do maximum survival probability
poin minimum survival probability
r radius of circle on which vehicle rotates in local grid
S subset of frame of discernment denoting static
v 2-D velocity vector
Umax maximum velocity
v* true 2-D velocity vector
Ul) velocity component of k-th particle
Vv multivariate random variable denoting 2-D velocity vectors
Wrand probability of sampling a random particle during resampling
Tk position component of k-th particle
X, set of particles at time instance ¢
X set of static particles in cell ¢
X5 set of dynamic particles in cell i
X, predicted set of particles from X;_;
X
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z sensor measurement

« angle

X[k] k-th particle

o(z;y) Dirac delta distribution at y evaluated at
I grid map of velocity vectors at time ¢

v cell i of map v,

Urmin minimum uncertainty

(G} frame of discernment

bel(+) belief

betP(+) pignistic probability distribution

pl(+) plausibility

a° conjunctive rule of combination

@P Dempster’s rule of combination

@’ Josang’s cumulative rule of combination

Motion Planning and Road Course Estimation

biry
B
By
C

C;

C
Ccosts
Cfree
Cobs
d7 d(7 )
fe(7)

boundary element of left/right boundary

binary obstacle grid map

set of left/right road boundary cells

cost

cluster i, i.e., set of trajectories that are in i-th cluster
configuration space

configuration space costs

set, of collision-free configurations

configuration space obstacles

distance; if not explicitly stated, standard Euclidean distance
function yielding cluster of a path/trajectory 7

Jm(q,w), fm(z,u) motion model

F w

la

L
Lcloscd
£goal
‘Copcn
M

Ne
Tlchecks
Neols
Miter:
Mo

Npixels

weight function

set of weight functions

axis length

list of states

closed list

goal list

open list

grayscale grid map

number of clusters

number of cost/collision evaluations
number of columns of image/matrix
maximum number of iterations
number of objects

number of pixels of image
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Nprim number of motion primitives

Nrows number of rows of image/matrix

Nslices number of layers of Cops Or Ceosts

N, number of paths

0 occupied cell

@ obstacle region; set of occupied cells

Oy set of occupied grid cells that are left/right of some separator
P set of parameter

P polygon

R set of road courses

S structural element; robot mask

T set of paths/trajectories

Trep set of cluster representatives, i.e., the principal moving directions
U action

U action space

v vector

Vroad estimated drivable velocity

w work space

o steering angle of wheels of vehicle

15} semantic continuous road boundary

o(+) discretization function

© alternative symbol for road course

v generalized Voronoi diagram of semantic road boundaries
K curvature

log odds ratio

T alternative symbol for path/trajectory
P road course
T path/trajectory
T¢ path cells
" path nodes
Tp primary path
Ts smoothed path
w action trajectory
Q set of action trajectories
13 plausibility criterion
Y angle
pred(r, 7') path equivalence predicate between 7 and 7/
projyy(+) workspace projection
® morphological dilation
) morphological erosion
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Abstract

A reliable model of the local environment available in real-time is a prerequisite to enable
almost any useful activity performed by a robot, such as planning motions to fulfill tasks.
It is particularly important in safety critical applications, such as for autonomous vehicles
in regular traffic. In this thesis, novel concepts for mapping, tracking, the detection of
principal moving directions, cost evaluations in motion planning, and road course estima-
tion have been developed. An object- and sensor-independent grid representation forms
the basis of all presented methods enabling a generic and robust environment estimation.

Grid-based Tracking and Mapping (GTAM), a low-level approach for the simultane-
ous estimation of the dynamic and the static obstacles and their velocities is presented.
Uncertainties are incorporated in a Dempster—Shafer environment model. The method
overcomes the drawback of widely-used occupancy grid mapping, which is only defined
for static environments and leads to artifacts, if applied when dynamic objects are in the
perceptual field of the robot. The grid map of the static world from GTAM forms the
basis of the subsequently presented methods.

The principal moving directions through the environment represent the main possible
maneuvers of the vehicle for local navigation. They are detected by a path planning and
path clustering approach. Two path planner families are combined in order to efficiently
sample a set of collision-free paths. A path equivalence definition is provided to cluster
the paths, which is motivated by path homotopy but does not require that all paths end
at the same point.

The costs of paths often arise due to the particular workspace, such as the distances to
the nearest obstacles in order to prefer high clearance. The concept of configuration space
obstacles is generalized to configuration space costs, which allow costs and collisions to be
performed in the configuration space, i.e., incorporating the robot shape. Furthermore,
two algorithms for their efficient calculation on graphics hardware are presented.

The methods from above form the basis of an indirect approach to road course estima-
tion. The road topology is extracted using the principal moving directions as boundary
separators, and the road boundaries are individually estimated for each detected roadway
given the grid map.

All developed methods have been evaluated with sensor data from real road environments
and their performance has been experimentally demonstrated with a test vehicle.

XIII
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Zusammenfassung

Ein aktuelles und zuverlédssiges Umfeldmodell ist Kernkomponente praktisch jedes realen
Robotersystems und unverzichtbar in sicherheitskritischen Anwendungen wie bei autono-
men Fahrzeugen. Ein Roboter wird dadurch erst beféhigt sinnvolle Aufgaben, wie beispiels-
weise einen bestimmten Ort zu erreichen, durchzufithren. In der vorliegenden Dissertati-
on werden neuartige Konzepte fiir die lokale Kartierung, die Verfolgung von dynamischen
Objekten, die Erkennung der Hauptbewegungsrichtungen, die Kostenevaluierung fiir Pfad-
und Trajektorienplanung sowie die Schitzung des Fahrbahnverlaufs vorgestellt. [hnen allen
liegt eine gitterbasierte Darstellung zu Grunde, welche ohne objekt- und sensorspezifische
Annahmen auskommt und dadurch eine sowohl generische als auch robuste Schitzung des
Umfeldmodells ermoglicht.

Die Arbeit beginnt mit der Présentation von GTAM, ein Verfahren bei dem gleichzeitig
sowohl die statische als auch die dynamische Umgebung anhand von Sensordaten geschétzt
wird. Im Gegensatz zu klassischen Belegungskarten, welche nur fiir statische Umgebungen
definiert sind und bei denen dynamische Objekte zu ungewollten Artefakten fithren, liefert
das Verfahren ein einheitliches und konsistentes Abbild der Umgebung inklusive Geschwin-
digkeitsinformationen. Die Belegungskarte der statischen Umgebung bildet die Basis fiir
die im Weiteren vorgestellten Methoden.

Die Hauptbewegungsrichtungen durch die lokale Umgebung représentieren die Manéver-
optionen des Fahrzeugs. Sie werden durch eine Kombination aus Pfadplanung und -grup-
pierung erkannt. Dazu werden zwei verschiedene Pfadplanungsfamilien kombiniert und ein
Aquivalenzkriterium definiert, welches durch die Pfadhomotopie motiviert ist.

Bei der kostenabhéngigen Pfad- und Trajektorienplanung sind die Kosten oftmals durch
die lokale Umgebung gegeben wie etwa Abstand zu Hindernissen. Um Form und Ausdeh-
nung des Roboters fiir die Kostenberechnung, welche die Kollisionspriifung miteinschlief3t,
berticksichtigen zu koénnen, wird das Konzept der Konfigurationsraumobjekte auf Konfi-
gurationsraumkosten erweitert sowie zwei effiziente Algorithmen fiir deren Berechnung auf
Grafikkarten vorgestellt.

Die obigen Ansétze bilden die Basis eines indirekten Verfahrens fiir die Schdtzung des
Fahrbahnverlaufs. Hierbei wird die lokale Topologie der Strafie anhand der Hauptbewe-
gungsrichtungen extrahiert und fiir jede erkannte Fahrbahn die zugehorige Randbebauung
geschétzt.

Alle entwickelten Methoden wurden mit Realdaten aus Fahrten mit einem Versuchsfahr-
zeug in diversen Verkehrsszenarien evaluiert und deren Performanz demonstriert.

X1V
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1 Introduction

The vision of cars that drive themselves range at least back to the 1920s, where first
preliminary experiments with a self-driving vehicle have been conducted [153]. Signals
to remote-control a driverless car were sent by a human out of a following second car. In
addition to the long history and a large number of other research prototypes since then, the
desire for autonomous vehicles has been continuously further increased due to numerous
science fiction works, where the superiority of robotic cars is often highlighted.

The three biggest believed benefits of automated vehicles are: safety, efficiency, and
comfort [53, 110, 134, 152]. Despite numerous safety systems already integrated in modern
cars, the number of accidents and fatalities is still tremendous. In Germany alone, there
were around 2.4 million accidents recorded by the police in 2013 [146]. It is estimated that a
whopping 90-95% of all road accidents are caused by human errors [53, 134]. A study of the
United States National Highway Traffic Safety Administration (NHTSA) showed that in
around 80% of all accidents and in 65% of all near accidents the driver was inattentive [46].
In addition to increased safety, the effects on efficiency and comfort are manifold. The time
spent in the vehicle can be used more efficiently, which is especially useful in our fast paced,
always-reachable, and always-connected world. Much time is wasted for daily commutes,
in traffic jams, or when circling around blocks while searching for an empty parking spot.
New, large-scale mobility concepts are possible, such as robotic taxis that are called for pick
up and drop off. Efficiency, however, also targets the costs. Due to increased safety and
thus a decrease in the risk of damage, insurance rates are expected to drop for automated
vehicles [110], as well as the overall fuel consumption [134].

Given the expected potentials, legal frameworks for the operation of autonomous vehi-
cles are started to be established. Different degrees of automation have been defined. The
German Federal Highway Research Institute (Bundesanstalt fiir Straenwesen) has elab-
orated definitions ranging from driver only, to assisted driving, to partially automated,
highly automated, and fully automated driving [58]. The NHTSA has also established
similar levels of automation [117].

This thesis targets technological aspects of automated vehicles in the context of robotics.
It presents new methods for the representation and the understanding of the environment
around the vehicle based on real-time sensor data with focus on local navigation in real
street environments. Before presenting the research topic and the contributions in Sec-
tion 1.3 in more detail, the impact of prior knowledge for autonomous vehicle navigation is
discussed. Most of the current autonomous and automated driving systems heavily rely on
very detailed a-priori global maps of the environment, which are required to be available to
the vehicle. Such maps are often regarded as the key component to a success of automated
vehicles [110, 134, 152]. The impact of prior knowledge in the form of high-precision maps
and the interaction with online, sensor-based knowledge is the topic of the next section.
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1.1 Prior Knowledge for Autonomous Navigation in Road
Scenarios

Since the 1980’s and especially triggered by research projects, such as the Eureka Pro-
metheus project [55], and challenges, such as the DARPA Grand and Urban Chal-
lenges [39, 40, 41], research on autonomous vehicles produced a large amount of au-
tonomous vehicle systems, e.g., [1, 26, 45, 62, 81, 105, 112, 131, 137, 154, 155, 161, 180].
Although prior work on autonomous vehicles existed before, it usually relied on special
modified and expensive road infrastructure for vehicle guidance. The Universitéit der Bun-
deswehr Miinchen with the vehicle VaMoRs and the 4-D approach [44, 45, 174] pioneered
in autonomous vehicle navigation based on environment perception. Other research insti-
tutes, such as the Carnegie Mellon University with the Navlab vehicles [76] also established
pioneer work in automated driving. Rather than presenting every system that has been
developed since in detail, in this section, a navigation characterization is attempted ac-
cording to the required amount of prior knowledge about the environment and its effect on
navigation. A similar classification of navigation paradigms is found in [105]. Here, it is
focused, however, on the influence of the available prior knowledge as well as the resulting
system characterizations of an automated driving system in regular traffic.

1.1.1 High Prior Knowledge Navigation

Many of the early works in robot motion planning studied the problem of navigation
detached from sensor-based environment perception. It is assumed that a given map of
the environment exists, which holds all relevant information for performing a given task,
such as to find a collision-free and feasible path from a start to a goal state. In classic
robotic applications, the map typically holds the obstacles of the environment. Such a
map provides a huge advantage for a robotic system. They are generated offline under
supervision, at least partially, by a human and thus guarantee a high accuracy and, even
more important, a guarantee that they are correct.

For autonomous vehicles, the a-priori map typically holds the exact position of every lane,
or often rather the center of each lane, with an accuracy that exceeds the one provided
by maps available from standard consumer navigation systems today [132]. If the lane
centers are available with high accuracy and a certain level of continuity, then they can
directly serve as reference paths, which a vehicle can follow. Hence, the navigation problem
is greatly facilitated. In the simplest case, an autonomous vehicle can simply follow the
reference path. Simultaneously, a high amount of robustness is guaranteed, since the
reference paths are proven to be valid, if the map is consistent with the environment.
The majority of autonomous vehicles and automated driving systems make use of such
high-precision maps. They thus rely on a high amount of prior knowledge about the
environment, in which they are about to navigate. Note that the words precision and
accuracy are not to be confused with the map itself, but denote the matching quality with
the real world. Figure 1.1 shows such a highly automated driving system [1, 79]. The
ego vehicle (white) uses the stored map information (3 lanes in this scenario) to drive
highly automated on a regular highway. Visible are also the dynamic objects (blue boxes),
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Figure 1.1: Highly automated driving system based on an a-priori high-precision map [1, 79].

which are tracked with sensor data from different sensor technologies integrated around
the vehicle [11], the high-level planning module [15, 18], and camera images to the front
and to the rear.

Robustness is indeed a key concern for autonomous vehicles. Unlike in other robotic
systems, such as robotic vacuum cleaners for example, errors in the navigation are easily
fatal. Hence, the benefit of a high amount of prior knowledge is obvious. Moreover,
numerous rules control the traffic in real street environments, and an autonomous vehicle
has to follow these rules the same way as human drivers need to. The violation of a traffic
rule may also result in a fatal accident. Traffic rules, as well as static traffic signs, can also
be integrated into the offline map.

With such a precise map, the complexity and requirements on sensor-based environment
perception and interpretation decrease tremendously. As long as the map is valid, the
vehicle will be driving on a valid path. Additionally, sensor-based algorithms can use the
map to increase their robustness. Object tracking, for example, is facilitated, since the
structure of the road is known, or traffic lights are easier to detect, since it is known where
they are located in the world. Furthermore, static obstacles are only relevant within the
area of the given lanes. Some static obstacles, such as road boundaries or walls in an
indoor parking lot can also be included in the map.

The map alone is not enough, however. Its information has to be transformed into the
current coordinate system of the vehicle, i.e., it needs to be localized with high precision
in this map. Often, Differential GPS (DGPS) is used, but DGPS alone is usually not
accurate enough, though. Especially in dense urban areas, multipath issues decrease the
accuracy. Furthermore, DGPS is not always available, such as in tunnels. Therefore, it
is often coupled with localization with landmarks that are also stored. Sometimes, whole
scans or grid maps are recorded to localize with raw sensor measurements.
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The robustness, however, comes at the price of availability. On the one hand, the system
is only available, whenever such a specific a-priori map exists. Most automated vehicles use
their own map with specific features, which needs to be specifically created. And on the
other hand, as soon as the map is inconsistent with the real environment, the system fails.
Creation and maintenance of the map usually require a huge effort. Whenever parts of the
road layout change, the stored reference paths become invalid. Unfortunately, this happens
often in real street environments. Road construction sites are a prominent example of such
situations. In addition to road changes, localization features can also change. Most of the
localization methods are robust enough to deal with a certain amount of wrong or missing
features. However, outdoor environments are not as controllable as indoor environments
and seasonal changes have a huge impact. Changes from bright and vivid vegetation
during the summer season to snow during the winter season pose enormous challenges to
localization systems.

In this paradigm, there exists an additional challenge in detecting whether or not the
map is indeed consistent with the current road environment. Usually, however, it is still
relied on a human for the detection. In order to detect deviations from the map, the true
current road model needs to be estimated, at least to some extent, with the sensors and
compared to the one that is stored in the map. This directly leads us to the next paradigm,
i.e., maneuvering solely based on sensor information.

1.1.2 Sensor-based Navigation

Contrary to relying on an a-priori, high-precision map of the environment, is autonomous
navigation solely based on sensors. Even with a high-precision map, sensor information is
essential to detect and understand the dynamic environment, such as other traffic partici-
pants, obstacles, or electronic traffic signs. A stored map alone is never sufficient. In this
paradigm, however, the sensors are used to estimate all relevant information about the
local environment. In particular, the structure of the road and its semantics are estimated
online in real-time, in order tell the motion planning modules where the vehicle is allowed
to drive. It is assumed that the global guidance is given by the road layout, rather than
stored in a map, and the task of the robot is to follow the road.

Many consumer robotic products, such as robotic vacuum cleaners mentioned above or
robotic lawn mowers, follow this paradigm. The robot does not know the structure of the
environment a-priori, but needs to use its sensors to build a model of it, which is used
for navigation. Navigation in turn serves to fulfill a task, such as to clean a room or to
walk a humanoid robot to a goal location [173]. This allows the robot to act in unknown
and unstructured environments. An autonomous vehicle in an offroad environment can
navigate in a similar way solely based on sensor information. It can move arbitrarily
through the environment, as long as it does not collide with other objects. The only
a-priori information that is relied on are GPS coordinates that hold the goal position.

In real street environments, there is however substantially less liberty in the choice of the
robot motions. Unlike with an a-priori map, it is not known to the vehicle, how the course
of the road and the individual lanes are evolving. Perhaps, the ego-lane is ending and the
vehicle needs to change lane in order to continue to drive. Not only information about
the ego lane is important, however, but all lanes of the road are required for lane changes
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and in order to predict and interpret the environment. The local road model needs to be
precise and particularly robust. If the estimation goes wrong, the vehicle will eventually
leave the true lane possibly leading to fatal accidents.

Purely sensor-based navigation in regular street environments thus sets very high re-
quirements on the algorithms for environment perception and interpretation. Even for
experienced human drivers it takes a considerable mental effort to drive in complex street
scenarios for the first time. Consider arriving and driving through a foreign city at night
without a navigation system. If it requires a human effort to perform a task, in particular
for a task that was intentionally designed to be performed by humans, such as driving in
street environments structured for humans, the difficulty is expected to be tremendous to
be performed by a machine.

On the other side, tasks such as precise and robust localization in a global map are
nonexistent, since if there is no global map of the environment, there is nothing to localize
within. Neither are problems due to multiple coordinate systems of the online, sensor-based
map and the offline map.

Estimating the current road model as robust and as accurate in order solely rely on it
for autonomous vehicle navigation is still an open problem. Many individual subproblems
need to be solved in order to estimate the complete road model with sensors and this
thesis targets important building blocks. Before going into more detail of the environment
model and the particular contributions of this thesis, hybrid approaches of map-based and
sensor-based navigation are discussed.

1.1.3 Low Prior Knowledge Navigation

Examining the two paradigms presented above, two observations are made regarding an
autonomous vehicle system. On the one hand, relying on high-precision maps of the
environment requires a considerable amount of maintenance of the map and it cannot be
guaranteed that it will always be valid. Eventually, an automated vehicle will encounter
an unmapped situation, such as a temporary construction site. Even if the map is learned
online with a backend server using data from all available vehicles, at least the first car
that enters the unmapped area, has to be able to cope with the situation. If the system is
capable of detecting that the map is indeed wrong or it gets the information about a road
change over communication, such as from a server, from the infrastructure, or from other
vehicles, it needs to come to a safe state. Performing an emergency braking maneuver
allows reaching a safe state in some scenarios, such as low speed environments like parking
lots. In highway scenarios, performing an unreasonable (from a human’s perspective)
immediate stop does not only block the traffic, but possibly leads to severe accidents.
Hence, the system needs to be able to continue to drive, at least to some extent and for
some amount of time, based on the sensor information alone.

On the other hand, only relying on the sensors for navigation, is prone to errors. First,
without any a-priori information, the system does not know, where it is supposed to
go. Even for offroad navigation, a rough global route to the goal greatly facilitates the
navigation task and decreases the chance of reaching a dead end. An autonomous system is
preferred that maneuvers optimally on a global scale over one that misses, e.g., a highway
exit, because the exit sign was currently occluded by another vehicle. Standard navigation

ot
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systems are common tools to help getting from a start to a goal and humans also use
a-priori knowledge about the environment. It is substantially less demanding to drive a
route, which was driven before, then driving on unknown streets.

The difference between this paradigm and the high prior knowledge paradigm is not
necessary the map itself. It is the amount of trust that the environment does indeed and
accurately correspond to that map. Less trust in the map means that the system needs to
rely more on its sensors. For example, if the reference paths are not directly used from a
stored map, but are estimated online with the help of possibly-inaccurate prior knowledge,
slight deviations between the real environment and the map are likely to be managed by
the system. The prior map can even just be used for rough global navigation. This way,
even if the prior map is locally entirely wrong, such as at a highway construction site
that turns in an S-shaped curve onto the roadway of the opposite direction, autonomous
navigation may still be continued until eventually the prior map is correct again.

The transition between the amount of required and relied prior knowledge is smooth.
Figure 1.2 puts sensor-based navigation and navigation based on a prior map side-by-side.
As discussed above, the higher the accuracy and the trust in the prior map, the more
robust is the system, as long as the map is valid. On the other hand, the system is only
available where such an accurate map does exist and where it is indeed valid. The more
it is relied on the prior map and the more accurate it needs to be, the more effort it takes
to maintain it up-to-date. At the other end are the requirements for sophisticated and
robust artificial intelligence. If the vehicle needs to find the course to maneuver by itself,
the requirements for the local environment model rise accordingly. And third, the focus of
the system design varies between a precise map paired with a precise localization within
this map, and precise and redundant sensors and perception algorithms.

From the discussions above, it follows that a truly autonomous vehicle system needs to
be able to maneuver locally solely based on the sensor information, at least to come to a
safe state, even if a precise map is usually available. Prior knowledge, of course, helps to
improve the performance.

Although the importance rises with decreasing map accuracy, the environment model,
which is the focus of this thesis, is a building block of any real world autonomous vehicle.

1.2 Environment Model

The environment model comprises the whole pipeline, from raw sensor data, such as range
and bearing readings or color pixels, to the understanding and the interpretation of the
whole scene, such as mutual dependencies between traffic participants [4]. The environment
model builds the basis for planning the motions of the robot in order to achieve intelligent
actions and to solve tasks.

The amount of individual subproblems involved from raw sensor data to a complete un-
derstanding of the scene is tremendous and underlines the complexity involved. A variety
of different sensors are used that possess and measure different individual characteristics.
In the robotics community, most often laser scanners, camera systems, radar sensors, and
ultrasonic sensors are used. There are algorithms that are particularly designed for one
sensor, such as traffic sign recognition for cameras, but also sensor independent algorithms.
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Figure 1.2: Autonomous vehicle navigation paradigms.

In order to increase robustness, the data from different sensors is often fused, since every
sensor has strengths and weaknesses [80]. Sensor data fusion further increases the com-
plexity. Without completeness, but in order to give the reader an impression of the tasks
involved regarding the environment model for autonomous vehicles, in the following several
objectives are given: detecting the static obstacles, detecting and tracking the dynamic
objects, classification of objects, classification of scenes, vehicle indicator recognition, lane
marking recognition, curb stone detection, detection of the principal moving directions,
road boundary estimation, road model estimation, traffic sign recognition, traffic light
recognition, prediction of objects, or the prediction of the whole scene.

The incomplete list of the problems from above is not meant, however, to suggest that
many of the problems are already solved. The truth is, although huge progress has been
made over the last decades, most of the proposed algorithms still do not meet the quality
required to enable purely sensor-based autonomous vehicle navigation in arbitrary street
scenarios, in particular in complex urban environments.

The first focus of this thesis is a robust, low-level model of the local environment repre-
senting the static and the dynamic objects. Rather than relying on specific features and on
particular sensors, all algorithms developed are sensor-independent. This eases fusion of
diverse sensor data. The low-level representation is in form of a grid, i.e., a discretization of
the world into equal-sized 2-D cells. Although other representations have been proposed,
e.g., stixels [17], grid-based representations have already been, and still are, popular for
mapping for a considerable amount of time [157]. Due to the grid representation, no
assumptions about the size, the shape, or specific characteristics of the objects in the en-
vironment need to be made. The grid representation is general and allows representing
arbitrary, a-priori unknown objects, since any obstacle needs to be detectable, even those,
which the system has not encountered before.

A grid-based representation provides a solid basis for extractors, i.e., algorithms that try
to extract information. This is the second focus of this thesis. For example, grid-based
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road boundary estimation and the detection of the principal moving directions are classes
of extractors. The benefit of extractors on grids, rather than on raw sensor data, is that
they already work with a filtered and sensor-independent representation. Moreover, grids
can keep past and currently-occluded information, which eases information extraction.
More details about the contributions of this thesis are given next.

1.3 Main Contributions and Outline of the Thesis

This thesis targets five components of the local environment model: mapping, low-level
tracking, extraction of the principal moving directions, definition and generation of a struc-
ture for efficient collision and cost evaluation, and road boundary estimation. The main
contributions are summarized in this section. More details about the characteristics of the
approaches and the contributions are given in Section x.1.2 of Chapters 2-5. The related
work is also given in the individual chapters, rather than in a single separate chapter, in
order to directly put it in the context of the developed concepts.

Information about the static and the dynamic objects with their corresponding states
in the local environment of the robot are the building blocks for almost any mobile robot
system. Mapping the static environment and tracking the dynamic objects are complex but
established tasks. However, they are usually performed separately using occupancy grid
mapping [52, 157] for the static part, which does not require shape or object assumptions,
and object tracking for the dynamic part, which does use shape and object assumptions and
yields a list of objects. Chapter 2 presents a novel approach termed grid-based tracking and
mapping (GTAM) that simultaneously estimates the static and the dynamic environment
in a uniform grid-based representation using the Dempster—Shafer theory of evidence [42,
43, 142]. Tt avoids inconsistencies due to different environment representations and does
not require that measurements must be a-priori divided into belonging to a static or to a
dynamic object. It is also shown how the evidential Dempster—Shafer model is transformed
to a standard probabilistic model. This low-level environment model builds the basis for
all subsequent chapters.

The knowledge of the local street topology is important to detect forks in the road
and road junctions. It is also essential for the road course and road boundary estimation
presented later. Chapter 3 consists of two parts. First, a method is given to efficiently
sample a set of collision-free and feasible paths through the environment in the absence
of goal poses, which combines two different classes of planning algorithms. And then, the
paths are clustered according to the obstacles in the local environment to find the principal
moving directions. Compared to other techniques, which estimate the road network or the
principal moving directions in road scenarios, this approach is able to provide the principal
directions at arbitrary road shapes and is not restricted to quadratic or clothoid models,
as often used. Due to motion planning, estimations over long horizons in complex road
scenarios, such as urban roads or road construction sites, are achieved.

The most time-consuming part for most motion planning algorithms, such as the path
planner presented in Chapter 3, is collision checking and cost evaluation. Precomputation
techniques have the potential of providing a major performance increase. Most notably are
the configuration space obstacles [96], a concept that reduces collision checking of the whole
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robot shape against the obstacles to a single look-up. Chapter 4 generalizes this concept
to configuration space costs. In addition to collisions, they allow the costs, incorporating
the whole robot shape, also to be performed by a single look-up. Two approaches are
presented to efficiently calculate the configuration space costs. They were implemented on
a GPU and their performance substantially outperforms direct implementations.

Chapter 5 describes the road course and road boundary estimation. It builds upon all
previously presented methods. It uses the Bayesian occupancy grid of the static environ-
ment from the grid-based tracking and mapping from Chapter 2 and extracts the principal
moving directions, as described in Chapter 3. This is only possible to be performed in
real-time due to a precalculation of the configuration space costs. Workspace cost maps
designed for the particular application increase the quality of the principal moving direc-
tions and are directly incorporated in the configuration space. The extraction of the road
courses and their corresponding boundaries is substantially facilitated using the principal
moving directions, as they already separate the environment. Since the separators lie be-
tween the boundaries, their extraction is achieved locally. Furthermore, the number of
potential road courses is also known, as it equals the number of principal moving direc-
tions. The road courses are validated according to their shape and recursively filtered to
exclude implausible estimations.

All algorithms and systems developed as part of this thesis were implemented on, and
tested with, an autonomous vehicle platform, given in Appendix A.1. They were thus
all proven to run in real-time, which is mandatory for any online autonomous vehicle
algorithm. Real-time, for the environment model, means that they run faster than the
refresh-rate of the sensors, which was at 12-15Hz. The whole system represented in this
thesis, combining mapping, tracking, configuration space cost calculation, path planning,
clustering, and road course estimation runs in real-time on a single standard computer.
Most of the methods parallelize well and were implemented on a GPU, which has proven
to be well capable of performing arbitrary parallel computations [3]. The hardware and
software platform is given in Appendix A.2.

Finally, Chapter 6 gives qualitative and quantitative evaluations of the presented algo-
rithms. Moreover, the road course estimation was used to autonomously navigate a vehicle
through an unmapped road construction site. The boundaries consisted of traffic cones,
parked vehicles, bushes, and walls of buildings. A fork in the road posed additional chal-
lenges. The vehicle did not have prior knowledge about the environment and did not use
GPS. The thesis concludes with Chapter 7.
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A robust representation of the environment is essential for any mobile robot system. It
forms the basis needed by many other modules, in particular by motion planning algo-
rithms. Additionally, many recognition tasks, such as road course estimation, often build
upon a filtered environment model, rather than building upon raw sensor data. It is
therefore crucial for the overall performance of the whole robot system. Mapping and
tracking are often done separately yielding different environment representations, which
is likely to lead to inconsistencies. Often grids represent the static environment and a
list of objects the dynamic environment. This chapter presents a combined estimation of
the static and the dynamic environment in a uniform representation termed Grid-based
Tracking and Mapping (GTAM). The framework allows integrating unclassified raw sensor
measurements and provides a real-valued continuous estimate of the velocities, the static
and dynamic occupancy, as well as the free space in a uniform grid-based representation.
This chapter is based on work published in [8] in the context of this thesis.

2.1 Introduction

As given above, mapping and tracking are often two independent tasks. In mapping,
feature-less occupancy grid mapping [52] has evolved to the standard approach in the
robotics community. It allows representing arbitrary object shapes and data association,
i.e., the problem of determining correspondences between sensor measurements and existing
tracks, is solved implicitly with the grid structure. Tracking, on the other hand, is often
done using model and shape assumptions [11].

2.1.1 State of the Art

In occupancy grid mapping, the world is assumed to be static. It is divided into a set of
discretized cells rather than having a list of objects which implies making assumptions of
how objects look like or what their shape is. A real-world object can be represented by
an arbitrary number of cells. Although grid representations usually have higher memory
requirements, the benefit of not having to deal with data segmentation and association
often outweighs. Moreover, there are also hierarchical techniques minimizing the required
memory and computation times [138], which are especially useful for 3-D mapping.

In standard grid mapping, the occupancy probability of each cell, which corresponds to
a certain area in the world, represents the probability of that cell being occupied by a static
object. Since every cell has attached a binary random variable, it simultaneously represents
the probability of it being free space. The environment is, however, rarely entirely static.
In some robotic applications, this is negligible. If the map is stored for later use and the
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robot moves slowly through the environment, then it will most likely be able to make more
observations of a certain area as being free space, than of it being temporarily occupied
by a dynamic object. If the map is created and used in real-time, however, then cells that
are temporarily occupied due to dynamic objects represent unwanted artifacts in the static
map. Consider, e.g., an autonomous vehicle that uses the real-time generated grid map for
collision checking against the static obstacles, and consider the case where another vehicle
is driving in front of the ego vehicle. In such a scenario, the robot will constantly try to
re-plan around the vehicle driving in front of it, or even trigger an emergency collision
avoidance maneuver, since the way up front seems to be blocked by a static obstacle.

If the map is updated with a sensor that cannot measure the dynamics, such as a laser
scanner, often inconsistencies between the map built so far and the current scan are used
to detect and filter out measurements belonging to dynamic objects [24, 127, 140, 165, 166,
167]. It follows the idea that, if parts of the map were previously observed as free space, but
are now observed to be occupied, and vice-versa, if the previous observations were occupied,
but now result in free space, the occupancy observations must come from a dynamic
object. Sometimes, the Dempster—Shafer theory of evidence is used to better model these
inconsistencies as conflicts [113]. Although directly deleting these inconsistencies works in
some scenarios, especially for fast objects that move parallel to the sensor axis, they often
completely fail. Consider, e.g., a large vehicle crossing perpendicular to the robot sensor.
Then, one particular cell will be occupied over multiple frames by different parts of the
object. Moreover, using inconsistencies as evidence for dynamic information counteracts
the original idea of filtering sensor measurements to deal with noise. Additionally, it is only
feasible for very accurate sensors, although there are also approaches that try to classify
the conflicts as either noise or dynamic [118]. Apart from approaches based on conflicting
information, there also exists work that tries to detect the specific shape of the artifacts
in the grid caused by the moving objects [168].

Similar important is a robust representation of the dynamic environment and the lit-
erature in the field of object tracking is vast. In some work, the inconsistencies during
mapping are used as input to an object tracker [24, 127, 140, 167]. In other work, it is
directly relied on an object tracker [119] to find and filter out the measurements belonging
to the tracks. Obviously though, relying on object tracking simply transfers the problem,
and with the notion of objects and tracks, in comparison to cells or data points, comes the
data association problem. All of the above approaches have in common that the decision
of whether a single sensor measurement belongs to a static or to a dynamic object is binary
and its uncertainty is not modeled.

In the following, some of the approaches that combine the estimation of the static
and the dynamic environment are presented in more detail. In [101], Rao-Blackwellized
SLAM is combined with conditional particle filters for tracking, but all measurements
are used for creating the map leading to problems in crowded environments. In SLAM
with generalized objects [167], a joint posterior over all static as well as dynamic objects,
together with the robot pose, is calculated, in contrast to SLAM with DATMO [167]
by the same authors, which divides the problem and requires that measurements can be
separated with regard to their dynamics. SLAM with generalized objects is in general
computational infeasible, though, as the authors point out, and it builds upon the notion
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of objects. In [32], a model-free, grid-based approach, the Bayesian Occupancy Filter
(BOF), is presented. It uses a four-dimensional grid, with two dimensions for the location
and two for the velocity. A four dimensional representation is, however, undesirable, since
memory scales exponentially with the number of dimensions, and the velocities need to be
discretized. Later, the BOF was reformulated to work on a two-dimensional grid, where
each cell contains two probability distributions, one for the occupancy and one for the
velocity [151]. The velocities are discretized into a histogram so that between consecutive
estimations, the velocity corresponds to an exact integer cell displacement, which limits
velocity accuracy, leads to errors, and strongly couples cell resolution to velocity resolution.
In addition, due to its formulation, it requires, for every cell, a summation over all possible
antecedent cells and velocities, which is expensive. Although, it can be speeded-up by using
an existing map of the environment [25, 61], mapping techniques are especially useful in
unknown environments.

In a different, particle-based approach [35, 36] the velocities do not need to be discretized,
but are estimated as continuous distribution. The particles have a continuous position and
a continuous speed and can move independently of the grid structure between cells. The
authors describe the particles as both, velocity hypotheses and the building blocks of the
environment. The particles in a particular cell represent, on the one hand, the velocity
distribution, and on the other hand does the number of particles represent the occupancy
likelihood. The approach yields promising results, but the exact role of the particles and
what probability distribution they approximate is not entirely clarified. The resulting
grids do not explicitly model free-space, as the absence of particles may either be due to
unknown, not observed areas or to areas that are measured to be free. Moreover, the
approach loses information about previously observed areas, since the particles die out if
no measurements continuously support them, which is undesirable for the static objects.
The first part of the presented approach in this chapter also uses a particle filter and was
inspired by [35]. It is, however, only used to estimate velocity distributions. Occupancy
as well as free space information is derived and filtered in a novel Dempster—Shafer model,
as will be described in detail.

2.1.2 Approach and Contribution

In this chapter, a novel method termed Grid-based Tracking and Mapping (GTAM) is
presented that simultaneously estimates the static as well as the dynamic environment.
It is entirely grid-based and therefore does not rely on model and shape assumptions or
on data association. It is used to create maps online in highly dynamic environments
and to detect and track the dynamic world in a cell-based manner. In the following, the
characteristics of GTAM are given:

e A particle filter is used to estimate continuous velocity distributions.
e The initial velocity sampling distribution for the particles is a combination of a

uniform distribution and a Dirac distribution at (0,0)". This allows exactly modeling
the static world and enables the filter to converge against the environment.
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e Particle weighting is divided into a cell-based weight, equal for all particles in the
cell, and a particle-specific intra-cell weight.

e The map uses a novel Dempster—Shafer frame of discernment, which explicitly allows
differentiating between occupancy evidences from static objects, occupancy evidences
from dynamic objects, and evidences, where the distinction is not known.

e (Classification between static and dynamic is not binary using thresholds, but contin-
uous evidences are derived based on the velocity distribution. Uncertainties in the
classification are therefore considered.

e The ability of tracking temporarily occluded objects can be controlled with a particle
survival probability and traded-off against computational performance.

The rest of this chapter is structured as follows. Section 2.2 presents the fundamentals,
such as the environment model that is used and the way how the scan grids are generated.
Section 2.3 then presents the grid-based velocity estimator, i.e., the particle map, which
is used to derive evidences for static and dynamic occupancy. These evidences, together
with free space, are filtered over time to increase robustness over noise, which is described
in Section 2.4. Finally, in Section 2.5 first results are given, which will be complemented
in Chapter 6.

2.2 Fundamentals

Before going into details of how the grid-based tracking and mapping works, some funda-
mentals need to be given including the environment model used, Section 2.2.1, an overview
of the main components, Section 2.2.2; and the scan grid generation, Section 2.2.3.

2.2.1 Dempster—-Shafer Environment Model

As mentioned above, in this work the Dempster—Shafer Theory (DST) of evidence [42, 43,
142] is used instead of the more common Bayesian inference as used in standard occupancy
grid mapping [157]. Before presenting the environment model used in this work, the
essentials are quickly revisited.

The Dempster—Shafer Theory of Evidence

The Dempster—Shafer theory of evidence can be seen as a generalization of the Bayesian
theory [43]. Uncertainties are better represented in this model. While in the Bayesian
model, a low probability of p(A) = 1 —p(=A) implies a high probability of its negate, DST
allows a specification of an evidence also for the latter, together with uncertainty about
the system. Rather than probability distributions, the DST model deals with degrees
of belief that are represented by belief functions. Central to the DST is the frame of
discernment ©, which represents the hypotheses about the world. The hypotheses are the
atoms or singletons of ©. However, instead of only regarding the atoms of ©, in the DST
model, every element of the power set 2° is considered. This gives greater flexibility and
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allows integrating partial knowledge in the form of evidence for the supersets of the atoms.
Every set A € 29 is assigned a basic belief mass m(A) using the basic belief assignment
m : 29 — [0, 1] such that

> m(A)=1  and  m(0) =0. (2.1)

ACO

It represents the evidence of a particular set A, not to be confused, however, with the
combined evidence of all subsets of A. The DST defines lower and upper bounds for the
support of the set A: the belief

bel(4) = Y m(B), (2.2)

BCA

sometimes also called the total amount of justified specific support given to A [145], and
the plausibility
pl(A)= > m(B), (2.3)
BNA#D
also referred to as the maximum amount of potential specific support that is given to
A [145]. Two different basic belief assignments m; and ms can be combined with Demp-
ster’s rule of combination

n(4) &P ma(A) = T 37 m(B) ma(C) (24)
BNC=A

VA, B,C C © # () with the conflict

c= > m(B) my(C). (2.5)

BNC=0

The particular application of the Dempster—Shafer theory of evidence is shown in the
following sections.

FSD-Frame for Modeling the Environment

Now that some of the basics of the DST have been revisited, the frame of discernment, that
represents the environment model, is presented. Evidential occupancy grids have been used
before. Often, however, using the simple 2-class frame of discernment © = {F, O}, i.e., free-
occupied [113, 125, 176]. With this low-dimensional model, the benefits of the Dempster—
Shafer theory in representing uncertainties are already exploited. In the Bayesian world, an
occupancy probability close to 0.5 can either come from a low number of observations using
an initial occupancy probability of 0.5, or it can come from a large number of contradicting
measurements. Even greater is the utility of the DST, however, if the frame contains more
than two atoms. Then, evidences for the supersets of atoms can be specified that are
different from the total uncertainty ©, as shown below.
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In order to distinguish between evidence for occupancy coming from static objects and
evidence for occupancy coming from dynamic objects, the frame of discernment

©={F,S,D} (2.6)
is proposed. Thus, the following individual sets exist in this model:
{F} evidence for free space
{S} evidence for static occupancy
{D} evidence for dynamic occupancy

{S, D} evidence for occupied, i.e., either static or dynamic occupancy

{F,S} not used, always conflicting

{F,D} not used, always conflicting

(S} unknown, i.e., evidence for either free space, static occupancy, dynamic
occupancy, or static-dynamic occupancy

This model has the particular advantage that dynamic and static occupancy is separated.
Thus, if a sensor, or an algorithm processing the sensor data, can determine whether or
not a measurement corresponds to a static or to a dynamic object, the belief mass can
directly be assigned to m(S) and m(D) respectively. On the other hand, if a sensor cannot
determine whether or not a measurement is due to a static or a dynamic object, the belief
can be assigned to the superset mass m({S, D}). Furthermore, if two sensors are to be
fused and one can measure the dynamics and the other cannot, the information of both
can directly be incorporated. Next, an overview of the approach, which is centered on the
given environment model, is presented.

2.2.2 GTAM Overview

In this section, the main components of the grid-based tracking and mapping are intro-
duced, and it is shown how they work together.

As the name suggests, GTAM consistently works in a grid-representation, i.e., the en-
vironment is divided into a number of cells, where each cell represents certain properties
of a specific subspace of the environment. This environment representation, as used in
occupancy grid mapping, has shown great utility for several reasons. First, compared
to model-based representations such as bounding-boxes, no shape assumptions about the
environment, are made. Therefore, every possible object shape can be represented, if the
grid resolution is high enough and discretization artifacts are ignored. Second, the data
association problem is avoided, as it is already provided by the grid structure. Third, cell
independence assumptions allow efficient operations on the grid. And fourth, due to the
grid being essentially an image, algorithms and ideas from related fields, such as com-
puter graphics and computer vision, can be used. In particular, due to general-purpose
computing on graphics hardware with platforms such as Nvidia Compute Unified Device
Architecture (CUDA) [122], computation-intensive operations can still be performed in
real-time, which is mandatory for autonomous vehicles.

The basic entities in many grid mapping techniques, such as in this approach, are scan
grids. They represent the data of the sensor measurement at a particular time in the form
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thl M1 ——>

ms —>( PMap my

X, Vi

Figure 2.1: Overview of GTAM. Shaded variables are the suggested output of the system.

of a grid. In the scan grid generation process, probabilities, or evidences, for the hypotheses
occupied and free are deduced based on the measurement z;. If multiple sensors are used,
their scan grids can be fused, as one way of sensor data fusion. Both, scan grid generation
and fusion are touched in Section 2.2.3. The scan grid m; uses the environment model
from Section 2.2.1. Intentionally, the same letter m is used for both, grid maps and belief
masses in the Dempster—Shafer theory, since the maps use the DST model presented above.
Hence, the first step involves computing evidences for free and static-dynamic, i.e., ms(F)
and m4({S, D}), which are the input for the particle map (PMap). Figure 2.1 shows the
overview in form of a diagram.

The map v, at time t is a grid-based velocity map obtained from the particle map
described in Section 2.3. In the PMap, velocity distributions are estimated using particle
filters and therefore represented in the form of a set of particles X;. With the set &, i.e.,
the estimated cell velocity distributions, the belief m,, is inferred that holds the evidences
for static and dynamic occupancy, m,(S) and m,(D). This step is different to existing
literature, which, as described above, either requires to have the distinction between static
and dynamic sensor measurements already available or estimates it using binary classifiers.
Here, the dynamic information, i.e., the velocities of the environment, is estimated and
continuous beliefs about the static and the dynamic environment are generated.

The belief m,, is the input of the Dempster-Shafer theory map (DSTMap), described in
Section 2.4, which fuses m, with the belief m;_; from time ¢ — 1 to generate the current
belief m;. This step filters the free space evidences from the scan grid as well as the {S, D}
and the static evidences in order to create a robust map.

2.2.3 Scan Grid Generation and Fusion

The scan grids are the fundamental elements of the filters. They are generated from
the data of the sensor measurement z; at a particular time ¢. Similar to occupancy grid
mapping, as described in [157], inverse sensor models are used. However, instead of prob-
abilities, belief masses for the sets {S, D} and {F'} are derived from the sensor data, as
shown in the following. It is noted, that it is assumed that the sensor data is already
processed with regard to reflections from the ground.
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Laser Scan Grids

Laser range finders are accurate sensors. They measure the range and the bearing to
the obstacles in their field of view. In this work, 4-layer laser scanners are used for the
experimental evaluations.

Different sensor models, depending on the characteristics of the scanner, as well as
different scan grid generation algorithms, exist. Since the sensor takes the measurement in
polar space (range and bearing) and the maps are usually updated and stored in Cartesian
space, a conversion is required. In [71, 72], a polar scan grid is generated first, where each
row corresponds to a laser beam. This way, a single laser beam, or more precisely the
model of the laser beam, if it is assumed that the horizontal resolution of the scanner is
large enough in order not to miss the smallest objects in width at the maximum distance,
travels exactly through one cell at a time. The polar scan grid is then transformed into a
Cartesian scan grid using texture mapping, i.e., the process of coloring 3D objects using
2D images of the texture of the objects, known from computer graphics [69].

An alternative approach is to directly calculate the scan grid as a Cartesian grid. Here, a
model similar to the inverse range sensor model from [157] is used. Since the operations are
independent for every grid cell, instead of relying on some sort of raycasting, it performs
well on parallel hardware, such as GPUs. First, all four layers are projected onto the same
plane, since the vertical field of view is small. Let the index j iterate over all bearings
of the measurement z; taken from position x;, which pass through or overlap the current
cell 4, which itself has the position z'. And let j/ = argmin; z{ be the index of the one
bearing passing through cell ¢ with the smallest range measurement. If the cell 7 is out of
the sensor range, then j' is —1. The scan grid belief mass for occupied

(I2* = x|l = 2f)°
_ max Meee €XP 7—2'6 if 77>0
mi({S,D}) ={ 7 20 2.7)
0 else

is calculated using a Gaussian distribution with maximum occupancy evidence mge.. The
belief mass for free, with maximum evidence mgee, for cell 7 is calculated according to:

‘ max (mgee — m:({S, D}),0) if > 0N |J2f —z| < 2
my(F) = (2.8)
0 else
For completeness, the belief mass for unknown

mi(0) =1 —m.({S,D}) —mi(F) (2.9)

is simply the residual uncertainty. Figure 2.2 shows the laser scan points and the scan grid
belief masses in two scenarios. The green channel denotes the free evidence, and purple,
i.e., the red and the blue channel, denote the evidence for {S, D}.
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Radar Scan Grids

Similar to laser scanners, radar sensors also yield the range and the bearing to the targets,
although the measuring principle is quite different. Radar sensors are less accurate and
unlike laser scanner data, which is usually modeled as point cloud, radar sensor data is
often obtained as a list containing the n strongest reflections or as a polar image. The
latter is what is received by the radar sensor used here.

The polar amplitude image can already be used as occupied mass of the scan grid. It
is transformed into a Cartesian grid using texture mapping as done in [71] and mentioned
before. Free space evidences still need to be calculated, though. Sometimes, the occupancy
probability, which includes the probability of free space, is directly calculated from the
reflection intensity [31, 72]. Hence, every cell that is above the noise level corresponds to
an occupancy probability > 0.5 and every cell below the noise level to a probability < 0.5.
However, with this model, even cells that lie behind objects, where the radar signal does
not pass through, such as walls, result in free space, although they can actually not be
observed. Therefore, an approach similar to what is used for laser range finders is chosen.
In every row of the polar reflection image, it is searched for the first obstacle, and free space
is assumed up to this cell. Additionally, the free space evidences decrease with increasing
distance to the sensor to model the decreasing likelihood for detecting a target. This is
different to the model for laser scanners. The measurement ray of a lidar cannot pass
through obstacles, ignoring glassy objects for the applications in this work, and therefore
free space up to the reflection is equally likely, independent of how far the obstacle is away.
Similar to the examples with laser scanner data, Figure 2.2 shows radar scan grids in the
same scenarios.

Scan Grid Fusion

The information of individual sensors can be fused to increase robustness and to increase
the field of view. Sensor data fusion will, however, only be briefly touched as it is not topic
of this thesis. Sensor data can be fused at different levels [80]. In the context of grid-based
representations they are the raw data level, the scan grid level, and the map grid level.
Fusion at scan grid level has the advantage that the raw sensor data is already put into the
same format, i.e., the grid structure, while the data is still raw in that it is not filtered, as
is the case for map grids. Additionally, the computational overhead is kept low, since the
data is fused before updating the map and therefore only one map needs to be managed.

However, unlike scan grids that only hold the static environment, the scans in this
thesis also hold the dynamic environment. Therefore, they can only be fused if the sensors
are synchronized, i.e., if the sensors take the measurements at the same time in order to
capture the same state of the environment. Three simple cell-level fusion methods are
given in the following, which combine the cells that correspond to the same location of the
world independently of neighboring cells.
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Let the index j iterate over all scan grids. The most defensive approach is to fuse the
scan grids according to the maximum occupancy

g, s 1
Jj = arg;ndx m, ({S, D})

, . (2.10)
mi(A) =m! (A)
Ace 7

and to choose the free space evidence correspondingly. This way, if an object is detected
by any sensor, it definitely is in the fused scan grid, as is any noise, however. In terms
of accuracy of the location of the objects, the output corresponds to the accuracy of the
least-accurate sensor, at least at the locations that are measured by it. In general, a
grid is not an ideal structure for fusion in terms of location accuracy. Other than the
combination of Gaussian distributions, such as in a Kalman filter, where the resulting
variance will be smaller than, or in the worst case equal to, the variances of the individual
distributions [157], in a grid, since every cell is treated independently, this is not the case.
The fused result can never be more accurate than the accuracy of the best sensor with
standard fusion techniques.

An alternative way to fuse scan grids is by taking the maximum evidence of either
occupied or free, i.e.,

oo i. A
J alg]max AE{III%{ag’cD}} mg, (A)
(2.11)
my(A) = m (A)
Ace ’

If the free space evidences of the accurate sensors are designed to be higher than the
occupancy evidences of the less accurate sensors, then at the non-occluded parts of the
objects, the accuracy in the fused result is retained.

In between is a combination of the belief masses using combination rules, such as the
Dempster rule of combination

mi({S,D}) = mi, ({S, D}) & - & mi ({S, D}) o)
mi(F) =mi (F) &P .- &P mi (F), '

S1
which derive a new belief based on the mass evidences given by each sensor.

Figure 2.2 shows results of the scan grid fusion using Dempster’s rule of combination.
The upper row in Figure 2.2 depicts a situation, in which the radar sensor receives a
high amount of reflections from a guardrail to the left of the ego vehicle, which cannot be
perceived that far by the laser scanner. Although the radar sensor has a high uncertainty
in its location, due to the combination, the strong free space evidence of the laser scanner
reduces the extent of the radar occupied masses, which are weaker at the border of the
reflections. The lower row shows a scenario, in which the radar sensor detects a moving
object, which is occluded in the laser scan by another vehicle.
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(a) Laser points. (b) Laser scan grid. (

c) Radar intensity, (d) Radar scan grid. (e) Dempster fusion
Doppler (polar).
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(f) Laser points.

(g) Laser scan grid. (h) Radar intensity, (i) Radar scan grid. (j) Dempster fusion.
Doppler (polar).

(k) Camera image of upper scenario.

(1) Camera image of lower scenario.

Figure 2.2: Scan grid fusion in two different scenarios, upper and middle row.
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Grid Coordinate Systems

The filtered map grids are of constant size. Therefore, if the robot is moving, two grids from
two different time steps have to be aligned so that the information about the same world
locations is combined. Details about the coordinate systems can be found in Appendix A.3.
Note that all velocities in this chapter are absolute, i.e., not relative to the ego velocity.

2.3 The Particle Map

In this section, the particle map (PMap) is presented. It is a grid-based velocity estimator.
The particle map was inspired by ideas from [35]. This work, however, presents a different
formulation and a different underlying model, which is presented in Section 2.3.1. The
main components such as sampling, Section 2.3.2, weighting and resampling, Section 2.3.3,
are done in different ways, as highlighted in Section 2.1.2. The approach is given and
demonstrated with a laser scanner and a radar sensor. The Dempster—Shafer belief mass
derivation, which is input to the DSTMap presented in the next section, is described in
Section 2.3.4.

2.3.1 Estimating Cell Velocity Distributions using Particle Filters

The particle map is a velocity map v, that represents velocity distributions at particular
time instances ¢t. Similar to occupancy grid mapping, the goal is estimate the posterior
over all maps

p(ve | 210, 1) (2.13)

given the measurements z;; and the robot poses x1,. Due to the grid representation
the map is represented by a set of cells v, = {v}}, where every cell has attached to it a
random vector V = (VI VU)T in order to represent two-dimensional velocity distributions.
Although the cells contain velocity distributions, i.e., dynamic information, they do not
move in space, but the grid is a fixed discretization of the world.

As in occupancy grid mapping, the posterior from (2.13) has an intractable dimensional-
ity. Similarly, the problem is simplified by assuming that the cells are independent within
a single time instance t allowing the posterior to be approximated as the product of its
marginals

P | 2, m1) = [[ 20 | 210 210). (2.14)

Differently to occupancy grid mapping, a time index ¢ is introduced due to a drop of
the static world assumption and the cell independence assumption is only valid within ¢,
since dynamic objects are expected to move over multiple cells over time. Put differently,
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it is assumed that the velocity distribution p(vi | 214, 214) of cell i is independent of
p(V] | 214, x1.) of cell j at time ¢. Between different time steps, however,

PV} | 214, 1) = /p(l/f | Vie1, 21, T10) P(Viet | 2101, Trae1) dveq
’ (2.15)
= /P(VZ ‘ Vt—lazl:tyxl:t) HP(VZ_1 \ Zl:t717371:t71)th71

i

the full map posterior is used.

Now, to estimate the velocity posterior from (2.13), particle filters are used. Particle
filters, as described in [157], are a non-parametric version of the Bayes filter. In a par-
ticle filter, the posterior probability distribution is represented by a finite set of particles
X = {x¢5)}, instead of, e.g., a Gaussian distribution such as in a Kalman filter. Therefore,
arbitrary multimodal distributions can be represented. Particle filters have proven to be
very efficient in low-dimensional problems, such as in the localization problem and they
have also been used for Simultancous Localization And Mapping (SLAM) [111].

Due to the independence assumption from (2.14), the particles represent low-dimensional
velocity hypothesis, i.e., a v = (vz /uy)T of a particular cell 7, rather than full maps. Each
particle is, at a given time ¢, at one particular continuous position in the grid. The particles
themselves are 4-D vectors

X = (Tl Tym Ve Vygm) - (2.16)
It will be referred to vy = (U.»L-.,[k] Uyﬁ[k])T as the velocity component of yp, and to
T = (Topm ny[k])T as its position.

Between consecutive time steps the particles move according to a motion vector and a
certain motion model through the grid. They are not fixed to the cells, in which they
are created. However, at one particular time instance, every particle does belong to one
particular cell. It is then one particular hypothesis of the velocity distribution of that cell.
The map posterior at time ¢

P(Vt | Zl;t,fElzt) = HP(VZ' | Z1:t7-T1t H Z lU[k]5 VpUt [k]) (2-17)

i X¢, k) €celli

is therefore represented by a product of cell velocity distributions, which are in turn rep-
resented by a sum of weighted Dirac delta distributions ¢ that are the particles.

In the following sections, the three main components of the particle filter, i.e., sampling,
weighting and resampling are given.

2.3.2 Particle Creation and Sampling
Sampling is the process of recursively generating a new set of particles Xy, i.e., a new set

of hypothetical states, based on the set of particles X;_;. In many robotic applications,
such as in this work, this step involves moving the old set of particles according to their
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state hypotheses and a certain motion model. Formally, the new particle set is sampled
from
Xt ~ p(Vt | Xt_l). (218)

Since the velocities are represented in global grid coordinates, as described in Ap-
pendix A.3, the ego velocity is not needed in this process.

The particles are moved according to a simple constant velocity model

T = Te—m + Atveyp + N (0, diag (o), 02))
(2.19)
v = Vi + N (0, diag (o7, 07,))

with added Gaussian noise for the position, having standard deviation o,,,, and for the
velocity, having standard deviation o, .

Initial Position Sampling

Initially, the particles need to be created so that they can be moved, weighted, and resam-
pled. Typically, as in Monte-Carlo localization, the initial particle distribution is uniform
throughout the state space. Applying this strategy, though, means to sample the entire
4-D space, requiring a high number of particles. In addition, it is expected that once the
particles have converged towards the current scene and a fixed number of particles is used,
newly-appearing objects are hard to detect. This is known as the particle deprivation
problem [157], since for a particle filter it is important to keep the particles spread out
evenly and densely so that there actually are particles in the vicinity of the true states.

In areas, where no measurements occur, no velocities can be inferred and usually most of
the cells from a grid map are either free-space, occluded-space or otherwise not-observable-
space. Therefore, particles are only created in those cells, initially placed in the cell
center, where measurements occur. Previously created particles are, however, allowed to
exist even in areas where there is currently no measurement, in order to compensate for
missed detections and occlusion, as described in Section 2.3.3. Note that the generation of
particles, as well as their deletion through the weighted resampling, is a continuous process.
Whenever the mass m,({S, D}) from the scan grid is greater than 0 in a particular cell,
and no particles from the previous time step landed in that cell, new particles are created.
The number of particles that are created in the cell 7 equals

|

= |nim=mi({S, DY), (2.20)

X

1,max

where n;™* is the maximum number of particles in a cell. Hence, newly-appearing objects
can quickly be detected. Additionally, the total number of particles is not fixed but adapts
according to the density of the scene guaranteeing that there are always enough particles
to estimate the dynamics of the objects in the environment, while at the same time keeping
the total number of particles low.
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Initial Velocity Sampling

Apart from sampling the position, i.e., the cells in which new particles are created, the
velocity distribution from which the particles are drawn is also of major importance for
the performance of the estimator and for the world that can be modeled. In [35], uniform
sampling from the 2-D space of velocities is used. The following is however observed.

Observation 2.1 With uniform velocity sampling it is impossible to exactly represent the
static environment, since the probability

Pv=(0 0)")=0 (2.21)
of sampling an exact static particle is zero.

Therefore, it is proposed to add a Dirac delta distribution centered at (0 O)T to the
uniform distribution & and to sample from

o —Upne v 0
i iy ‘max max 2.99
p(¥ | %) = wp Z/{((_Umax) , (Umax)> + wg 0 (0) , (2.22)

where wp + wg = 1 represent the priors about the amount of dynamic and static cells
respectively. With uniform sampling alone, the particles will never converge at static ob-
stacles. The filter is continuously generating particles with random non-zero velocities that
eventually move out of the cells corresponding to the static objects. This is demonstrated
later in Chapter 6.

It is noted that the introduction of pure static particles comes at a price, since less
particles are available for sampling the velocity of dynamic objects. However, on the
one hand, for creating a map of the environment, it is even more important to robustly
determine whether or not a cell is static or dynamic, than additional precision in the
estimated velocity. And on the other hand, static particles do not need to be moved. They
therefore stay where they are created, do not need to be re-mapped onto the new cells,
and can also be stored efficiently, since per cell they are all equal.

If a sensor is used, that is able to measure velocities or parts of it, this information can
be used during initial sampling.

Initial Velocity Sampling with a Radar Sensor

A radar sensor, compared to, e.g., a laser scanner, is able to measure the radial component
of the velocity of the dynamic objects relative to the ego velocity. The radial velocity
is the 1-D projection of the true velocity vector of the measured point in space onto the
line that connects the sensor and the measurement. It provides a good estimate of the
true velocity in cases, where an object moves parallel to the sensor axis, but gives less to
none information about the true velocity for an object moving perpendicular to the sensor
axis. Note, the measurement of a perpendicular moving point in space relative to the line
connecting the sensor and the measurement is 0.
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The radial velocity measurement z,, of the radar is only used, if the intensity, i.e.,
the reflectional component of the measurement is above a certain threshold. Otherwise,
the corresponding velocity measurement cannot be trusted and initial sampling is done
according to (2.22). If the intensity is above the threshold, the initial velocity sampling
distribution of cell 7 is calculated according to

Py | z0) = p(g | 21,) =

zéR UgR 0 ) 0 R i
= m () (5 o2 () #e0(0) 00> oy

./\/’(zf,R7 JgR) 0
wp ol (U (—Vmax: Umax) T wsd 0 else

with normalizer
N(z, 02) .
n= // ( VR’ TUR dvg dvp (2.24)
( [=00,00] X [~Umax,VUmax] U(~Vmax; Umax)

and explained in the following.

The accuracy of the sensor in measuring the correct radial velocity is modeled as Gaus-
sian distribution with mean zéR and standard deviation o,,,. It is assumed that the ego
velocity is already compensated, i.e., that z,, holds the absolute values. Due to the mea-
surement of the radial component only, there are infinitely many possible velocity vectors.
Figure 2.3 depicts the situation and shows the line v - (z,/|]2]|) = 2y, of possible cor-
responding velocity vectors v according to the position of the measurement z,. To ease
notation it is assumed that the sensor is in the origin of the coordinate system.

If the measured radial velocity is smaller in absolute value than e, the distribution
is modeled similar to (2.22) with a static part, weighted by wg, and a dynamic part,
weighted by wp. The radial component is, however, Gaussian distributed according to
the measurement. Since nothing is known about the tangential velocity, it is modeled as
uniform distribution. R, denotes a rotation matrix of o degrees, where « is the angle
between the z-axis and z,.

The situation is similar, however slightly different, when the measured radial velocity
is above a certain threshold. The larger the measured radial velocity z,,, the less likely
it is that the norm of the true velocity ||v*|| strongly deviates from |z,,| ignoring sensor
inaccuracies and failures. This is motivated due to the fact that |v}| is always an under-
approximation of ||v*
proportional increase of [|v*|| over |vg|. If |v}] is already high, an assumed maximum speed
limits the distribution of velocities in the tangential direction. Using the same argument,
the higher the measured radial velocity, the more likely it is that the measured point in
space moves in a similar direction as the ego vehicle. Therefore, the standard deviation in
the tangential direction

|, and the proportional deviation between |v}| and ||v*|| reflects the

our(2,) =ae™ [0l (2.25)
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= Zup

Figure 2.3: Radar sensor model used for the velocity component in particle creation.

is modeled inversely proportional to the measured radial velocity using an exponential
function.

Due to resolution inaccuracies of radar sensors, compared to laser scanners, a small
fraction of static particles is added, even if a high radial velocity together with a high
reflection intensity is measured. In the experiments, it was observed that the reflections
of moving vehicles are sometimes larger and more intense than the reflections of the static
environment, which lead to the creation of only dynamic particles in cells containing static
obstacles, such as road boundaries next to dynamic objects. Next, the weighting and
resampling steps are given.

2.3.3 Particle Weighting and Resampling

The weighing and resampling in particle filters are the mechanisms of how the filter con-
verges to its estimate. In every step, each particle gets assigned a weight, which represents
how well that particular particle fits the data. This weight is then used to generate the
new particle population, where the probability of drawing a particle corresponds to its
weight. Resampling is also known as importance sampling. The aim is to approximate a
target distribution peareer. Often, it cannot be sampled from pearger directly, but only from a
different probability density function ppropesal, the proposal distribution. For the proposal
distribution, the following must hold

DPrarget >0 — Pproposal >0 (226)

To account for the difference in the distribution from which is sampled and the one that
is estimated, each particle x| is weighted according to

Prarget (X[k])

(2.27)
Pproposal (X[k])

Wik) =

26

IP 216.73.216.60, am 24.01.2026, 06:28:16. © Inhak.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186246080

2.3 The Particle Map

Dividing the target distribution for the presented particle filter

Prarget = p(Vlit ‘ Zl:tyxl:t) (228)
by the proposal distribution
Pproposal = P(Vl:t | Zl:t—l-,z]:t—l) = p(Vt | l/t—l) p(Vl:t—l ‘ Zl:t—laxlzt—l) , ie., (2-29)
———
Xy from X;_q X1
ptarg‘et — p(yl:t | Zl:hxl:t)
pproposal p(Vt | l/tfl)p(yl:tfl ‘ Zl:tflax]:t—])

Bayes P2 | Vi, 21021, 1) (V1 | 21021, 12t)

P(Vt | thl)p(l/uq \ Z1:t71,-T1:t71)

p(zt \ V1t Z1:t717$1:t)27(1/t | l/t71,21:t71,$1:t)p(V1:t71 | Zl:t—lwrl:t)
P(Vt | Vt71)p(V1:t71 | Zl:t717$1:t71)

Markoy n p(Zf, \ Vr,,It)P(Vt | Vr,71)P(l/1;t71 | Zl:t—l7I1:t—1)
P(Vt \ Vt—l)p(Vlzt—l | Zl:t—l-,Ilzz—l)

= np(zt | v, )

(2.30)
yields the measurement model. Assuming independence, the weight of particle X;’[k], asso-
ciated to cell 7 at time ¢, therefore corresponds to

wig = np(2 | X, 20)- (2.31)

Cell-based Weighting

As discussed before, velocities cannot be measured directly with many sensors, such as
laser scanners, and hence it cannot be decided whether one particular sample, within one
time instance, fits the data better than any other sample in the same cell. However, since
the particles are allowed to move on the grid over time, they can still be weighted on a cell
level. A particle that lands in cells which have high associated cell weights, at the times
the particle was in each of those cells, fits the real world dynamics well and also has a high
chance of being drawn in the resample procedure. On the other hand, if a particle moves
through cells with low associated weights, it has a low probability of being drawn.
The weight of cell 4

wi = sz«[k] = n; w;[k] = np(zl | X}, x0) (2.32)
X4, [k]

equals the sum of the weights of all particles in the cell and corresponds to the probability
of the measurement 2z given the set of particles in that cell ?t The weight is equal for
all n;( particles. Since the actual particles in the cell, i.e., the velocity hypotheses, are
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irrelevant for the measurement, only the number of particles |7:| is of interest. Due to
the random initial generation of particles, the number of particles that reached cell ¢ from
the previous time step, does not say anything about how good the velocity hypotheses of
the particles are. Even one particle may guess the true velocity correctly and is also a
hypothesis for occupied. Similar to the initial particle generation from (2.20), where the
number of created particles corresponds to the evidence of {S, D}, the cell weight

wi o< mi({S,D}) (2.33)

is therefore proportional to the scan grid mass of {S, D} of cell ¢ and defines the desired
number of particles in the cell after resampling, n;’de“‘.

Shown above, and differently to other particle filter applications, the number of par-
ticles is not constant, but continuously adapted through particle creation and cell-based
weighting and resampling. If the number of particles needs to be reduced according to the
predicted set of particles and the cell weight, particles undergo a particle deletion filtering.
Otherwise, a single missed detection or occlusion in a single frame leads to an elimination
of all particles.

If n;’des < |fz|, and the particle Xi,[k] associated to cell 7 is to be removed, which is
equivalent to not being drawn by the resampling step, it still has a probability of surviving

Psurv (X;,[k]) = max(p;‘ﬁﬁ - mi(F)7p!s]1]11rI:/) (234)

max, and a minimum survival probability
min

P The probability peuy is inversely proportional to the measured free space, since it is
likely that particles that move into measured free space, correspond to random noise and
need to be eliminated. On the other hand, in areas that are occluded in the current scan,
the survival probability is higher, in order to continue the tracking.

controlled by a maximum survival probability p

Intra-cell Weighting with a Radar Sensor

Similar to particle generation, with a radar sensor, the particles can be weighted directly
according to the measured radial velocity. The weight

Wk X N(ZiR;UR.[k] o2 ) (2.35)

'y Yog

of particle x[y is modeled proportional to a Gaussian distribution with mean
VR[] = PTOJ, (R,a v[k]), (2.36)

standard deviation o,, and evaluated at the measured radial velocity z;R Note, that the
intra~cell weighting is done in addition to the cell-based weighting, i.e., the number of
particles is still controlled with the cell weights w?. This time, however, the weights of the
particles are not equal but calculated according to (2.35).

After having calculated the weight of each particle, resampling is applied using the low
variance sampler described in [157]. It exhibits the desired property of maintaining the
same particle population if all weights are equal. Now that the particle filter based velocity
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estimation is given, it is shown next, how evidences for the masses of static and dynamic
are derived.

2.3.4 Belief Mass Derivation

In the previous sections, the velocity estimator is presented. It is a grid-based tracker
that works on the cell level and estimates, for each cell, a velocity probability distribution.
It already provides useful information about the environment and may fully or partially
replace classical model-based trackers. For computing maps of the static world in dynamic
environments, a classification between static and dynamic on the cell level is needed.

In [35], this classification is binary and based on the particles. In particular, a cell is
static, if the absolute values of both components of the mean velocity are lower than twice
the standard deviation of the velocities of all particles in the cell. Otherwise, the cell is
dynamic. Intuitively, those cells are declared static, whose velocity distributions, starting
from uniform distributions, either failed to converge or have not yet converged to peak
distributions. They are detected indirectly, as where the particle filter fails to capture the
environment.

Since here, pure static particles are sampled, in addition to uniform velocity sampling,
the static as well as the dynamic particles can directly be detected based on their velocity.
Let X' = XiUX} be the set of all particles of a particular cell that have survived at least ¢
steps, in order to incorporate the fact that velocities are estimated indirectly over multiple
time instances. Then

Xy = {xw | xw € X" A ol < e}
v ‘ (2.37)
Xb = {X[k] ‘ X[k € X' A HU[k]H > E}.

Contrary to a binary classification, it is aimed for a continuous evidential classification
using the environment model described in Section 2.2.1. The evidential belief masses

_ sl

”L; ( { S } ) - ng{,max
. orient ‘ XB |
m;({D}) = <1 o grorient ) o, bImax
max Ty

m;({F}) = min(mi({F})7 1-— m;({S}) - m;({D}))
my,({S, D}) = max(0, my({S, D}) —m({S}) — m,({D}))

mi(©) =1-3 mi(A) (2.38)

ACO

are calculated based on the set cardinality of the corresponding subset of X? and based
on the scan grid m,. The ratio of the dynamic particles in the belief mass calculation
for the set D is weighted with the inverse of the standard deviation of the orientation of
all dynamic particles in the cell. This is similar to the observation from above, in that
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a uniform distribution does not support the hypothesis dynamic, since it corresponds to
the initial sampling distribution. The mass for free is directly taken from the scan grid.
However, due to the non-zero particle survival probability from (2.34), it may need to be
adapted according to the masses m,(S) and m,(D). The mass m,({S, D}) corresponds
to the residual mass of the scan grid, m,({S, D}), after subtracting m,(S) and m,(D).
Intuitively, since m,({S, D}), which is the scan evidence for occupied, controls the number
of particles in the cells |X’| = }Xg u X5|, its mass is partially transferred to the masses
of its subsets, i.e., the evidence is distributed to the more specific sets S and D. Without
particle survival probability and according to (2.20) and (2.33), it can be observed that
m,(S) +my(D) < ms({S, D}).

Results of the particle map are shown in Section 2.5, and an evaluation and a comparison
to the approach of [35] can be found in Chapter 6. Next, it is shown how the derived beliefs
are filtered over time to yield a robust environment model.

2.4 The Dempster—Shafer Theory Map

In the previous section, the cell-based velocity estimator is presented, and it is shown how
evidences for static and dynamic are calculated using the particle-based velocity distribu-
tions. Nevertheless, the estimated evidences may still contain noise, since they are not
filtered yet, as done in occupancy grid mapping. Every measurement directly leads to
the creation of new random particles. Additionally, since the particles die out if no mea-
surements support them, evidences for static obstacles from previous observations, which
are now occluded or out of the sensor range, are lost. Similarly, free space evidences are
also not filtered yet. A robust environment model is important in order to be used for
demanding applications such as path or trajectory planning.

Section 2.4.1 describes the temporal filtering for the Dempster—Shafer Theory Map
(DSTMap) and Section 2.4.2 discusses how the DST model can be reduced to a stan-
dard probabilistic occupancy grid of the static environment.

2.4.1 Filtering over Time

The filtered map at time ¢ is calculated from the estimation of the previous time step,
my—1, and the current estimated belief from the particle map, m,. All evidences are
filtered cell-wise, i.e., the evidences at the same locations in the world are combined. Since
dynamic objects move, however, this is not possible for the dynamic environment. In
fact, the dynamic world is already estimated and tracked in the particle map and, since
the belief m, is input to the filter in every update step, as shown in Figure 2.1, this
information is directly used.
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Therefore, the dynamic mass of m;_; is moved to the mass of free first, i.e.,

my_(F) = my_1(F) + my_1(D)

m;_y(D) =0 (2.39)
my_1(A) =m_1(A),
ACO\{F,D,0}

since dynamic objects move over free space, or more precisely free-from-static space, and
previous dynamic masses are not filtered in the DST map. Due to this, evidences for free
space not only come from the scan grid but also from previous dynamic evidences. It is
interesting to observe, that free space evidences can thus be obtained in occluded areas, if
a tracked object moves over these areas.

Then, using the conjunctive rule of combination [143, 144], which is the non-normalized
version of Dempster’s rule of combination from (2.4),

mi(A) & ma(A) = Y mi(B)my(C) (2.40)
BNC=A

the belief masses are updated according to

my(A) = n(mj_,(A) &° m,(A))
Ace\(D.g}

me(D) = 1(m;_y(D) & my(D)) + mj_y (F) my,(D) (2.41)

my(8) = n(m;_,(©) & m,(0))
with the normalization factor

1- 79min if m;—l (@) mp(@)

<’l9min
1—c—m}_,(©)m,(O 1—c¢
. L1 (©)m,(©) i
1

1—c

else

and the conflict

( S ml\(B) mp<c>> — m}_y(F)my(D). (243)

BNC=0

In its essence, the combination from (2.41) is Dempster’s rule with two modifications.
First, there is a particular term in the sum of the products of the non-intersecting sets that
forms the conflict, i.e., m;_;(F)m,(D). In the presented model, the conflict between the
evidence for free space from the previous time step and the current evidence for dynamic
is intentional. Similar to (2.39), where previous dynamic evidences are moved to the mass
of F, the conflict between the previous free space evidences and the current dynamic
evidence is given to m(D).
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Table 2.1: Comparison between Dempster's rule and Jgsang's cumulative rule.

my_1 My My @P my My @’ my

m(S) = 08 0 0.8 0.7059
m({S,D}) = 0 04 0.08 0.1176
m®) = 02 06 0.12 0.1765

And second, it is undesirable if the residual uncertainties, i.e., the mass of the unknown
set m(©), converges towards zero. Dempster’s rule has received critical responses due
to non-intuitive results, in particular in cases with high conflict and little to no uncer-
tainty, e.g., [78, 178]. Therefore, the normalization factor is adapted in (2.42) such that
the resulting uncertainty after the combination is never smaller than a certain minimum
uncertainty Jn;,. The masses of all proper subsets of © are equally lowered, in order
to yield the minimum uncertainty ¥.;,. Apart from this modification, the normalization
factor corresponds to the normalization as in Dempster’s rule. It is also noted that the
highest conflict in the presented frame of discernment is expected to come from free and
dynamic, which is resolved explicitly and is excluded in (2.43).

Other combination rules for belief fusion have also been proposed [115, 175] and in
particular Josang’s cumulative rule [77, 78]

m1(A) mz(©) + my1(0) ma(A)

)
m1(0) + mo(©

ma(A) & my(A) =

) —m1(0) me(O)
o (2.44)
mi(0) & ms(6) = - © )JZLE@% TEM() ©) m2(0)

which was also experimented with. However, Jgsang’s cumulative rule lacks the logical
component of Dempster’s rule, since it only combines the masses of the same sets, disre-
garding any supersets. In particular, it does not incorporate the fact that S and D are
subsets of {S, D}, which is shown in the numerical example in Table 2.1. Although the
current estimated belief from the particle map, m,,, which has a non-zero belief mass for
{S, D}, does not contradict the belief of m;_; having a non-zero belief mass for S, the
resulting mass for static is reduced. Hence, even though a high evidence for the hypothesis
static exists and the current estimated belief supports the hypothesis for the superset,
information in the more specific subsets are lost. Dempster’s rule, on the other hand,
produces the desired result and is therefore the rule of choice.

Although the Dempster—Shafer map contains all information about the static environ-
ment, Bayesian maps can be seen as the standard when it comes to grid maps. Therefore,
it is shown next, how such maps are derived from an FSD Dempster—Shafer model.

2.4.2 Deriving Static Bayesian Maps

Many applications, which use grids of the static environment, work with occupancy prob-
abilities, i.e., a single real number in the interval [0,1] that captures information about
occupied space, free space, and unknown areas. For example, collision detection and cost
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evaluation for path and trajectory planning, which is discussed in Chapter 4. Not only is
it often easier to handle for subsequent algorithms, but it is also more efficient in terms of
memory requirements, if the grids need to be transferred between different systems.

If a map of the static environment is required, it is tempting to simply use the belief
mass for static. This, however, yields wrong results, since the masses of all other sets are
ignored, such as free space, areas that have not been observed yet, or occupied evidences
{S,D}. According to the transferable belief model [145], a belief at the credal level can
be transformed into a pignistic level, if decisions need to be made, with the pignistic
transformation. It calculates probability functions from the more general belief functions.
For every atom A of the frame of discernment ©

betP(4) = 3 m(B) ‘A|;|B | (2.45)

BCoO

is the probability of hypothesis A based on the belief m. It distributes the masses of the
non-atom sets of © equally to the probabilities of the atoms.

In the case of the often used free-occupied frame of discernment © = {F, O} [113, 125,
176], the occupancy probability

p(0) =m(0) + m;@) , and
e (2.46)
p(=0) = p(f) = m(F) + y

can then directly be calculated using (2.45).

However, for an FSD frame, it needs to be considered that occupied is in fact the superset
of static and dynamic and directly applying (2.45) means giving 2/3 of the mass of unknown
to S and to D. Additionally, occupancy grid maps hold occupancy probabilities for binary
random variables and refer to the static environment only. Hence, the mass of D needs to
be treated separately and the three-element frame of discernment needs to be mapped to
two probabilities, p(0) and p(—o0) = p(f), as done in (2.46).

Similar to the previous section, evidences for dynamic are also interpreted as evidences
for free space. For the aforementioned unequal mass distribution, it is however not possible
to add all masses of betP(D) to betP(F), since m(©) = 1 does then not result in an
occupancy probability of 0.5. Hence, it is chosen to equally distribute the superset masses
to the free and the occupied probabilities and to assign the mass of dynamic to free:

p(o) = m(S) + M + @, and
S D o (2.47)
p(=0) = p(f) = m(F) +m(D) + M n %

It is noted, that due to the equal mass distribution, the transformation from (2.47)
completely ignores evidence for {S, D} in the static map and only uses the masses of the
atoms. For the applications in this thesis, having occupancy probabilities from dynamic
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Figure 2.4: Color coding of the orientation of the estimated velocities. Orientations are relative
to the current orientation of the robot (white mark to the right).

objects in the static map is equally undesirable as to miss a static object. If, however, not
missing a static object is of higher priority, then m({S, D}) can also be transferred in a
biased way.

Results from real street scenarios from a vehicle equipped with a laser scanner and a
radar sensor are given in the following.

2.5 Results

Finally, this section shows qualitative results in various different scenarios, such as a busy
urban intersection with a high amount of occlusion, the successful detection of pedestrians
and bicyclists, and results from laser-only, radar-only, and fused data. More results, espe-
cially of quantitative nature, are given in Chapter 6. Unless otherwise noted, the results
come from laser scanner data. It was concentrated on the laser scanner, as no information
about the velocity is available. The approach was implemented on a GPU using Nvidia
CUDA and due to good parallel characteristics runs in real-time.

Color Coding

Two color codings are used. The PMap is visualized in the hue, saturation, and value
(HSV) color space, where

H=<(jin.0), S=myD), V=1-myS). (2.48)

Hence, the hue represents the orientation of the mean velocity vector of each cell velocity
distribution relative to the current ego orientation, as shown in Figure 2.4, the saturation
represents the dynamic evidence, and the value represents the inverse of the static evidence.

The DSTMap, on the other hand, is visualized in the red, green, blue, and alpha (RGBA)
color space, where

R=m(S), G=m(F), B=m(D), A=m(O). (2.49)

Busy Intersection

The first scenario, given in Figure 2.5, shows a busy urban intersection with both, crossing
traffic (upper two rows) and turning traffic (lower two rows). Crossing traffic is the most
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difficult scenario for many state-of-the-art algorithms that use cell conflicts between free
and occupied for the detection of dynamic cells, as explained in the introductory part of
this chapter. This is because, with crossing traffic, the same cell, over which an object
moves, is occupied over multiple time steps by different parts of the object. Therefore,
a conflict may only arise at the first occupied observation of that cell. This can also
be observed in Figure 2.5d and 2.5i, which show standard occupancy grids, as described
in [157]. The occupied cells of the dynamic objects are clearly visible, although they do
not belong in the map of the static environment. Figure 2.5¢ and 2.5h show the Bayes
map computed from the DST map, described in Section 2.4.2, for comparison. No artifacts
from the dynamic objects are present.

Note that this scenario is also difficult for most tracking algorithms, as the crossing
vehicles move at speeds of around 50km/h requiring quick reactions. Additionally, the
scene presents a high amount of occlusion.

Laser, Radar, and Fusion

Next, in Figure 2.6, results from an imaging radar sensor are compared to the results from
a laser scanner. Also given is the result of a simple cell-based fusion using Dempster’s
rule. The results are from the same scenario as Figure 2.2 and mostly already discussed in
Section 2.2.3. Note that the fusion of laser scanner and radar data can also be done by solely
using the scan grid of the laser scanner, and only use the radial velocity measurements
of the radar sensor for the initial cell velocity distribution as well as for the intra-cell
weighting. This way, the accuracy of the laser scanner can be retained.

Turning Ego Vebhicle

Figure 2.7 shows results in a scenario, where the ego vehicle is turning to the right at an
intersection following an object. Since the color coding of the orientations are relative to
the ego orientation, the color of the tracked vehicle goes from purple to red. Also visible
are approaching vehicles that stop in front of a red light.

Pedestrians and Bicyclists

Finally, results from tracking bicyclists, Figure 2.8, and pedestrians, Figure 2.9, are shown.
Figure 2.8 also shows the static and the dynamic evidences from the particle map, m,(.5)
and m,(D), in the red and the blue channel in the bottom right image. Also interesting
in Figure 2.9 is a vehicle that moves in reverse out of a parking lot.
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(b) DST map.

(e) Camera image.

(c) Bayes map from DST map.  (d) Standard occupancy grid.

(j) Camera image.

(h) Bayes map from DST map. (i) Standard occupancy grid.

Figure 2.5: Results at a busy intersection with a high level of occlusion. Upper two rows show
crossing vehicles, lower two rows show turning vehicles.
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(a) Particle map.

(b) DST map.

Figure 2.6: Result from the upper scenario from Figure 2.2. From top to bottom: laser
scanner, radar sensor, and laser-radar fusion with Dempster’s rule.
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Figure 2.9: Pedestrians at a crosswalk.
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2.6 Summary

2.6 Summary

Mapping and tracking yield the important basis of the environment model. They give the
robot a robust representation of the obstacles around it, which is one of the fundamental
requirements for tasks such as motion planning. Especially online-generated grid maps,
often used for checking collision against the static environment, need to be free of any
occupancy values coming from dynamic objects. Since autonomous vehicles move rather
fast, compared to other mobile ground robots, the amount of filtering of individual scans is
limited, and therefore artifacts from dynamic objects are particularly likely to occur. They
need to be treated with explicitly in order for the grid map to be useful for navigation.
On the other hand, rather than based on grids, tracking is usually performed under the
assumption of certain shapes and a list of objects is estimated.

A novel method termed Grid-based Tracking and Mapping (GTAM) has been presented
that simultaneously estimates the dynamic and the static environment from raw, unclassi-
fied sensor measurements in a uniform grid-based structure. It overcomes problems due to
different forms of representations of the static and the dynamic world. Both are estimated
simultaneously without assuming known shapes and without the need for data association
between objects and sensor data, as objects do not exist in this representation.

The approach estimates a velocity distribution for each cell using particle filters. Al-
though the representation is a discretized grid, the velocity hypotheses, represented by the
particles, are continuous samples. The estimated velocity distributions are used to derive
static and dynamic evidences, which are in turn filtered over time, in order to create a
robust and complete model of the environment. It represents free space, static occupancy,
dynamic occupancy, static-dynamic occupancy, i.e., where the distinction is not known or
has not yet been estimated, and the residual uncertainty.

The problem has been formally formulated and details about the particle filter and the
map filtering have been given. It has also been shown, how a Bayesian map of the static
environment can be derived from the Dempster—Shafer model, which is more widely used.
It represents occupied space, free space, and unknown space in form of a single probabilistic
variable. This Bayesian map is used in the following chapters to extract information about
the environment, such as the principal moving directions discussed next.
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3 Detection of Principal Moving
Directions

The principal moving directions through the local environment yield the main possible ma-
neuvers of the robot. They represent the road topology as well as a geometric representative
of each topological choice. With this information forks in the road and road junctions are
detectable, as well as the number of present road courses. Furthermore, they separate the
roadway into a left region, containing the left boundary, and a right region, containing the
right boundary. The road course estimation, which will be presented in Chapter 5, is also
based upon the principal moving directions. In this chapter, the question of how to find
them is examined. The presented approach is based on motion planning and therefore con-
siders the geometric and kinematic constraints of the underlying system—an autonomous
vehicle. This enables estimations of good quality even with sparse road boundaries like
traffic cones, where the road topology is independent of the obstacle topology. Moreover,
no assumptions about the number of principal moving directions or the shape of the road
courses are made. This chapter is based on work that appears in [6] and [9] published in
the context of this thesis.

3.1 Introduction

Motion planning is one of the fundamental problems in robotics. It usually consists of
finding a collision-free path or trajectory from one specific start state to one or several
specific goal states [96]. In some situations, however, the pose of the goal state, i.e., the
location and the orientation, are not known.

In a typical autonomous vehicle system, motion planning consists of several layers, from
high-level maneuver planners, also referred to as driving strategy [14, 15, 18], over path
planners, such as the one presented in this chapter, to low level trajectory planners [170,
171]. As given in the introductory part, often stored maps form the basis in autonomous
vehicle navigation. If it cannot be relied on such an offline-generated map, however, a
planner does not receive goal locations or regions to plan towards anymore.

Without goal states the planning problem becomes different, as it is not clear, what kind
of paths it is searched for. In this work, the length is used as the goal criterion, as will be
described in more detail in Section 3.2. If a path of a certain goal length is found, it is still
not guaranteed that its goal pose is desired, as this path, even if it is optimal under some
cost function, may not follow the road. It may happen that it leaves the true road course in
between two traffic cones—a problem that will be investigated in more detail in Chapter 5.
Additionally, it is possible that more than one road course is available and that a higher
level decision module wants to be able to choose from them. Therefore, many paths need
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to be sampled, where not all of them are going to be relevant. In fact, most of them will
be very similar. Hence, they are combined, i.e., clustered, and only one representative out
of each cluster is used. Next, related work about path planning and clustering is given.

3.1.1 State of the Art

As discussed in the previous chapter, grids are a common way to represent the environment
and are the world model of choice in this work. Therefore, it is focused on planners that
work on grid maps. Additionally, since the field of motion planning is vast, it is focused
on A* and Rapidly Exploring Random Trees, since these two families are combined in the
planner presented in Section 3.2.

A* and RRT Planners

Many computationally hard problems in computer science and related fields are handled
with graphs to decrease and manage the complexity. In the simplest case, a grid can directly
be represented as a graph by connecting the neighboring cells. If the problem is formulated
as a graph, a variety of search algorithms, like Dijkstra’s and A*, are available, such as to
search for the shortest path. Much work has been done on graph search algorithms in the
context of motion planning. The original A* has been extended, e.g., to allow incremental
search. Algorithms such as D* [147] are able to quickly re-plan in changing environments
and any-time planners like Anytime Repairing A* [104] rapidly find a potentially sub-
optimal path and approach the optimal one with more computing time.

Apart from combinations of both, e.g., Anytime Dynamic A* [103], there are also works
that focus on the graph itself rather than a specific search algorithm. They target the
problem of unnatural and suboptimal paths produced by A* and many of its variants,
which is primarily due to the representation of the graph. Non-holonomic systems, such
as vehicles, cannot follow grid-like patterns, simply because they are not able to instanta-
neously change their orientation without moving. Even for robots that are able to, such
zick-zack-patterned paths are highly suboptimal as they typically require the robot to
stop, to change orientation, and to accelerate again. Theta* [116] modifies how the search
graph is generated. Instead of restricting the neighbors of each node in the graph to the
neighbors of its grid cell, an edge between two nodes can traverse multiple cells. Hence the
move direction from one node to another is not limited to the either 4 or 8 neighbors any-
more. Field D* [57] also provides a way to represent an any-angle move between two cells.
Cell costs are associated to the cell corners rather than the cell centers and an any-angle
transition is calculated by linearly interpolating the cost of the corresponding cell corners.

Planning linearly in an any-angle fashion is still not enough to satisfy the non-holonomic
constraints. Different to graphs which are directly defined on the grid, graphs can also
be defined completely independent of the underlying object representation. Instead of
linear edges between neighboring vertices, the edges can be designed to be feasible by the
system. The system state is encoded in the graph node and a system model is used for the
generation. Often, every graph node has a fixed number of outgoing feasible edges that may
be precalculated. These are referred to as the motion primitives. Motion primitives are
short path segments that are sticked together to create a path. In state lattices [128, 129]
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the motion primitives are carefully designed to create graphs exhibiting a high amount of
cycles in order to reduce the number of leaf nodes and thus the complexity of the graph.

Hybrid-state A* [49] is a variant similar to Field D*, but without the limitation of
piecewise linear paths. The state space is discretized into cells, but the graph nodes may
land at arbitrary continuous positions within the cells. The continuous positions are stored
and transitions to the child nodes are done using this continuous state and by applying
the system model or by using motion primitives. Edges are pruned with the discrete cells
to reduce the graph complexity. Hybrid-state A* is, however, not guaranteed to find the
minimum cost path due to the pruning and a violation of the Markov property, but the
output typically lies in the neighborhood of the global optimum, as the authors point out.
Compared to state lattices, this approach allows more flexibility of the motions between
nodes, but is not as effective in pruning.

Apart from A*, Rapidly Exploring Random Trees (RRT) [95, 96] are another popular
family of planning methods. In the RRT algorithm, a tree is built that grows towards
random continuous samples from the search space. A path to the goal is found by sampling
the goal state with some, usually low, probability and thus by trying to connect the search
tree with the goal. Although the original RRT does not use cost values and therefore the
resulting paths are typically far from being optimal, extensions targeting this issue have
been developed [56, 74, 82, 160].

Not many combinations of A* and RRT exists. In roadmap based methods, RRTs are
used to construct the roadmap and A* to compute shortest paths in this graph [21]. In [86],
the workspace is decomposed and a heuristic similar to A* is used to construct a roadmap.
In [130], a workspace decomposition is used to run a discrete graph-search algorithm like
A* to obtain leads for a continuous search [130].

Without goal poses, the planning problem becomes different, as described above. Path
planning without known goal poses is related to reachability analysis, which aims at ex-
tracting all reachable states from a certain start state within a fixed time frame [13]. Also,
there exists a variety of trajectory planners that do not have direct goal poses, such as
trajectory planners that create and evaluate trajectory bundles often around a guidance
path or street model, e.g., [164, 171] or collision avoidance trajectories planners, e.g., [65].
Other than in offroad environments, if no reference or guidance path is available, such
approaches alone are not sufficient for real street scenarios, and the computational com-
plexity increases in a way that exact reachability analysis is not feasible anymore. It is
however noted that the local path planner, which is presented in the following can also be
viewed as an approximation of the reachable set.

The set of planned and evaluated paths is reduced to the principal moving directions in
a second step through path clustering. Related work to path clustering is therefore given
in the following.

Trajectory Clustering and Homotopy

As written above, many of the paths generated in sensor-based local planning will be sim-
ilar and can be combined. The main question is, however, how similarity is defined. This
question is tightly coupled to the problem one wants to solve. Clustering of robot trajec-
tories is used in a variety of different tasks, e.g., in learning trajectories for manipulation
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activities [124], in motion prediction [148], in street intersection surveillance [16], or in
grouping trajectories to detect possible maneuvers [6, 22, 88]. Many well-studied algo-
rithms exist in the clustering literature, such as k-means [51], hierarchical clustering [51],
DBSCAN [54], or neural networks [179]. Unlike data points residing in Euclidean space,
there is no standard definition of how similar two paths are. Often, geometrically-motivated
distance measures between trajectories are used [6, 16, 27, 124], such as the summed Eu-
clidean distance between corresponding trajectory points evaluated at the same time or
length parameter [6], the Hausdorff distance [16], or the longest common subsequence [27].
Other approaches cluster the motions that yielded the trajectory to discover common
sub-trajectories [98, 148]. In the end, though, they also rely on some sort of continuous
similarity measure.

In the field of motion planning, path homotopy is also used to group trajectories [63,
70, 139]. Contrary to traditional clustering algorithms, in homotopy, two paths, sharing
the same start and end point, are in the same homotopy class, if there exists a continuous,
collision-free deformation between them. In [22], homotopy classes are calculated based
on the Cauchy integral theorem. The authors formulate a graph, which allows a direct
computation of paths in distinct homotopy classes and also show how to search in this
graph. However, since every graph edge requires an integration to be performed and the
graph needs to be augmented, the computational performance will most likely not meet
the requirements for autonomous vehicles. Additionally, since it is based on homotopy, all
paths share the same goal state.

In [88], an equivalence definition between local paths is presented, which is similar to
homotopy but does not require the endpoints to be the same for all paths. The authors
define two paths to be equivalent, if their swaths, i.e., the workspace area swept by the
robot, overlap. They use this information for speeding up collision checking. Although
the local paths also do not share the same end points, the overlapping criterion requires a
dense and uniform path sampling. If paths are calculated online in real-time and are not
precalculated as in [88], this can usually not be guaranteed. In addition, in its essence it
is similar to a distance-based clustering described above.

Principal Moving Directions

There are also methods for the detection of the principal moving directions that are not
directly related to motion planning, but to road detection. Road course estimation is the
topic of Chapter 5, where more related work will be presented.

In [106, 108] a colored elevation map is created from lidar and camera data and used to
detect and track road networks. A particle filter framework is used to recursively estimate
a potential intersection point as well as the parameters of a clothoid model for each branch
relative to the ego vehicle center. However, the road topology, i.e., the number of principal
moving directions, is inferred from map data and needs to be known. In [20] the road
network is detected without map data. A road/non-road probability map is calculated
based on the colored elevation map. Using a given road width, road template masks
are correlated with the elevation map in order to estimate an orientation-dependent road
center probability map. Hypotheses of road intersection centers are created along clothoids
starting from the ego vehicle position and evaluated by casting rays in all directions. Valid

43

IP 216.73.216.60, am 24.01.2026, 06:28:16. © Inhak.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186246080

3 Detection of Principal Moving Directions

rays are clustered and used as observations for an extended Kalman filter. The use of a
colored elevation map from camera and lidar data provides the basis to present a wide
spectrum of road scenarios, such as rural roads. The road model, however, consists of an
intersection point and a line segment for each branch. The shape of the principle directions
as well as the horizon of the estimations is thus limited. Arbitrary shaped curves, such as
S-shapes popular in road construction sites, cannot be detected. Using motion planning as
basis for the detection of the principle moving directions enables an estimation of arbitrary
shapes over a long horizon.

In [48] line segments are detected in an obstacle map trough the Canny edge detection
and the Hough transform. They are used as input to a Markov random field model. The
output of the Markov random field gives a uniform 2-D field of main directions of the road.
Here, the aim is, however, the inference of a path or a connected set of points for each road
branch, as well as extracting the road topology, rather than a 2-D field of orientations.

3.1.2 Approach and Contribution

This chapter presents two novel contributions. First, a local path planner is presented
that is designed for planning without known goal poses or without known street model,
i.e., guidance. Due to the combinatorial complexity of the problem, it rigorously exploits
constraints and discretizations and restricts the problem to finding paths of a predefined
desired length. The problem is defined on a graph and transitions, i.e., edges in this graph,
are feasible short motions. The novelty of the planner lies in the seamless combination of
A* and RRTs in the graph expansion during the search. Hybrid-state A* [49] is used to
quickly find the optimal path through the environment. After having found the optimal
path, which can neither be guaranteed to correspond to a legal principal moving direction,
as it possibly leads to leaving the street, nor to be the only principal moving direction,
such as at road junctions, the planner switches to an RRT search. It does so, however,
using the same, partially-explored graph structure. Therefore, no calculations are done
twice. The resulting planner

e is optimal under the given discretization, resolution-complete, and focused towards
the goal criterion due to A* and the graph formulation,

e is uniformly-exploring once the first goal path is found, i.e., it tends to explore the
largest yet unexplored regions, and

e incorporates any-time characteristics allowing to trade-off runtime and dense explo-
ration.

The second contribution regards trajectory clustering. Similar to homotopy and differ-
ently to traditional clustering algorithms, trajectory similarity is binary in the proposed
approach and does not rely on a distance metric together with distance thresholds. It uses
the environment structure, i.e., the objects in the local environment of the robot, to find
equivalences between trajectories. Different to homotopy and similar to [88], this method
is aimed for local planning and therefore the trajectory endpoints do not need to be all the
same. A closed surface between two trajectories is created by sampling inter-trajectories
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and by using their endpoints to create a polygon. Equivalence based on the environment
structure is then efficiently checked with point-in-polygon tests. The presented method is
characterized by:

e providing a binary trajectory equivalence predicate for local trajectories with differ-
ent trajectory end points, which does not involve distance measures and distance
thresholds,

e creating closed surfaces by sampling inter-trajectories, and by

e a computational complexity that is linear in the number of trajectories for non-
overlapping clusters and, under certain assumptions, also for overlapping clusters.

Next, the A*-RRT local path planner is presented in Section 3.2 and Section 3.3 describes
the clustering. Finally, in Section 3.4 first results are given, which will be complemented
in Chapter 6.

3.2 Local Path Planning with Unknown Goal Poses

In this section, the local path planner is presented. First, the problem is formulated in
Section 3.2.1. Then, in Section 3.2.2, the structure of the graph is given and it is shown
how an admissible heuristic can be designed in the absence of goal poses in Section 3.2.3.
Finally, Section 3.2.4 presents the algorithm of the planner.

3.2.1 Problem Formulation

The motion planning problem that is the subject of this section is formulated as follows.
Let gs € C be the initial configuration of the vehicle in the configuration space C, I the
desired goal length in the workspace, and 7 : [0, {] = Cpee a collision-free trajectory with
workspace arc length [. The goal is to find a set

T=A{r|7(0)=gsNl=lg}, (3.1)

of trajectories
la

m(le) = as + ; fn (7 (D), w(D)) I (3.2)

created based on some motion model f,, with action trajectories w.

There are two desired properties about 7 from (3.1). On the one hand, 7 is desired
to contain the minimum cost trajectory, since without application-specific knowledge, this
is assumed to be the best guess about a possible path through the environment. On the
other hand, 7 is desired to exhibit diversity, so that the information gain between different
elements in 7 is high and subsequent modules can then choose from a greater variety.

In the formulation of (3.1) and (3.2), the length is used rather than the time, as the
focus is to estimate the principal moving directions through the environment and with
these the road courses and the road boundaries, which is the topic of Chapter 5. They
are independent of a particular time parameterization. It is noted, however, that time
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does indeed play a role in the presented system. Since the problem is of global nature
in the sense of the search space, rather than local optimization given a reference path,
higher order constraints and continuity levels are not of major relevance for the problem.
They significantly increase the computational complexity and thus violate the real-time
constraints. However, lateral acceleration constraints are exploited to reduce the search
space. They directly influence the search graph as described next. A certain safely drivable
velocity vyoaq 18 assumed, which induces curvature constraints on the motion primitives
due to an assumed maximum lateral acceleration. Moreover, the length of the primitives
is dependent on a certain fixed time interval and the velocity v.aq. Since the velocity
constraints are transformed into curvature and arc length constraints of the primitives, it
is referred to as a path planning problem rather than trajectory planning and to 7 as a set
of paths. However, as a different planner, such as a trajectory planner, can sample T, in
subsequent steps, such as the clustering, it will not be clearly differentiated between paths
and trajectories.

3.2.2 Velocity-dependent Reachability Graph

Rather than a fixed, carefully-designed lattice consisting of offline-generated motion prim-
itives, as in [128, 129], the search graph is generated online. In many path planning
applications, the use of an offline-generated lattice has advantages, since the amount of
online computation is significantly reduced. In addition to the primitives, the traversed
cells needed for collision checking and cost evaluation can also be pre-calculated saving
online computation time. However, if velocity and acceleration constraints are to be con-
sidered, the amount of pre-calculation and the size of the look-up tables grow tremendously.
Therefore, it is calculated online in this work.

The system model was chosen as the bicycle model, as it is simple and efficient, but still
captures the non-holonomic constraints. Let « denote the steering angle of the wheels, d
the driven distance, and [, the axis length, then the new configuration ¢’ = (z’ y 0 )T

is calculated from the current configuration ¢ = (I Y H)T as

fl(q, @) =
((z+dcos8) (y+dsind) H)T ifa=0
(3:3)
((z —rsinf+rsin(d +B)) (y+rcosf+rcos(d+B)) (0+ ﬂ))T else
where
r=l,/tanc, f=d/l,tana. (3.4)

Note that the map grid coordinate system (MGCS), as described in Appendix A.3, is used
here, i.e., positive angles are clockwise.

The motion primitives are generated using a maximum steering angle ... It is de-
pendent on the estimated drivable velocity vy0,q and calculated by assuming a certain
maximum lateral acceleration. Let n denote the number of different turning angles with-
out turning angle 0, i.e., going straight. The total number of primitives npim = 2n + 1 is
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(a) Reachability graph with 3 primitives. (b) Reachability graph with 5 primitives.

Figure 3.1: Two reachability graphs with different continuous start positions, number of chil-
dren, maximum turning angle .y, and driven distance d.

odd. The steering angles «, yielding the set of actions U and used for each node expansion
of the graph, are then calculated as

n—1 n—2 1 2
U = —Omax; — Qmax, — Qmaxy -« » 07 —Opax; —max, -+ » ¥max (35)
n n n n

and the new nodes are generated using (3.3).

In order to keep the computational complexity low and since the paths are not primarily
generated to follow them, but rather to detect the principal moving directions, the number
of primitives is chosen to be low. It was experimented with npim = 3 and npm = 5. Most
of the time, however, only 3 primitives per expansion were used.

The second design parameter in (3.3) is the driven distance d, i.e., the length of the
primitives. It is also calculated based on v45q and a fixed small time duration. Whereas
the number of primitives controls the number of children of each node, the length of
the primitives controls the number of hierarchy levels, given a fixed goal path length Ig.
Figure 3.1 shows two different reachability graphs over the grid.

The motion primitives do not need to land in the neighboring grid cells but usually
traverse multiple cells. This way, the resolution of the grid and the resolution of the graph
are independent, facilitating the trade-off between collision-checking accuracy and search
time due to a graph with fewer hierarchy levels and thus a reduced complexity. However,
since a motion primitive traverses multiple cells, all of these need to be considered during
collision-checking and cost calculation, as will be described in Chapter 4. Moreover, an
additional grid may be used to control the amount of pruning.
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3.2.3 Path Cost and Heuristic with Unknown Goal Poses

Typically, one is not only interested in some collision-free path, but in one that is good or
even optimal given some cost criteria. The most famous cost criterion is the path length,
as it is used for the well-known shortest path problem. Often, however, and especially for
autonomous vehicles, other costs are used either in addition or as replacement. In general,
costs can be separated into two categories: path-intrinsic costs and workspace-intrinsic
costs. The path-intrinsic costs, sometimes referred to as action costs, are costs due to the
shape of the path, or due to the actions that cause the shape of the path, such as making
a turn. Examples are cost for curvatures, cost for changes of the curvature, or cost for
switching driving direction. Path costs due to the workspace, on the other hand, are the
distance to objects, or occupancy probabilities, such that the robot prefers traversing areas
that have been observed to be free. The latter costs and their calculation will be examined
in detail in Chapter 4.

In A*, the search is based on a heuristic, which directly relates to the costs that are used.
The heuristic represents the estimated cost from a node to the goal. For the heuristic to
be admissible, it must not overestimate the true cost to the goal. If the path length is
used as the cost, then often the straight-line distance to the goal is used as heuristic. Even
without goal poses, since the goal path length [s is known, a heuristic can be derived,
as the goal are then paths of a certain fixed length. In order to use arbitrary costs, such
as path-intrinsic or workspace-intrinsic costs, some requirements need to be met. Let ¢;
be the edge cost between two adjacent nodes and [; the corresponding length of the path
segment. Then, by restricting the minimum edge cost between two adjacent nodes to the
segment path length, i.e., ¢; > [;, one admissible heuristic is defined as

h(q) = max(la — 14,0), (3.6)

where [, represents the path length from gg to configuration q.

If the total path cost is the sum of the path extrinsic cost and the path intrinsic cost,
including the path length, and all costs are positive, then ¢; > [; always holds. Furthermore,
if all motion primitives have the same length, the hierarchy level of the graph can be used
instead of the length by normalizing the primitive length to 1. The heuristic from (3.6)
then simplifies to

h(q) = depth(lg) — depth(q). (3.7)
Next, the A*-RRT planner is presented.

3.2.4 A*-RRT Motion Primitive Path Planner

In order to efficiently create the sample set T of collision-free paths from (3.1), a novel
motion primitive path planner is used. Based on an estimated drivable velocity vy0aq, the
turning angles and the length of the primitives are determined, as described in Section 3.2.2.
The graph is created, i.e., expanded, and each graph edge is checked for collision and cost
online. It is in general not computationally possible to expand and test the whole graph
until the desired goal hierarchy level is reached. Therefore, it is crucial in what order the
nodes of the graph are expanded.
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3.2 Local Path Planning with Unknown Goal Poses

The proposed planner combines the concepts of two well-known classes of planning
algorithms, A* [67] and the Rapidly Exploring Random Tree (RRT) [95]. Due to the
heuristic, A* is focused towards the goal. A* is also optimal under the graph discretization,
i.e., the first path satisfying the goal criterion that it finds, is the minimum cost path. These
properties fit the observations discussed in Section 3.2.1 and therefore this planner starts
with an A* search. Hence the set of paths 7 from (3.1) always contains the minimum
cost path. As described in the introductory part of this section, finding just the optimal
path is not sufficient for the problem at hand and thus the search is continued. Usually,
however, the cost function is locally uniform and thus similar paths exhibit similar costs.
Therefore, if A* is continued to run, the subsequent paths will be similar to the optimal
path and it will most likely take a long time to discover new regions of the search space.

RRTs are complementary to the focused search of A*. Uniform-sampling RRTs have the
property that nodes with large Voronoi regions are more likely to be expanded than nodes
with small Voronoi regions [95]. Therefore, the RRT grows favorably into yet unexplored
areas. After the optimal path is found with A* the planner switches to an RRT node
expansion strategy, in order to quickly grow into the yet unexplored regions. This favors
diversity in the resulting set of paths 7. The planner switches, however, keeping and
re-using the same search structures, i.e., the already partially expanded graph during the
A* stage. Hence, every state is only visited once.

The pseudo-code of the path planner is given in Algorithm 3.1. It uses 3 lists: an open
list Lopen containing the next nodes to be expanded, a closed list Leigsea containing the
nodes that have already been expanded, and a goal list Lg0, containing the discovered
goal states. Once the first goal candidate is found, the algorithm switches the method that
yields the next to node to be expanded from popA*() to popRRT().

popA*(): As in conventional A*, the node ¢ with the lowest f(q) = g(q) + h(g) score is
chosen for expansion, where g(q) gives the path cost from ¢s up to ¢ and h(q) gives
the heuristic from ¢ to the goal.

popRRT(): A random sample in the search space is generated and its closest node in the
open list Lopen is expanded.

Pruning reduces the complexity of the graph. If a move lands in a cell, which has already
been expanded, i.e., that is on the closed list Lejosed, it is discarded. If a transition ends
up in a cell already visited but not yet expanded, i.e., which is on the list of nodes to be
processed Lopen, the costs of the nodes are compared and the cheaper one is used, as can
be seen in line 23-27 of Algorithm 3.1.

Figure 3.2 shows a simulation scenario to demonstrate the effect of the combination of
A* and RRT. It compares running A* for 100 iterations, running RRT for 100 iterations,
and running the proposed A*-RRT combination for 100 iterations. The start state is
marked with a blue star to the left and the extracted goal states are marked by blue dots.
The path cost in this example is a combination of the normalized length, as described in
Section 3.2.3, and an action cost that penalizes making turns. It can be observed that
with A* only paths similar to the minimum cost path are found. From the three possible
maneuvers, i.e., turning left, turning right, and going straight, only one was discovered.
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=

*

(a) A* only.

(b) RRT only.

(c) Combination of A* and RRT.

Figure 3.2: Comparison between different expansion strategies. A total of 100 iterations was

applied.

iterations in (a) and (c).

The minimum cost path, which is marked in red, is found after 10

With the RRT algorithm, the simplest and cheapest path, however, which only consists

of going straight, is missing, although all three maneuver-possibilities were discovered.
Combining A* with RRTSs, both properties are achieved. Still, many of the sampled paths

will be similar, and they are therefore combined as shown next.
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3.2 Local Path Planning with Unknown Goal Poses

Algorithm 3.1 A*RRT Planner with Unknown Goal Poses

Input: Start state gg, velocity vpaq, goal path length Ig
Output: Set of goal paths T

L: Lopens Leloseds Laoal < 0 // initialize lists of states £
2: e.state < gg // create new list element e
3: e.[f, g, depth, parent] < 0

4: 10

5: Lopen-push(e)

6: while Lopen # 0 and i < nii2* do
7. if Lgoa = 0 then

8 Ceurr £opell~p0pA*()

9: else

10: €curr < Lopen-POPRRT()

11:  end if

12: ‘cclosed~puSh(ecurr)

13:  for each action u € U do

14: Enext-State <— move(€eyr-state, u, Uroaq)

15: if noCollision (ecyrr-state, enexs.-state) A epext-cell € Lejosed then
16: €next-g — calculateTotalCost(€curr, €next)
17: if [,goa] = () then

18: h < calculateHeuristic(eyexs.State)

19: encxt-f & Cnext-g T+ h

20: end if

21: Enext-depth <= eqyp.depth +1

22: €next-Parent <— ecypr

23: if enext.Cell € Lyoa U Lopen then

24: €other <— getNodeInCell(eyex;.cell)

25: if enext-g < €other-g then

26: exchangeNodes(€epext, €other)

27: end if

28: else if e .depth > I5 then

29: Legoar.push (epext)

30: else

31: Lopen-push (enext)

32: end if

33: end if

34: end for
35: i i+ 1
36: end while
37: T < extractPathsFromGoalStates(Lgoa1)

o1
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3.3 Environment-based Trajectory Clustering

The local paths, generated as shown in the previous section, are clustered to detect the
principal moving directions in the local environment of the vehicle. Contrary to classical
clustering algorithms, such as k-means, hierarchical clustering, or DBSCAN, which rely on
continuous, distance-based similarity measures, path similarity is binary in the presented
approach. It only depends on the objects in the environment, similar to homotopy classes
of paths. In homotopy, two paths are path homotopic, if a continuous, collision-free defor-
mation between them exists [114]. As described above, differently to homotopy, the end
points of the paths do not always match with local paths. However, if the endpoint require-
ment is relaxed, all paths are equivalent with the definition of path homotopy. Therefore,
a different equivalence definition is introduced in this chapter and used to formulate an
efficient clustering algorithm.

Section 3.3.1 gives the equivalence definition, which is formulated as a predicate. Using
the predicate defined on two paths, it is then shown in Section 3.3.2 how the paths are
clustered. Finally, Section 3.3.3 examines clustering in the case of overlapping clusters.

3.3.1 Equivalence for Local Trajectories

It is started with a formal definition of path equivalence. Then, it is shown how the equiva-
lence between two paths is efficiently checked using polygonal approximations by sampling
inter-paths. Although the problem is similar to [88], the approach is fundamentally dif-
ferent. Whereas in [88], it is assumed that the paths are precomputed and sampled so
densely, that the workspace volumes swept by the robot, as it traverses the paths, strongly
overlap, this approach is designed for online generated paths without such requirements.

Equivalence Definition

Here, it is slightly departed from the use of paths parameterized over the arc length and
the use of configurations. In order to present the clustering predicate in a more general
notation and to underline that the paths do not need to be all of the same length, time is
used instead of length and states instead of configurations.

Given a dynamic system & = f,,(z,u) and an action trajectory w : [0,¢] — U from an
action space U. The action space may be bounded, but must have a continuous interval per
dimension. Then, the binary equivalence predicate, i.e., a Boolean-valued, binary function,
denoted as pred, is defined as follows.

Definition 3.1 Two trajectories 7y and T, defined in the same time interval [0,], starting
at the same state xg, with action trajectories wy and wy, are in the same cluster, i.e.,

pred(ry, 72) = true, (3.8)
if all states of all trajectories
t
T = {7170 =2+ [ et at, vo 2} (39)
0
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T

] 7€ oy
oe O

T1

Figure 3.3: The clustering predicate evaluates to false due to the obstacle o.

with the set of action trajectories
Q= {w] wlt) = fulllor (8) + (1 Fuol®)walt), VFu € Fu} (3.10)

are collision-free. Otherwise,
pred(7, 72) = false. (3.11)

The set of action trajectories 2 must be defined such that Vr € T, -, the workspace pro-
jection projy,(7) does neither cross the workspace projection projy,(71) nor projy,(7),
except at positions where projy, (1) crosses proj,(72). In addition, the weight functions
fuw € Fu, where f,, : [0,t] — [0, 1] have to lead to feasible action trajectories w € €.

Informally, according to Definition 3.1 two trajectories are in the same cluster, if all
trajectories between them are collision-free. Fig. 3.3 depicts the region of all such states
for two sample trajectories. Note that this is different to homotopy, where two paths are
equivalent, if there exists any collision-free deformation between them. Computation-wise,
it is not feasible to generate and evaluate all such inter-trajectories. Therefore, the surface
that is spanned by the two trajectories and all the inter-trajectories is approximated and
the intersection with the obstacles is evaluated, as shown next.

Polygonal Approximation

Instead of planning and evaluating all inter-trajectories from Definition 3.1 individually,
it is chosen to calculate the polygonal hull and evaluate it at once. It is assumed here
that the system behaves well, i.e., small changes in the action lead to small changes in the
resulting trajectory. Let the trajectory nodes

™={r. T}, T € R? (3.12)
be an ordered sequence of m points, which are projected into the workspace from the
states of trajectory 7. The trajectory nodes 7", in this work, are directly available as the
path nodes, as described in Section 3.2.2. Note that the clustering is performed in the
workspace W C R2. Then, given two trajectories 7; and 7,., where the endpoint of 7 is to
the left of the endpoint of 7,, a polygon

_ n n n n n n
P - {7—1,17 AR Tl,mv Tcl,m'/ ] Tck,nm Tr.nn ce 7Tr,1} (313)
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is created and it is checked whether an obstacle o € O, or a part of it, lies within P.
The vertices 7., are trajectory endpoints from a sampled set of trajectories that are in
the center between 7; and 7, according to Definition 3.1. With the planner described in
Section 3.2, the motion model f,, from (3.3) is applied for a discrete number of steps with
the actions u from the action set of (3.5), beginning at the start configuration gs. The
polygonal hull is then approximated with the endpoints

n _
ci,m

. f f k n 1 k n 1
ro m e fn , —— U, — U, oy T U m— Urp m—
Projw | . Jm 48 3y Unt T U g et T U

C,m
. 7 7 1 " k 1 4 k
rO m et m 77/7' 7’7’ "'77/7'777,7 7’7'721*
Projyy qs k+1u“1 k—i—lu“l k+1“,, 1 k—&—lur’ 1

of k trajectories. Using the given predicate, the trajectories are clustered according to the
method described next.

3.3.2 Clustering with a Binary Equivalence Predicate

This section describes the clustering procedure making use of the binary Boolean-valued
equivalence definition given previously.

Algorithm and Computational Complexity

The method is given in Algorithm 3.2. It assumes non-overlapping clusters, i.e., every
data point belongs uniquely to one cluster according to the predicate. Hence, the result
of the clustering is independent of any permutation of 7 and thus the order in which the
predicate is applied. Non-overlapping clusters are discussed in the following section.

The computational complexity is O(nT’nCno), where n, is the number of trajectories, n.
the number of clusters, and n, the number of obstacles. The algorithm is linear in the
number of trajectories. Since the number of clusters and the number of obstacles (grid
maps are discussed in the following) is usually much smaller than the number of trajectories
in real-world applications, the approach scales well. It therefore potentially provides a
huge performance increase over other approaches, such as single-linkage agglomerative
clustering, which has a computational complexity of O(n?) [51], or DBSCAN, which runs in
O(nT log nT) [54], if an indexing structure is used for the region queries. The computational
complexity of the homotopy-like equivalence clustering from [88] is O(nf).

It is noted that outliers do not exist in this method, since every trajectory is generated
using a motion planning algorithm and is thus a valid data point. Hence, a single trajectory
can lead to a new cluster, such as with homotopy.
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Algorithm 3.2 Environment-based Trajectory Clustering?

Input: Set of trajectories T, action trajectories €2, obstacles O
Output: Clusters C}, cluster representatives 7yep

1: Cy {7'0}

2: 7;ep — {’7’0}

3: for i <~ 1to|7T|—1do

4:  for j < 0to |Twp| — 1 do

5 b+ true

6 for all obstacles 0o € O do
7: if pred(r;, 7;) = false then
8: b + false

9: if j = |Twep| — 1 then
10: Trep < Trep UT;

11: Cj+1 — {TL‘}

12: end if

13: break

14: end if

15: end for

16: if b = true then

17: C]‘ — Cj urT;

18: break

19: end if

20: end for

21: end for

Clustering in Grid-based Environments using Point-in-Polygon Tests

Grid-based environment representations are challenging for any kind of intersection tests,
such as collision checking, discussed in Chapter 4. Contrary to polygon shapes, a single
object may be represented by a large number of cells, and an object is not directly identifi-
able as such. Resolution-exact collision checking therefore needs to examine all individual
cells. As Algorithm 3.2 also scales linearly with the number of objects, the computational
performance drops significantly, if every cell is regarded as one object, as there are easily
thousands of occupied grid cells even in moderately sized grids. Therefore, the occupied
cells are grouped into blobs using connected-component analysis. An optimized GPU-
based connected-component labeling algorithm [28] is used to group the individual cells to
objects. Then, for every blob, one reference point is chosen, which is used as representative
for the object. This is similar to [22], but in this approach also small objects, such as traffic
cones, are desired to get assigned reference points.

After the extraction of a number of reference points, the predicate is tested. In the
implementation, a polygon P is created from two trajectories, as given by (3.13) and (3.14),
and it is checked whether a reference point lies inside of P. The point-in-polygon check is
performed with the odd-even-rule, as described in [69]. Note that with the odd-even rule,
the polygon is not allowed to intersect itself. The paths must therefore be Jordan curves.

!This algorithm is a revised and corrected version from the one presented in [9].
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This does not mean, however, that 7; is not allowed to intersect 7, or vice-versa. If this
cannot be guaranteed, then the non-zero-winding-number-rule [69] can be chosen.

Furthermore, the number of blobs is decreased by applying binary morphological di-
lation [150] with a circle with diameter equal to the vehicle width. In fact, according to
Definition 3.1, since the inter-trajectories have to be collision-free, the check actually needs
to be done in the configuration space [96] rather than the work space. However, since the
trajectories 7, and 7, forming the polygon are guaranteed to be collision-free, and since
the inter-trajectories are just used to close the polygon for the predicate evaluation, the
approximation is sufficient. Additionally, dilating the obstacle map with a circle equal to
the vehicle width is already closer to the configuration space obstacles.

The algorithm was implemented on a GPU. After the next cluster representative Tyep
is chosen, polygons are created between 7., and all other yet unclassified trajectories in
parallel. The polygons are also checked in parallel against the reference points. This
process is repeated until all trajectories are assigned to a cluster. Thus, the number of
GPU passes corresponds to the number of clusters.

3.3.3 Trajectory Clustering with Overlapping Clusters

Until now, it was assumed that the problem exhibits non-overlapping clusters. Even if
all paths are of the same length, this can, however, not be guaranteed. The result of
Algorithm 3.2 is not independent of permutations of the set of trajectories T, if overlapping
clusters are present. However, it is desired that the clustering is unique, given a fixed set
of trajectories and a fixed set of obstacles. If multiple possible clustering results exist, the
question arises about the optimality of a clustering.

Definition 3.2 A trajectory clustering exhibiting the following properties
1. for every two trajectories T and ' from the same cluster C; the predicate holds, i.e.,
V7,7 € C; : pred(r, 7') = true. (3.15)

2. for every two clusters C; and C; there exist two trajectories 7; € C; and 1; € C; such
that the predicate does not hold, i.e.,

3r, € C; 31; € C; : pred(r;, 7;) = false. (3.16)

is considered to be optimal in order to extract the principal moving directions under a given
predicate pred.

A clustering according to Definition 3.2 guarantees that for all trajectories within each
cluster the predicate holds, i.e., it exhibits a strong intra-cluster connectivity, while the
total number of individual clusters is minimized. This clustering is unique, except for data
elements that are within the intersection of two or more clusters. It can be verified that
in the case of non-overlapping clusters, Algorithm 3.2 yields a clustering according to this
definition. In the case of overlapping clusters, however, it is usually not sufficient to iterate
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over all trajectories only once. Instead, every trajectory has to be checked with every other
trajectory leading to a quadratic complexity in the number of trajectories.

For many applications, as for the one in this work, this is not computationally-feasible.
It can be observed, however, according to Definition 3.2, that

Vr e G\ ch Ir' e U C; : pred(r, ') = false. (3.17)
J#i J#i
For every trajectory, which is only part of a single cluster C; and not simultaneously part
of a second cluster C}, and hence not in the intersection C; N Cj, there exists a trajectory
in C; for which the predicate does not hold. This leads to the creation of a new cluster
and guarantees that all clusters will be found.

As a consequence, if all cluster representatives 7 € Trep are chosen such that
VT € Trep : 7 € C; = 7 & 5, (3.18)
all trajectories need to be visited only once.

Unfortunately though, without knowing the optimal clustering, this cannot be guar-
anteed. However, with the use of a heuristic, the probability of picking a representative
according to (3.18) can be increased. Since the inter-trajectories are sampled by averaging
the controls (3.14), the trajectory with the minimum overall absolute curvature &

¢
T, =  argmin / |k ()] A’ (3.19)
0

T€T\CoU...uCj_1

is chosen as representative of cluster C;. In all tested scenarios, with the above heuristic,
a suboptimal clustering due to a false trajectory representative, was not observed.

If trajectories, which may belong to multiple clusters according to the predicate, are
assigned to a random one, a non-intuitive clustering may result, as shown in Figure 3.4d.
There, the trajectories are assigned to the first cluster, for which the predicate holds. For
the problem of extracting the principal moving directions based on a set of trajectories T,
this has no influence, since only the cluster representatives 7y, are used.

If it does matter, however, how the ambiguities are resolved, nearest-neighbor assign-
ment is one option, which yielded good results in the evaluations. First, all ambiguous
trajectories that may belong to more than a single cluster are extracted as the set Tamp,
as shown in Figure 3.4b. Then, V7 € T, the nearest trajectory 7 € T \ Tamb is searched
for and 7 gets assigned the cluster of 7/, shown in Figure 3.4e. The distance measure for
the nearest neighbor assignment

1 - n n
d(m1,72) = m Z 72t = 734l (3.20)
T =1

was the average Euclidean distance between the corresponding path nodes.
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(a) Set of paths T. (b) Ambiguous paths. (c) Blobs.

(d) First-hit assignment. (e) Nearest-neighbor assignment.

Figure 3.4: If paths, for which the predicate evaluates to true for more than one cluster
(b), are assigned to the first cluster where the predicate holds (d), less-intuitive
clusterings may result, compared to assigning them to the nearest cluster (e).
Path representatives are shown in bold.

3.4 Results

Finally, results are shown. In Figure 3.5, the paths planned with the path planner presented
in Section 3.2 are clustered with the approach proposed in Section 3.3. An occupancy grid is
dilated by a circle of vehicle width, blobs are extracted with connected-component labeling,
and one reference point per blob is used to cluster the paths with point-in-polygon tests.
Note that lateral acceleration constraints are disabled in the path planner for the results
in order to yield more challenging scenarios for the clustering approach.

Furthermore, the clustering approach is compared to a standard agglomerative hierar-
chical clustering and to k-means clustering. The first scenario, given in Figure 3.6, shows
an indoor parking lot. Since the sensors cannot observe around turns, the planner needs
to be allowed to plan into unknown areas, i.e., where the occupancy probability equals
0.5. The paths that lead to the right of the vehicle are grouped into two clusters with the
hierarchical clustering, whereas they are grouped into one cluster, as they represent one
topological direction, in the proposed approach. Note that the closest paths between the
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Figure 3.5: Proposed method for the detection of principal moving directions. Equal length
paths are clustered based on reference points (red cubes), which are extracted
from blobs of an occupancy grid dilated by a circle with diameter equal to the
vehicle width.

red and the pink cluster are closer, according to (3.20), than the closest two paths between
the purple and the cyan cluster. Hence, no matter how the distance threshold is modified,
the same clustering cannot be achieved with hierarchical clustering. Also shown in dark
blue are paths from the planner that have not (yet) reached the goal length.

The second scenario, given in Figure 3.7, shows a simulated road construction site with
a road junction marked with traffic cones. Both true branches, the pink and the purple
cluster, are correctly determined in the proposed clustering, whereas they are in the same
cluster, together with an additional path bundle to the left, in the hierarchical clustering.
Note that the number of clusters is equal, but the clustering result differs substantially. In
this case, with the hierarchical clustering, it may even happen that none of the two valid
principal moving directions are detected, because one cluster representative may be chosen
out of the path bundle to the left of the pink cluster.

The approach is also compared quantitatively. It is elaborated if the same clustering can
be achieved with hierarchical or k-means clustering. The distance similarity was calculated
again with (3.20). To this end, the inter cluster distances, i.e., the distances of paths from
different clusters, and the intra cluster distances, i.e., the distances of paths of the same
cluster, of the proposed method are analyzed. Examined are the first 200 frames of the
scenario from Figure 3.7. In Figure 3.8, the minimum intra cluster path distance, needed for
an agglomerative hierarchical cluster approach to yield the same intra cluster connectivity,
is plotted. In other words, the minimum threshold value needed, in order to assure that
all paths within each cluster from the approach proposed, are grouped together. Also
plotted in Figure 3.8, is the minimum inter cluster distance. In other words, the maximum
threshold possible so that no two clusters, from the result of the proposed clustering, are

59

IP 216.73.216.60, am 24.01.2026, 06:28:16. © Inhak.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186246080

3 Detection of Principal Moving Directions

Table 3.1: Computational performance in different scenarios.

Scenario 1  Scenario 2 Scenario 3

Paths 100 1000 5000
Path nodes 10 20 40
Occupied cells / blobs 1139 /11 1645 /16 2322 / 13
Multi-cluster paths 0 0 1016
Nearest neighbor cluster changes 0 0 833
Clusters hierarchical / proposed 1/1 4/7 5/6
Hierarchical clustering (ms) 0.48 12.06 401.77
Proposed clustering (ms) 1.96 3.85 7.61
Proposed with NN assignment (ms) 2.73 5.28 19.88

merged together. If the minimum threshold to assure intra cluster connectivity (bright
line) is above the maximum threshold possible to assure inter cluster separation (dark
line), no matter how the threshold is chosen, the same clustering cannot be achieved.

Furthermore, the approach is compared to k-means clustering. Again, the result of the
proposed method is used to calculate the means. All paths are then clustered accordingly.
Figure 3.9 gives the percentage of paths that are grouped differently than the proposed
clustering. Hence, even under perfect initial conditions, i.e., with given number of clusters
k and given means, the paths can rarely be clustered the same way.

Finally, the computational performance is analyzed in Table 3.1. The hardware is given
in Appendix A.2. Both algorithms were implemented with Nvidia CUDA. In the imple-
mentation of the hierarchical clustering, the n.(n, — 1)/2 distance calculations as well as
the sorting was performed on graphics hardware in parallel, while cluster merging, which
is linear in the number of paths, was performed on the CPU. In the implementation of
the proposed approach, all compute-intensive calculations are calculated on the GPU. The
runtime includes the morphological dilation of the occupancy grid and the connected com-
ponent analysis [28]. As expected, the proposed approach, although slightly slower in
simple scenarios, scales well with the number of paths and fits the real-time requirements.
With 5000 paths in scenario 3, it is 20 times faster than the hierarchical clustering, if the
ambiguous paths are assigned to their nearest neighbor, and even over 50 times faster, if
only the principal moving directions are of interest.
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3.4 Results

(a) Unclustered paths.

(c) Hierarchical clustering. (d) Proposed clustering.

Figure 3.6: Comparison between agglomerative hierarchical clustering based on an optimized
distance threshold and the proposed approach. Scenario shows an indoor parking
lot with walls and parked vehicles.
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3 Detection of Principal Moving Directions

(c¢) Hierarchical clustering. (d) Proposed clustering.

Figure 3.7: Comparison between agglomerative hierarchical clustering based on an optimized
distance threshold and the proposed approach. Scenario shows a simulated road
construction site on an open space with traffic cones.
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3.5 Summary
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Figure 3.8: Difference between proposed Figure 3.9: Difference between proposed and
and hierarchical clustering. k-means clustering.

3.5 Summary

In this chapter, the problem of detecting the principal moving directions in the local
environment, of the vehicle has been investigated. The principal moving directions are
important semantic information. With their use, estimating the road courses is greatly
simplified, as described in Chapter 5. They separate the roadways into a left region,
containing the left boundary, and a right region, containing the right boundary.

The presented approach uses local path planning and path clustering to detect the main
directions through the environment. Other than direct estimation techniques on sensor
data, the robot shape and simplified dynamic constraints are considered. Therefore, the
method works in arbitrarily-shaped road environments and also in the presence of sparse
road boundaries, where few true positive data points are available. Additionally, the
number of principal moving directions is implicitly estimated by clustering the local paths
and does not need to be known a-priori.

Two novel contributions have been presented in this chapter. First, a local, graph-based
path planner, which combines A* and RRT, has been proposed. It is designed to efficiently
sample a set of paths in the absence of goal poses, where all paths equal a certain predefined
length. Due to the combination and the use of motion primitives, the planner is resolution-
complete, optimal under the graph discretization, and anytime uniformly exploring.

The sampled set of paths then undergoes clustering to reduce the paths to the principal
moving directions. Similar to path homotopy, the clustering depends on the objects in
the environment, rather than on distance-based similarity measures, like used in standard
clustering algorithms. Differently though, the endpoints of the paths do not need to match.
Instead, a closed surface is created by sampling inter-paths and it is checked against the
obstacles using point-in-polygon tests. The proposed clustering method is linear in the
number of paths. It has been compared to a GPU-based hierarchical clustering and the
performance greatly outperforms it by an order of magnitude.

Sampling a set of paths under real-time constraints is computationally demanding. In
addition to collision checking, the costs of paths need to be evaluated. In the next chapter
collision checking and cost evaluation given workspace cost maps is examined.
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4 Configuration Space Costs: Cost
Evaluation on Workspace Cost Maps

Collision checking and cost evaluation of paths and trajectories are the major computa-
tional bottlenecks in current real world motion planning applications. They may even
take up to 99 % of the total time of a planner [136], thus making them the most signifi-
cant computational problem for real-time motion planners. In particular with grid-based
environment representations, the computational burden is huge. Compared to polygonal
models, no compact representation of the objects in the local environment of the robot
exists. Since computing a good path or trajectory is usually important in practical appli-
cations, some form of cost representation must be used. Often, costs can be intuitively
designed according to the current environment, i.e., the workspace, in form of a map. This
chapter shows how workspace-based costs are evaluated incorporating the robot shape in a
particular configuration. Moreover, it presents precalculation methods to quickly evaluate
both, costs and collisions, providing performance increases for motion planning algorithms.
It is based on work that has been presented in [7] in the context of this thesis.

4.1 Introduction

The particular way of collision checking and cost evaluation is dependent on the environ-
ment representation. Moreover, it can be divided into checking against the static world,
such as static obstacles, and checking against the dynamic world, such as moving ob-
jects, both of which are quite different. In collision avoidance with dynamic objects, such
as other vehicles, prediction is a key problem. Since for most cases a precise prediction
cannot be guaranteed, as the control commands of the other vehicles are not known, over-
approximations and defensive collision checking strategies are desired. Precision is usually
of minor importance, and the time dimension increases the complexity. Often, it is dis-
cretized but there are also approaches providing algebraic solutions [97]. On the other
hand, in collision checking against the static environment, precision typically is very im-
portant and approximations are restricted. Consider, e.g., automated parking maneuvers
or autonomous navigation in cluttered, narrow road environments. This chapter focuses
on the problem of evaluating collisions and costs against the static environment.

4.1.1 State of the Art

As described above, current motion planning algorithms spend a substantial computational
part with collision detection [96, 103, 141]. It has been studied for decades, and many
approaches have been proposed to solve it [94, 96]. Still, computational performance is

64

IP 216.73.216.60, am 24.01.2026, 06:28:16. © Inhak.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186246080

4.1 Introduction

of major concern even in state of the art implementations, especially if the obstacles are
represented with grid maps, the representation of choice of the recent years as discussed in
Chapter 2, and not by polygons as done by many earlier planners. In addition to collision
checking, cost evaluations are also computationally expensive, but required if path quality
is of concern, which usually is in any real-world application. For resolution-exact collision
checking and for workspace cost evaluation, as will be described, every cell under the robot
footprint has to be evaluated for every configuration of every path. Just one footprint of
the robot, i.e., the cells that need to be checked for a single state, with a 10cm grid
resolution and a 5m x 2m vehicle, comprises a whopping 1000 cells, underlining the huge
computational complexity of the problem.

Since evaluating a single configuration for collision and cost may already require ex-
amining a large number of cells, precalculation methods have been studied. Depending
on the planning complexity, the computational burden can dramatically be reduced by
precalculating configuration space obstacles [93, 96] based on the workspace obstacles and
the robot shape. With configuration space obstacles, the check of a complete configuration
reduces to a single point check or array look-up. Often in the literature, circular robot
shapes are assumed, as they are rotation-invariant, which greatly reduces the amount of
computation. A vehicle, however, cannot be approximated well by one circle, and therefore
every possible rotation has to be accounted for. The complexity of the calculation of the
configuration space obstacles increases then tremendously.

Other approaches use bounding volume approximations to deal with the complexity.
Such methods quickly process a large number of configurations using shape approximations,
while only performing a detailed evaluation if the result remains inconclusive. Instead of
calculating the configuration space obstacles for all robot orientations, in [102], only two
slices of the configuration space obstacles are computed. One slice comes from dilation with
a circle with radius equal to the robot inner radius, and similarly, the other is calculated
with the vehicle outer radius, in order to reduce the number of exact collision checks
needed. While such an approach works well if the robot shape does not deviate too much
from a circle and if the environment is not too narrow, it may become ineffective. Consider
a vehicle navigating through a single-lane road construction site. The evaluation with the
vehicle outer radius will always lead to a collision, while the evaluation with the vehicle
inner radius will not, requiring an expensive detailed evaluation of every configuration.
In [181], the robot shape is decomposed into a set of overlapping disks, the obstacle map
is dilated with the disk, and a collision is checked by evaluating the configurations at the
individual disk centers. The authors further propose to decompose the disks into axis-
aligned rectangles and to use a summed area table in order to quickly evaluate them. If
a high precision is important, however, a high number of disks is required for the vehicle-
to-disk decomposition, and in turn a high number of rectangles for the disk-to-rectangle
decomposition, rendering the method ineffective.

As aforementioned, calculating costs of individual configurations is also of central in-
terest for many planning algorithms. There are different kinds of costs, as described in
Section 3.2.3. The evaluation of workspace-based costs is similar to collision checking in
that it also requires evaluating every cell under the robot footprint. There is very little
literature, however, on how such costs can be efficiently evaluated. The shape of the robot
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4 Configuration Space Costs: Cost Evaluation on Workspace Cost Maps

is often simply ignored [30] or the costs are already given in the configuration space [74].
Similar to configuration space obstacles, a structure therefore termed configuration space
costs can be precomputed that allows the cost evaluation of a complete configuration to
be done by a single look-up. The only work found that deals with the calculation of the
configuration space costs is that of [85], where an algorithm to compute a slice from the
configuration space costs is presented that equals a direct implementation of morphological
grayscale dilation known from image processing [150].

4.1.2 Approach and Contribution

This chapter gives theoretical and practical insights on how to efficiently check a large
number of configurations for collision and cost on grid maps. Configuration space costs
are introduced and defined. They are a generalization of the commonly used configura-
tion space obstacles. They allow the cost and collision evaluation of a complete robot
configuration to be performed using a single look-up. Furthermore, it is shown, how the
configuration space costs can be efficiently calculated and two algorithms are proposed:

e Fast Approximate Morphological Grayscale Dilation (FAMOD): an approximate al-
gorithm based on convolution, which is independent of the size and the shape of the
robot mask, and

e van Herk-Gil-Werman-360 (vHGW-360): a resolution-exact method based on the
van Herk-Gil-Werman dilation algorithm, applicable for rectangular robot shapes.

Both methods were implemented on graphics hardware to demonstrate the performance
gain for motion planning systems. In addition to the formulation of configuration space
costs and their efficient calculation, it is shown how whole paths can be efficiently evaluated
without missing a cell or checking a single cell multiple times.

The rest of this chapter is structured as follows. First, in Section 4.2 the fundamentals of
collision checking are revisited and it is discussed how binary dilation and convolution relate
to each other. These observations are then used to generalize configuration space obstacles
to configuration space costs. Section 4.3 and Section 4.4 present FAMOD and vHGW-360
respectively. Since evaluating a path requires examining multiple configurations, this topic
is investigated in Section 4.5. Finally, Section 4.6 shows results.

4.2 Grid-based Collision Checking and Cost Evaluation

This section revisits some fundamentals about collision checking, as the rest of this chapter
highly depends on them. It then shows how the concepts of collision checking extend to
cost evaluation and configuration space costs are introduced.
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4.2 Grid-based Collision Checking and Cost Evaluation

4.2.1 Collision Checking Fundamentals

A path 7:[0,1] — Cis collision-free, if all of its configurations ¢ € C from the configuration
space C are collision-free, i.e.,

VI € [0,1]: 7(I") & Cops- (4.1)
The configuration space obstacles
Cobs ={q€C|S,NO #0} (4.2)

is the set of all configurations ¢ of the robot region S, which lead to a collision with the
obstacles O. In the following, it is focused on a grid-based representation of the obstacles,
denoted by a binary grid B, and 3-dimensional configurations ¢ with a 2-dimensional
position component = and an orientation component 6.

If the orientation @ of the robot is fixed, or the robot shape is rotation-invariant, Cops
can be computed using the Minkowski difference © of B and S

Ch.=BoSy={b—s|be B,sc Sy}, (4.3)

for all occupied cells b € B and all elements of the robot mask s € S, or equivalently with
the Minkowski sum &,

Cl.=B®-Sy={b+s|be B,sec -5} (44)

The Minkowski sum may also be calculated by binary morphological dilation known from
image processing, as these two operations are equivalent [59, 109]. This is useful, since
the obstacles are often represented by discretized grid structures similar to images, such as
in occupancy grids. One slice of the configuration space obstacles, which corresponds to
one orientation of the robot, is calculated by binary dilation of the grid B with the robot
mask S, usually referred to as the structuring element, kernel, or footprint, as

Cobs = B® (Ruso So) = U Ryg0 Sbp- (4.5)

beB

The obstacle grid is expanded by placing the origin of the structuring element at every
occupied cell of B. The rotation of the binary mask by 180°, given by the matrix Rigp, is
only required if the robot shape is asymmetric. If the vehicle shape is approximated by
a rectangle, an approximation that is usually fine enough given the discretization errors
of the obstacle representation, the rotation is not necessary. It is thus dropped in the
following equations. Hence, an alternative formulation of the configuration space obstacles
to (4.2) is given with the use of binary dilation from (4.5)

Cons = JChe =B @S- (4.6)
4 [

Throughout the literature, the mathematical operation for the calculation of Ceps is
consistently denoted as convolution, e.g., [34, 83, 102, 133, 156]. However, although con-
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4 Configuration Space Costs: Cost Evaluation on Workspace Cost Maps

o | |

(a) Occupancy grid (b) Bin. dilation (c) Bin. conv. (d) Graysc. dilation (e) Graysc. conv.

Figure 4.1: Comparison between binary dilation (b), binary convolution (c), grayscale dila-
tion (d), and grayscale convolution (e) of an occupancy grid (a) with a vertically-
oriented rectangular mask. Shown are: a small obstacle @ with p(o) =1, an
uncertain area @ with p(o) = 0.25, and an unknown area @ with p(0) = 0.5.

volution and dilation are similar, in the latter, a union operator is used, whereas the
convolution of two functions f; and fo

(fi* £2)() = Z Fi() fa(j —9) (4.7)

is given by their weighted average. To underline the difference, Figure 4.1 shows both
operations on a thresholded occupancy grid. Binary dilation, Figure 4.1b, and convolution,
Figure 4.1c, are performed using the same vertically-oriented rectangular shape. Binary
dilation correctly results in a collision map that is independent of the number of individual
cell collisions under the footprint, which are clearly visible in the output of the convolution
due to the sum operator in (4.7). Low occupancy probabilities are visualized by bright gray
levels and high occupancy probabilities by dark gray levels. The convolution is visualized
by linearly mapping back the range of the output into the original image range.

The output of the convolution, however, is easily transformed to equal the result of
binary dilation by applying a simple function h

B® S =h(B=xS), with (4.8)
0 j=0

h(j) = (4.9)
1 j>o.

This observation is often exploited for the calculation of the configuration space obsta-
cles, such as in [64]. It allows reducing the computational complexity to be independent of
the size and the shape of the mask due to the convolution theorem [83]. Although differ-
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4.2 Grid-based Collision Checking and Cost Evaluation

entiating between dilation and convolution may appear merely of formal nature without
practical relevance, it will become crucial in the more general case of costs as shown next.

4.2.2 Extending Collision Checking to Cost Evaluation

Evaluating the cost of one particular robot configuration on a grid-based cost map is similar
to checking it for collision. It also requires examining all cells under the robot footprint at
the current position and with the current orientation and reducing them to a single value.
The cost maps that are investigated are grid-based workspace cost maps, i.e., maps that
are defined in the work space W of the robot. Here, 2-D workspaces are assumed as well as
non-negative cost values. Workspace cost maps represent the cost of traversing a certain
area in the world. They may be arbitrary user-designed maps, such as inverse distances to
the nearest obstacles, so that a robot prefers traversing areas of high clearance.

In the literature, no common consensus of how costs from workspace cost maps are
reduced to a configuration cost exists. Sometimes the sum is used, e.g., in [129], which
possibly comes from the slight misuse of the term convolution for the calculation of the
configuration space obstacles. Here, it is proposed to use the maximum operator, and it is
the aim of this section to motivate the choice. It is noted again that the observations only
target single configuration costs out of workspace cost maps. For calculating the overall
path cost, the sum of individual cost values is indeed more reliable than the maximum [74].

In Figure 4.2 the sum and the maximum operator are compared in different situations.
In Figure 4.2a the workspace costs under the mask all equal 0.2, and the sum and the
maximum result in 1.2 and 0.2 respectively. In Figure 4.2b all cells under the mask equal
the lowest cost value 0, while one cell equals the highest cost value 1. The sum and the
maximum both result in 1.0. Comparing Figure 4.2a to Figure 4.2b allows making the
following observation:

Observation 4.1 With the sum operator, traversing an area that is uniformly rather cheap,
may result in a higher cost than an area with singular high cost values.

Usually, high cost values represent dangerous areas, such as a collision with an object,
while low cost values represent safe areas. With the sum operator, and analogously with the
average, no unique distinctions are possible. Another example is depicted in Figure 4.2c.
It shows a cost map that represents the inverse distance to obstacles. The cost values
range from 0 to 6, where 6 represents a collision and 0 the minimum cost value. The
distance metric is the Manhattan distance. The vertical mask has a lower sum value than
the horizontal mask even though the vertical shape is closer to an obstacle. Hence, the
sum, and thus also the average, do not yield appropriate results. It is noted that the focus
is not on calculating collision probabilities, such as in [12], but on arbitrary costs.

In the following, the configuration space costs are defined with the use of the maximum
operator motivated above. Again, let ¢ € C be a configuration in the configuration space,
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4 Configuration Space Costs: Cost Evaluation on Workspace Cost Maps
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Figure 4.2: Comparison between the sum and the maximum value for the calculation of the
cost of a particular configuration under the robot footprint.

Sy the structuring element at configuration ¢, and M be a grayscale cost map. Then the
configuration space costs
C—RE
Ccosts : (410)
qg— (M®S,)

are defined with the use of morphological grayscale dilation
M & Sj,& = max(]\/[(j — S) + SQ(S) | s € 59) (411)

Since in this case, the structuring element S is flat, i.e., it is a mask that only holds values
of 0, grayscale dilation can be written more compactly as

M ® Sjg= max M(j —s). (4.12)
seSyp

Morphological grayscale dilation is a generalization of binary dilation. Apart from the
motivation for the maximum operator from above, its use for the calculation for Ceests there-
fore comes naturally, since the configuration space costs are a generalization of the configu-
ration space obstacles, which are computed using binary dilation, as discussed above. The
highest cost value of Ceosts simply represents a collision. For completeness, the configuration
space obstacles

C—BCR
Cobs : (4.13)
¢ (B®S,),
are also represented using (4.12), where B denotes the space of binary numbers.

Figure 4.1d shows the result of the grayscale dilation with the same binary rectangular
mask and on the same map as used in the previous section. Also given in Figure 4.1e
for completeness, is the grayscale convolution representing the sum operator. Contrary
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4.3 Fast Approximate Calculation of the Configuration Space Costs for Arbitrary
Footprints with FAMOD

Collision object
obtained by thresholding.

Cost object. Robot mask.

(a) Scene elements.

EN

(b) Slices at 0, 60, 120, 180 de- (c) Slices at 0, 60, 120, 180 de- (d) Complete Ceosts-
grees of orientation of Cops. grees of orientation of Ceogts-

Figure 4.3: Visualization of the configuration space obstacles, (b), and the configuration space
costs, (c) and (d), of a circular cost object and a rectangular robot footprint, (a).
The cost object is expanded with the robot mask rotated at different orientations 6.

to the binary case of Cys, the differentiation between convolution and dilation is crucial.
Due to the sum operator, it is not possible to differentiate between few cells with high
cost values or many cells with low-to-medium values. In Figure 4.1e the small circular
obstacle, which has the highest workspace cost value, leads to lower configuration cost
values, visualized by brighter gray values, than the pentagon-shaped uncertain area and the
unknown area. Figure 4.3 shows a visualization of Cop,s and Ceogs for different orientations
of a rectangular robot. In the next sections, two efficient algorithms for the computation
of the configuration space costs are presented.

4.3 Fast Approximate Calculation of the Configuration
Space Costs for Arbitrary Footprints with FAMOD

This section presents Fast Approximate MOrphological Dilation (FAMOD), a method that
uses convolution to calculate the configuration space costs. Due to the convolution theo-
rem, the complexity of a convolution reduces to a single multiplication in the frequency
domain. By using convolution to calculate the grayscale dilation, the method is thus inde-
pendent of the size of the robot mask. Furthermore, FAMOD can be used with arbitrarily-
shaped masks, a property of great utility, as for certain shapes, such as rectangles, efficient
algorithms already exist, as will be shown in the next section.
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4.3.1 Calculation of Grayscale Dilation with Convolution

Morphological dilation is a nonlinear image filter. Nonlinear filters, by definition, are those
that cannot be represented by a pure convolution [150]. The max operator is responsible
for this non-linearity. However, motivated by (4.8) and (4.9), it is shown how dilation can
still be computed with convolution in the case of a binary image.

In the following, & denotes the number of obstacle cells of the binary mask S = {0, 1}*,
which holds the robot shape. The minimum and maximum possible value of the result of
the convolution of an arbitrary binary grid B with S are

min(B*S) =0 and
(4.14)
max(B * S) = k,

if the binary values of B are {0,1}. With arbitrary values a and b where a < b, the lowest
and highest possible values are

min(B{“’b} * S) = ka and
(4.15)
nlax(B{“’b} * S) = kb.

Using (4.14) and (4.15), a mapping is now derived to re-extract the maximum cost value
from the result of the convolution, i.e., from the sum operator. Let the cost map exhibit n
different cost values cg, ..., c,_1 where ¢y < ... < ¢,_1, and let € denote a small positive
number. By transforming the original cost values from the cost map according to the
recurrence relation

g(co) = co
(4.16)
g(ci) = kgleimn) + ¢
and by re-transforming the result of the convolution according to the function
) 9(co) <j < g(e1)
hGi) =4 (4.17)

Cn—2 g(cn72) S j < g(cn—l)
Cn—1 Jj> g(cn—l)

morphological grayscale dilation of an arbitrary grayscale image M with a flat structuring
element S
M&S=h(g(M)xS) (4.18)

is calculated with the convolution operator.

Algorithm 4.1 gives details about how the configuration space costs are calculated with
FAMOD. The structuring element is rotated to ngjices different rotations, which correspond
to the different slices of Ceosts-
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4.3 Fast Approximate Calculation of the Configuration Space Costs for Arbitrary
Footprints with FAMOD

Algorithm 4.1 FAMOD

Input: Map M, structuring elements S[] corresponding to different orientations
Output: Configuration Space Costs Ceosts| ]
. // offline
: for i < 0 to ngices — 1 do
Sprli] = FFT(S[i])
end for
// online
: T+ g(M)
: TQ — FFT(Tl)
: for i < 0 to ngices — 1 do
Ty <+ modulate(Ts, Sprr[i])
Ccosts[i] — h‘(Tl)
: end for

— = e
Y2

4.3.2 Practical Considerations

Practical considerations and implementation details are discussed in this section.

Output Range Approximation

It is noted that the function g from (4.16) grows exponentially and the total number of
cost values, i.e., the output range, is therefore limited. Depending on the size of the mask
and on the range of the cost values in the cost map, it may become necessary to reduce
the output range, due to limitations of the used data types. If occupancy grids are used
as cost maps, the limitation does not affect a cost-based planner too much. Occupancy
values typically converge rather quickly towards 0 or 1 for observable areas, and one is
primarily interested in differentiating between free cells, occupied cells, and unsure cells.
Hence even with 3 classes, a cost map from an occupancy grid can be approximated well.
Apart from a uniform quantization of the original cost values, they may also be quantized
non-uniformly to better extract the relevant information. With occupancy grid cost maps,
it is sometimes desired to distinguish cells with the value 0.5, as it represents not yet
observed cells for most cases. Hence, one class can be designed to exactly represent 0.5,
while the other classes may cover larger intervals.

GPU Implementation Details

Dilation and convolution parallelize well, as for every cell of the map the same operations
are performed, which are independent of each other. Therefore, these operations are well
suited for an implementation on graphics hardware. As mentioned on multiple locations in
this thesis, Nvidia CUDA is used to program the GPU. The CUDA Fast Fourier Transform
library cuFFT [121] was used in the implementation. The functions g and h from (4.16)
and (4.17) are not well suited for an efficient implementation on a graphics card, however,
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4 Configuration Space Costs: Cost Evaluation on Workspace Cost Maps

as they require loops and conditionals inside the CUDA kernel. However, with ¢y = 0 the
recurrence relation from (4.16) is solved by deriving the generating function.

11—k

Tk

(4.19)

The final result is calculated by solving the output j of the convolution for the cost index ¢

i= {logk {1 - 1;7]67H (4.20)

h(j) = c

without the need for conditionals, replacing (4.17).

Next, another method to calculate C.ogs i presented that does not have limitations in
the output range, but requires the robot shape to be rectangular.

4.4 Efficient Exact Calculation of the Configuration Space
Costs for Rectangular Footprints with vHGW-360

In addition to circular robot shapes, rectangular shapes are common, such as exhibited
by many wheeled robots, like vehicles. Due to the symmetry of rectangular shapes, the
computation of Ceyts is done more efficiently, as shown in the following.

4.4.1 Reducing Computations by Exploiting Symmetry

Rectangular forms exhibit beneficial symmetric properties, which can be exploited in mul-
tiple ways to increase the performance. First of all, not all orientations have to be actually
computed. If the origin of the structuring element is in the center, the dilation of a mask
rotated by an angle 6 is equivalent to the dilation of a mask rotated by 6 + 180, reducing
the number of dilations to a half. If the mask is quadratic, the number of dilations even
reduces to a quarter. Moreover, the associativity property of dilation further reduces the
number of operations. Hence, if the structuring element
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4.4 Efficient Exact Calculation of the Configuration Space Costs for Rectangular
Footprints with vHGW-360

Figure 4.4: Errors in the form of missing cells for structuring element decomposition of non-
axis-aligned rectangular shapes.

is the dilation of two masks S; and Sy, then the dilation of the map M with the 2-D
mask S
M&S=(MoS)® S, (4.22)

is equivalent to two dilations with 1-D masks, S; and Ss. This reduces the number of
operations per cell from n3 nd  to nd  +nS . if nd o and nS
rows and columns of S corresponding to the width and the length of the robot shape.
The associativity of dilation is an often used property in practical implementations when
dealing with large masks [38]. If the mask is, however, not axis-aligned, the decomposition
of a 2-D dilation into two 1-D dilations leads to errors, as shown in Figure 4.4. Hence, not
the mask is rotated into different orientations 6 representing the different slices of Ceosts

but the grid is rotated, i.e.,

are the number of

Clss = M @ Ro(S) = Ro(R_o(M) ® S). (4.23)

Although (4.23) requires two grid rotations for every dilation, again due to symmetry
considerations, the total number of rotations is reduced. The result of the dilations of
orientation 6 and 6+ 90 are equal except that the width and the length of the robot shape
are exchanged. They are thus computed simultaneously with one pair of rotations. Even
though a significant number of grid rotations is still needed to use structuring element
decomposition, it is still of great advantage, since specialized algorithms for the dilation
with horizontal and vertical 1-D masks exist, as shown next.

4.4.2 The vHGW Algorithm

Several algorithms have been proposed for the efficient calculation of the special case of
morphological dilation with an axis-aligned 1-D structuring element, e.g., [47, 99, 162]. One
of the most famous methods is the van Herk-Gil-Werman (vHGW) algorithm [60, 163]. In
addition to its popularity, it has been shown to perform well on graphics hardware [50, 159].

The reason for the popularity of vVHGW is its property of being independent of the
size of the structuring element. It needs a constant 3 — 4/ ngixels comparisons per pixel of
the image M, where ngixels denotes the number of pixels of the structuring element. It is
required to be uneven. To this end, M is partitioned into non-overlapping blocks of size

NS For every block, a larger window of size 2nJ  — 1 is centered on the block. It is
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Algorithm 4.2 vHGW-360

Input: Map M, robot length and width in cells n
Output: Configuration Space Costs Ceosts| ]
1. for i < 0 to ngjices/2 — 1 do

S and nd

TOWS cols

2: Ty « rotate(M, 180i/Nglices)

3: Ccosts [Z} — VHGWY(Tlﬁn;S:)ws)

4: Ccosts[(nslices/2) + Z} — VHGVV(Th nfols)
5: end for

6: for i < 0 to ngjices — 1 do

7. 11  rotate(Ceosts[i], 90)

8 if i < Nglices/2 then

9: T2 — VI‘IGrVV(T‘l7 nfows)

10: Ceosts|t] + rotate(Ty, —(180i/Nglices) — 90)
11: else

12: Ty «+ vHGW(Ty,n3 )

13: Ceosts|t] + rotate(Ts, —(180i/Nglices))
14:  end if

15: end for

used to calculate two cumulative maximum arrays A; and A, independently of all other
blocks. Let 7 denote the center pixel of a particular block of the linearized image M, then

Afi] = max(A4;[i — 1], M[j —4]) and
A li] = max(A,[i — 1], M[j +i]) with (4.24)
Af0] = A, [0] = M[j],

Vi =0:n5_, — 1. The output then results in

(M & 8)[k + 4] = max(A[n5as — 1], Ali]), (4.25)

where k denotes the starting index of the block.

Now that the 1-D vHGW algorithm, structural element decomposition of a 2-D rect-
angular shape, and the use of symmetry to reduce computations have been presented,
vHGW-360 is given. Algorithm 4.2 shows the outline of vHGW-360 aimed to calculate
the configuration space costs. Compared to FAMOD, it is exact in the computed output
values, but can only be used if the robot shape is rectangular.

4.4.3 Practical Considerations

The implementation of the 1-D vHGW dilation on the GPU is similar to the work of [159],
as it showed good performance. It is important to consider how the map resides in memory
and how it is accessed. Global memory accesses with CUDA are much faster if they are
coalesced [120]. Since a 1-D dilation is required in both, the horizontal and the vertical
direction, one of the two will be substantially slower. In [159], it is therefore proposed
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4.5 Evaluating Continuous Paths on Discrete Grids

to apply an optimized matrix transpose before and after the dilation and to perform the
operation only in the faster direction. The same strategy is applied here, but rotations are
used instead of transposes, since by considering their order, the total number of rotations
is reduced again. This is already integrated in Algorithm 4.2.

In the next section, the problem of evaluating complete paths given the configuration
space costs is discussed.

4.5 Evaluating Continuous Paths on Discrete Grids

Having computed the configuration space costs from a workspace cost map, checking in-
dividual configurations for collision and cost is done with simple look-ups. However, the
question still remains of how to optimally check whole, continuous paths given Ceests, in
order to calculate the total path cost.

4.5.1 Calculating Path Costs with the Configuration Space Costs

As described in Section 4.2 and given in (4.1), assuring that a path or trajectory 7 € T
from a set of paths of trajectories 7T is collision-free, requires determining that all of its
configurations ¢q € C are collision-free. Likewise, the cost of a path requires evaluating the
costs of all of its configurations.

With the integral as past cost measure, the path cost is calculated with the configuration

space costs Ceosts a8
T—RY

7zosts : (426)

ro | Conn(7() s

Since in most cases, as is here, the configuration space costs are discrete, such as in the
form of a grid map, discrete look-ups at positions s; have to be performed to calculate the
cost of a path

TR

Tty D Ceonis (3(7(5))) (511 — s8)
k

(4.27)

where §(q) discretizes the continuous configuration ¢ to its corresponding cell in Ceosts-
The first and simplest choice of the individual look-up positions is probably equidistant
sampling. There are, however, clear drawbacks. One the one hand, a high sampling rate is
required in order not to miss any potential cell of the configuration space costs, and on the
other, with a high sampling rate, cells are checked multiple times, as shown in Figure 4.5a.

T
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4 Configuration Space Costs: Cost Evaluation on Workspace Cost Maps

T

(a) Regular sampling. (b) Weighted intersection sampling.

Figure 4.5: Regular sampling, (a), leads to missing cells or duplicates marked with X, while
weighted intersection sampling, (b), yields the desired result.

The look-up positions are therefore calculated according to the following definition:

Definition 4.1 An optimal evaluation of a continuous path T on a discrete structure
requires evaluating T at a set P of look-up parameters sy such that

Vs € [0,{] 3sg € P : 0(7(s)) = 6(7(sk)) AVsk,s; € P:d(1(sg)) # 0(7(s;)) (4.28)
and weighting each configuration cost with the traversed length.

A path evaluation according to Definition 4.1 assures that all cells traversed by the path
or trajectory are determined with the minimum number of total samples needed. It is
shown next, how this can be achieved for linear motion primitives.

4.5.2 Determining Look-Up Positions

Determining the cell positions traversed by a motion primitive is strongly related to ras-
terization and to volume visualization in the field of computer graphics [69]. Computer
graphics algorithms, such as Bresenham’s line drawing algorithm, have been used before
to determine the cell positions for collision checking on a 2-D grid for a point-shaped
robot [29]. Incorporating the robot geometry requires extensions to higher dimensions.
Additionally, Bresenham’s algorithm is entirely integer-based and thus not applicable for
planners that work in the continuous domain, such as the one presented in Chapter 3.
Whereas in discrete domains, it sometimes is reasonable to precompute the cells and the
corresponding segment lengths traversed by a primitive, in the continuous domain, it is in
general not, underlining its importance.

Rendering in volume visualization is often done by determining the voxels traversed by
a ray, and similarly it is also often desirable not miss any voxel and to use every voxel only
once. Therefore, the process is adopted to determine the grid cells in the configuration
space costs. To this end, the parametric equation of a line z(t) = p + tv for a point p, a
vector v, and the parameter ¢, is solved separately for ¢:

1 P 1 py L, po
()= —a-22 ot =—y-B o) =—0-2 429
=(@) 1)11 Vg v(¥) Uyy vy’ o(0) Vg Vg (4.29)
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4.6 Results

Starting from the initial cell, the cell intersections of the next cells are evaluated with (4.29)
for (z,y,0), and tym = min(¢,,t,,tg) gives the next cell to check in a 3-D configuration
space. The minimum value determines the dimension for which the first ray intersection
occurs. Figure 4.5b shows the discussed intersection sampling.

According to Definition 4.1, the extracted configuration costs need to be weighted with
the length of the traversed path segments. If the vector v is normalized, i.e., [[v]| = 1,
the weight directly corresponds to t,,;,. However, the incompatibility between Euclidean
and angular units makes the definition of a path length, and thus the normalization,
difficult and ambiguous. For autonomous vehicles, it is chosen here to completely discard
the orientation # from the path length, since it is not possible to move in 6 direction
without moving in x or in y direction. Therefore, v is normalized such that \/m =1.
Algorithm 4.3 shows the method.

For non-holonomic robots, line segments are typically not sufficient and non-linear prim-
itives, such as circular arcs, as used in the search graph described in Section 3.2.2, are
present. Unfortunately, Algorithm 4.3 involves considerably more computational resources
for circular arcs. On the one hand, solving for the parameter requires expensive arcsin and
arccos computations inside the loop or the use of look-up tables. On the other hand, the
position of the next cells cannot be determined as simple since ambiguities arise. Alterna-
tively, if computational performance is of prior concern, it is still possible to sample the
motion primitives at equidistant parameters, to connect the samples with line segments,
and to apply Algorithm 4.3. Results are given in the following.

4.6 Results

Finally, this section shows results of the configuration space costs on different costs maps
and shows the usefulness for planning algorithms. Moreover, the performance of the pro-
posed algorithms of their calculation is evaluated. While FAMOD is able to calculate the
configuration space costs efficiently for arbitrary robot shapes, its output range is limited.
The vHGW-360 algorithm, on the other hand, does not have output range limitation, but
requires rectangular masks.

Configuration Space Costs on Cost Maps from Inverse Obstacle Distance

It is started with qualitative results. Figure 4.6 shows a standard occupancy grid in a
parking lot from a laser scanner. Although this grid may directly be used as cost map, it is
post-processed in this application. First, a binary obstacle grid is created by thresholding.
Then, a distance transform is applied on the obstacle map, i.e., for every cell the distance
to the closest obstacle cell is calculated. And finally, the distance transform is inverted
so that high costs represent low distances, and zero distances correspond to the highest
cost value. Finding a minimum cost path in the configuration space using the given cost
map will therefore automatically result in path that has high clearance, and collisions can
directly be detected by the highest configuration cost value. One slice of the configuration
space costs is shown, which corresponds to the current orientation of the ego vehicle.
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4 Configuration Space Costs: Cost Evaluation on Workspace Cost Maps

Algorithm 4.3 Check Cells Between ¢y and ¢,
Require: Az, Ay, A0 #0

1: (z,y,0) + round(zo, yo, o)

2: (‘Ten(h Yend end) <~ round(‘rlv U1, 01)

3: (vg, vy, 09) < (Az, Ay, AG) [/ (21 — 20)? + (41 — 0)?
4: (dy,dy,dg) < (1/2)(sgnAz, sgnAy, sgnAf)
5: (g, ty, to, tmin) < (—1,—1,—1,0)

6: while (z,y,0) # (Zend, Yend, Oena) do

7. if ty;, = t, then

8: T T+ 2d,

9: end if

10:  if ¢y =1, then

11: Y y+2d,

12:  end if

13: if ¢, = tp then

14: 0« 0+ 2dy

15:  end if

16:  ty + (x +dy)/ve — 2o/

17 — (y+dy) /vy —yo/vy

18: t0<—(6+d9)/1}9—€0/1}9

19: 2L/prcv < tmin
20 twin ¢ min(ty, t,,to)

21:  Check cell (z,y,0) and weight by tmin — tprey
22: end while

Configuration Space Costs on Cost Maps from Offline Map Data Combined with
Online Map Data

Cost maps can also be derived from offline map data and combined with online sensor
data. In Figure 4.7, a cost map is derived from a navigation map of a parking lot and
combined with the information of an online occupancy grid. Visible are parking spots,
stored walls of the offline map, as well as obstacles from the online map. In addition, the
current route from a high-level navigation planner is used to assign low costs to the current
route, while assigning high costs to other route elements. Such workspace cost maps are
useful for planning as they also incorporate logical information from traffic rules, and due
to the given definition of the configuration space costs as well as the given algorithms for
their calculation, they can quickly be incorporated. They enable efficient planning even in
complex environments and under a high planning complexity, such as in parking scenarios.
Also shown in Figure 4.7 are two slices of Ceosts-

The configuration space costs given such cost maps is also used in the BMW Research
Fully Automated Remote Valet Parking Assistant shown at the Consumer Electronics
Show (CES) 2015 [2, 23]. In this research prototype system, the vehicle is able to navigate
without a driver through a parking garage and to park itself into an empty parking spot.
If the driver wants the car back, it can simply be called over an app on a smartwatch, and
the car picks up the driver fully automated. To this end, the system uses a hierarchy of
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4.6 Results

. :

(a) Occupancy grid. (b) Distance transform. (c) Slice of Ceosts-

Figure 4.6: Slice of Ceos (€), corresponding to the orientation of the ego vehicle, of a cost
map that comes from thresholding an occupancy grid (a), and calculating and
inverting the distance transform (b).

different planners, with one level being a path planner that solves the complex combina-
torial problem for navigation in narrow possibly cluttered environments [73]. It relies on
the configuration space costs to be able to plan a cost-optimal path given a cost map, as
shown in Figure 4.7a, in the configuration space.

Performance Evaluation of the Proposed Algorithms

Now, the computational performance of FAMOD and vHGW-360 is analyzed and compared
to standard grayscale dilation algorithms. The hardware and software platform is described
in Appendix A.2. Both, FAMOD and vHGW-360 were implemented on the GPU using
Nvidia CUDA. All timing measurements of the GPU include copying of the output from
graphics memory back to host memory, in order to incorporate the fact that most motion
planners are CPU-based. The time for kernel generation is excluded.

Figure 4.9 gives the computing time for a single grayscale dilation of a 512 x 512 grid
with a non-axis-aligned quadratic mask of different sizes of the following algorithms:
FAMOD, vHGW-360, Nvidia’s GPU dilation function from the NPP library nppiDi-
late_8u_C1R [123], Matlab’s imdilate (CPU), and a naive CPU implementation in C++.
FAMOD has the lowest computing times and is independent of the size of the mask, as
expected. The vHGW-360 algorithm, on the other hand, contrary to a theoretical constant
complexity per pixel, increases slightly, although for most cases negligibly, with the size
of structuring element. This phenomenon is also exhibited in the implementation of LTU-
CUDA [158]. Nvidia’s nppiDilate_8u_C1R seems to implement a direct approach on the
graphics card in the version tested, and thus shows a strong increase with the width of the
mask. It is, however, substantially faster than the tested CPU algorithms, i.e., Matlab’s
imdilate, and an implemented serial naive C++ CPU implementation.

Next, in Figure 4.10 the total computing times for the calculation of Ceests with different
number of slices, i.e., different angular resolutions, are given. The mask is of size 25 x 11
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4 Configuration Space Costs: Cost Evaluation on Workspace Cost Maps

0 = 'Qm fC 0
(a) Cost map. (b) Slice of Ceosts at 90°. (c) Slice of Ceosts at 150°.

Figure 4.7: Cost map from a combination of stored logical map data and obstacle data (a)
and two slices of the configuration space costs (b) and (c) [73].

Figure 4.8: BMW Fully Automated Remote Valet Parking Assistant [2, 23]. Images courtesy
of BMW Group.

representing a vehicle of size 5m x 2m at a cell resolution of 0.2m. Since vVHGW-360
requires uneven mask sizes, the width is increased by one cell. Note that the z-axis denotes
the number of actual dilations. For a rectangular mask, the number of orientations, i.e.,
slices of Ceosts, 18 therefore twice as much. The computational advantage of FAMOD slightly
increases further over vHGW-360, as the function g(M) and its Fourier transform have to
be calculated only once for all dilations.

Furthermore, the total computing time for a varying number of cost evaluations is an-
alyzed. In Figure 4.11 a direct C++ CPU implementation of cost evaluations, that does
not use any preprocessing except for the rotated masks, is compared to the time it takes to
first compute Ceosts using FAMOD, copy the result from graphics to host memory, and to
then perform the evaluations. Table 4.1 shows the exact timings ¢ for the precomputations
and the number of checks neeers it requires to outperform a direct CPU configuration eval-
uation without preprocessing. In the applications of this thesis, a 5° angular resolution is
used, which corresponds to 36 dilations with a rectangular vehicle approximation. With
this number of dilations it only requires around 6000 configuration checks to outperform
a direct evaluation. Assuming a path length of 500 cells, it only requires checking as little
as 12 paths to overcome the time for the precomputation. In many motion planning ap-
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Figure 4.9: Computing time for a single grayscale dilation of a 512 x 512 grid with a 30°
rotated quadratic mask of varying size. Shown are from fastest to slowest: FAMOD
(GPU), vHGW-360 (GPU), Nvidia's nppiDilate (GPU), Matlab’s imdilate (CPU),
a naive serial CPU implementation. Nvidia's nppiDilate is shown in both plots for

comparison.
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Figure 4.10: Computing time for  dif- Figure 4.11: Comparison between a direct

ferent numbers of consecutive check on the CPU and precom-
grayscale dilations of a 512 x 512 putation of Ccuss with FAMOD
grid with a rectangular 25 x 11 on a 512 x 512 grid with a ran-
structuring element. domly chosen 25 x 25 mask.

plications, as in this work, the number of paths easily grows in the thousands, underlining
the benefit of the approach.

Additionally, Table 4.1 gives the computation time for Cop,s using binary convolution on
the GPU. It can be observed that the performance difference to FAMOD is under 5%.
The number of checks to break even is not given, since a direct CPU implementation
skips evaluating the rest of the cells as soon as a collision occurs making the performance
dependent on the grid.

Output Range Accuracy of FAMOD

Finally, the errors due to the output range approximation of FAMOD are analyzed. The
algorithm was evaluated on cost maps from occupancy grids recorded in two different
scenarios: a parking lot representing a typical corridor scenario and a road construction
site with non-continuous road boundaries. The number of output cost values of FAMOD
was set to the lowest number possible still differentiating it from binary dilation, i.e., 3. The
classes of cost values are distributed uniformly in the range of the original cost map. They
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4 Configuration Space Costs: Cost Evaluation on Workspace Cost Maps

Table 4.1: Precomputation times for the GPU algorithms and break-even points for a direct
configuration check on the CPU.

36 dilations 72 dilations 180 dilations
t (ms) TNchecks t (ms) TNchecks t (ms) TNchecks
FAMOD  6.01 6.1K  11.56 11.8K 28.22 28.7K
vHGW-360 14.19 144K 2787 28.3K 69.03 70K
nppiDilate  245.6 249K  490.7 494K 1226.3 1.25M

Bin. dilation by conv.  5.75 — 11.06 — 26.95 —

(a) Parking lot scenario. (b) Construction site scenario.

=
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Figure 4.12: Mean absolute difference between exact grayscale dilation and FAMOD using 3
classes (c) in two different scenarios.

map to the minimum occupancy value, the maximum occupancy value, and to unknown,
ie., p(o) =0.5.

Figure 4.12 gives the mean absolute error over all cells normalized to the range [0, 1].
The clear edges of the parking lot scenario work in favor of the accuracy, but even in the
construction site scenario, the error stays low. Figure 4.13 gives a qualitative comparison
on one sample map of each scenario and shows the absolute difference.
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0 0

(a) Absolute difference

(b) FAMOD with 3 classes.

(c) Exact dilation.

Figure 4.13: Comparison between FAMOD and an exact dilation of the parking lot scenario
(left column) and the construction site scenario (right column) with a rectangular
vehicle mask. Figure (a) is rotated counterclockwise by 90°.
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4.7 Summary

Collision checks and cost evaluations are the computationally most expensive part in many
motion planning algorithms. Checking a single robot configuration in a grid-based world
representation requires examining every cell under the robot footprint in that particular
configuration. Often it is natural to design costs in the workspace of the robot, such as
distances to obstacles or areas that are safe to traverse. Similar to collision checking, the
robot shape also needs to be considered during cost evaluation.

This chapter has presented fundamentals on how to evaluate robot configurations on
workspace cost maps by incorporating the robot shape. Configuration space obstacles,
which allow collision checking of a whole configuration to be done with a single look-up,
have been generalized to configuration space costs, which allow the check for both, cost
and collision, of a whole configuration to be performed likewise.

Two methods have been proposed to efficiently calculate the configuration space costs:
FAMOD, which uses convolution to calculate grayscale dilation, and vHGW-360, which
is based on the van Herk-Gil-Werman dilation algorithm. Both algorithms show fast
computation times, which potentially speed-up motion planners by orders of magnitude.
While FAMOD is independent of the shape of the robot, the output range is limited and
will therefore yield approximate results. The vHGW-360, on the other hand, is specifically
designed for rectangular masks.

Furthermore, this chapter has discussed the problem of how a continuous motion primi-
tive or a whole path may correctly and efficiently be checked using the configuration space
costs. It is important neither to miss a cell nor to check cells multiple times. Similar
to the previous chapters, the huge performance gain of parallel computations on graphics
hardware has again been demonstrated, as FAMOD and vHGW-360 were implemented
in CUDA. Having presented the major components, which may be individually and in-
dependently used, the next chapter gives the road course estimation. It uses all of the
components given so far.

86

IP 216.73.216.60, am 24.01.2026, 06:28:16. © Inhak.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186246080

5 Road Course and Road Boundary
Estimation

The road course with its road boundaries is an essential component of many advanced
driver assistance systems and of autonomous vehicles. It represents the road shape ahead
of, and relative to, the ego vehicle and thus defines where the vehicle is required to move.
Although it is commonly stored in a map during an offline process [1], an online sensor-
based estimation is necessary for robust applications. Road changes, such as due to road
construction sites, require a high map maintenance, and there is no guarantee that the
stored information is valid. Additionally, some road boundaries simply cannot be stored
in an offline map, since they only constitute to the road boundary for a certain limited
time frame, such as parked vehicles in urban areas. The presented approach enables a
sensor- and feature-independent multi road course estimation that works with arbitrary
road boundaries. The estimated principal moving directions, presented in Chapter 3, yield
a first estimate of the number of individual road courses and provide boundary separators.
This chapter is based on work published in [5, 10] in the context of this thesis.

5.1 Introduction

Road surface, road-boundary, and lane detection are established areas of research [33, 87],
and there exists a considerable amount of proposed methods in the literature designed
for different applications and for different sensors. An overview of a variety of existing
approaches is found in [66]. In this section, it is focused on similar methods to the one
that is proposed.

5.1.1 State of the Art

The majority of road boundary estimation methods uses features, with camera-based lane
marking recognition systems being the most prominent [84, 100, 177]. Lane marking recog-
nition is one of the primary components of any autonomous vehicle driving on public streets
and is the basis of many driver assistance systems, such as lane departure warning systems.
It is therefore indeed mandatory as component. However, lane marking recognition sys-
tems reach their limits in more complex, ambiguous, and unstructured environments, such
as urban areas or road construction sites. Sometimes lane markings are invalid, conflicting
with temporary markings, or simply not provided, such as in many single-lane roads.
Other camera-feature-based road boundary detection methods search for the boundaries
of the road [68, 75, 92, 107]. They usually work well on rather uniform roads with contin-
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uous boundaries. Real street environments, however, often exhibit small holes and repair
spots and non-continuous road boundaries, such as traffic cones or parked vehicles.

Apart from cameras, other sensors have been used to estimate the road boundaries, such
as laser scanners [66, 89, 126, 172], and specific methods have been developed. Due to the
scanning principle, often discontinuities between neighboring scan points are used to detect
curbs and obstacles. As with camera features, these methods are designed for one sensor,
and in the absence of the exploited features, they will fail.

Methods that do not rely on certain features or are not designed for one specific sensor
are applicable in a more general and wider spectrum. A sensor-independent world repre-
sentation, as mentioned on multiple locations throughout this thesis and discussed in detail
in Chapter 2, are occupancy grids. In occupancy grids, the sensor information is already
filtered over time and therefore noise measurements are already suppressed. Additionally,
the information about previously observed regions is maintained in a local frame, as well
as previously observed but currently occluded obstacle information. Furthermore, occu-
pancy grids should only hold obstacle information about the static environment and thus
be free from moving objects, which typically do not constitute to the road boundaries. Al-
though standard occupancy grids are not designed for dynamic environments [157], there
are methods, such as the one proposed in Chapter 2, that deal with this issue. Hence, they
provide a sensor-independent representation of the environment that already copes with
many fundamental but important data pre-processing steps. It is noted that occupancy
grids have also been used with features [90].

The majority of grid-based road boundary estimation methods start by separating the
environment into two regions: one that holds the occupied grid cells of the left boundary,
and one that holds the ones of the right boundary [19, 37, 91, 149, 168]. Each boundary is
then estimated individually. The separation is done by casting a ray in the current vehicle
orientation [19, 91, 168] or by using a motion model to calculate a predicted vehicle tra-
jectory [37]. In [168], the separator ray is divided into individual segments that are moved
individually to the left and to the right to detect the boundary points. The boundaries are
then estimated with parabolic curves. In [37], two search windows as well as assumptions
about the shape and the structure of the road boundary are used to extract the boundary
cells. A clothoidal model is tracked with an extended Kalman filter for each of the two
boundaries. In [91], the road boundaries are estimated by optimizing with the Levenberg-
Marquardt algorithm. The part to the rear of the ego vehicle is optimized with a clothoid
model, whereas the part to the front is optimized with a quadratic model.

A separation with the predicted vehicle trajectory does not always work, however, al-
though it is crucial for all of the above techniques. If the separation fails, the estimation
automatically fails as well. With non-continuous road boundary elements, such as given
by traffic cones, the predicted vehicle trajectory easily passes in between two obstacles, as
shown in Figure 5.1. In such a case, the true road course cannot be detected. In addition,
since only the predicted vehicle trajectory is used, roads with multiple road courses, such
as forks in the road, branches, or road junctions, cannot be represented.

There are also approaches that do not rely on a separation of the environment. In [71], a
quadratic model is directly fitted into the occupancy grid by optimizing over histograms of
different curvatures and headings with the Nelder-Mead-Simplex algorithm. However, the
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5.1 Introduction

— Separation using predicted vehicle trajectory
Correct separation

\]

Figure 5.1: Estimation errors, if the predicted vehicle trajectory is used as boundary separator.

boundaries must be symmetric and the number of occupied grid cells that represent the
road boundary must be high, compared to the occupied cells from non-boundary objects.
In [106, 108], a particle filter framework is used to detect and track the parameters of a
road network model in a colored elevation map. The road model exhibits an intersection
center and a clothoid model for each branch. Combining camera and vision data in a
colored elevation map enables an estimation in many road scenarios, such as rural roads.
The topology of the road, i.e., the number of branches, needs to be known in advance,
however. Quadratic and clothoid models restrict the estimation horizon in complex driv-
ing environments, such as urban roads or road construction sites, and such optimization
techniques usually require prior knowledge, such as the road topology, in order to cope
with the complexity.

5.1.2 Approach and Contribution

This chapter presents a novel grid-based road course estimation approach. Rather than
relying on the predicted vehicle trajectory, it uses motion planning to detect the principal
moving directions through the environment. It therefore overcomes the shortage of most
existing grid-based approaches of not finding the correct road course in scenarios such as
Figure 5.1. Moreover, it overcomes the limitation of finding only a single road course, as
well as estimation errors over long planning horizons due to the predicted trajectory, such
as with S-shaped curves. The number of road course hypotheses in scenarios with non-
continuous road boundaries is greatly reduced by exploiting non-holonomic constraints,
using collision-checking, and by assuming a certain drivable velocity, such as from speed
signs. In summary, the proposed approach

e estimates the road boundaries indirectly by using motion planning to find the prin-
cipal moving directions through the environment,

e is able to detect and represent roads with multiple road courses, such as forks in the
road and road junctions,

e can handle arbitrary road shapes, such as one sided road narrowings and S-shaped
curves,

89

IP 216.73.216.60, am 24.01.2026, 06:28:16. © Inhak.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186246080

5 Road Course and Road Boundary Estimation

e works with arbitrary road boundaries, continuous ones, such as guardrails, and non-
continuous ones, such as parked vehicles and traffic cones, and

e is independent of specific features or particular sensors.

The rest of this chapter is structured as follows. Section 5.2 gives an overview of the
approach and shows how the individual components, many of which have already been
presented in the previous chapters, work together. Section 5.3 then describes how the
boundaries are extracted and estimated based on the principal moving directions. Sec-
tion 5.4 and Section 5.5 discuss how the road courses are validated and tracked, and finally
Section 5.6 shows results.

5.2 Overview

An overview of the road course estimation system is given in this section, and it is referred
to the individual sections and chapters for further details.

The outline is presented in Algorithm 5.1. The aim is to estimate a set of road courses R,
where each road course p(s) = (Bi(s) B-(s)) " is defined by exactly two semantic continu-
ous boundaries, §;(s) and §,(s). The length parameter s is used in this chapter instead of [
as previously used, to reduce ambiguities with the index for left. The road boundaries may
either be given explicitly, such as with guardrails or tunnel walls, but may also be given
implicitly with non-continuous boundary elements, such as traffic cones. With continuous
boundaries, the semantic boundary equals the obstacle elements, and the vehicle cannot
leave the road course without a collision. With non-continuous boundaries, however, the
semantic boundary gives the desired road course, even if it is possible to move out of it
without a collision. The latter scenarios are typically the harder ones for road boundary
estimation methods.

The approach works on an occupancy grid that holds the static environment. In Chap-
ter 2 a novel approach has been presented to create static grids in dynamic environments.
Hence, with each new measurement, the grid is updated and provided to the subsequent
modules. Similar to other grid-based approaches, the following observation is exploited:

Observation 5.1 Given an arbitrarily shaped curve 7(s) that lies within the road course p.
Then, the complexity of estimating the corresponding road boundaries, 5(s) and f,(s), from
the obstacles O is greatly facilitated, compared to a direct boundary estimation in O.

As mentioned above, this approach uses motion planning to find these boundary sepa-
rators, which divide the environment into left and right, rather than simply relying on the
predicted vehicle trajectory. More specifically, it relies on the principal moving directions
through the environment. In Chapter 3 a novel method has been presented to efficiently
sample local paths and to cluster them in order to extract these main maneuvers through
the environment. The complexity of the planning problem and the number of principal
moving directions with non-continuous road boundaries is greatly reduced by exploiting
velocity constraints, in addition to constraints from the obstacles and the motion model.
It is assumed that a rough estimate of the velocity vyaq, which can be safely driven on the
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5.2 Overview

Algorithm 5.1 Road Course Estimation using Motion Planning

Input: Estimated drivable velocity vyeaq, vehicle pose x;, measurement z;
Output: Set of road courses R,

1: t+ 0

2: Mg, Ry 0

3: while running do

4: my < updateStaticMap(m;_1, z, ;)

5: m, < generateCostMap(m;)

6:  Ceosts < calculateConfSpaceCosts(m,) // Algorithm 4.1 or 4.2
7 Trep < findPrincipalMovingDirections(z¢, Vroad; Ceosts) // Algorithm 3.1 and 3.2
8: Reuwr < 0

9:  for all separators 7 € Ty, do

10: By + extractBoundaryCells(7, m;)

11: By < estimateSemanticBoundary (By,y)

12: p « validateRoadCourse(;, B3,) // estimate p(p | §)
13: 7?'(:urr — 7zcurr U P

14:  end for

15: R, « updateTracker(Reur, Ri—1)
16: tt+1
17: end while

road, exists. Such an estimate may be provided by a traffic sign recognition system, since
on many roads, the maximum allowed velocity still allows safely following it. There are
also traffic signs indicating dangerous curves, i.e., curves with high curvatures, where the
velocity needs to be reduced. It can also come from rough navigation maps. Curvatures
on highways are different than curvatures on rural roads or on urban streets. It may also
be estimated from other traffic participants driving in the vicinity of the ego vehicle.

Collision checking and cost evaluation is the most computation-intensive part of the
planner. Therefore, the configuration space costs, as introduced in Chapter 4 are pre-
calculated. A cost map is derived from the static occupancy grid and used as input for the
calculation of Ceests- Depending on the scenario, the static occupancy grid is either used
directly as cost map, or a distance transform is applied on the obstacles and inverted.

Every found principal moving direction 7 € Ty, is regarded as one road course hypoth-
esis p. Hence, for every 7 the set of corresponding occupied grid cells, B; and B;, which
represent its left and right boundary, are extracted. Then, the continuous semantic bound-
aries, Bi(s) and f,(s), are estimated, which constitute the road course p. Finally, each road
course is validated based on the estimated boundaries, since even with the kinematic and
velocity constraints it may happen that a principal moving direction does not correspond
to a valid road course. The road course, as well as its probability of being valid given
certain criteria &, is given to the tracker to yield a robust and consistent representation.
Next, the road boundary estimation is presented.
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5.3 Path-based Road Boundary Estimation

After motion planning and path clustering, the road boundaries are estimated with the
path representatives of the clusters, and road course hypotheses are generated, as described
in this section.

5.3.1 The Effects of Path Clustering

Every path from the motion planner is one road course separator, i.e., it divides the
environment into two parts, where one holds, amongst other obstacles in the map, the
left boundary, and one the right boundary. From the computational point of view, it is
not reasonable to use every output path of the path planner as base for a road course
hypothesis, i.e., to apply the subsequent steps as given in Algorithm 5.1. It also does not
yield a greater variety in the final estimations, since many paths are similar. Contrary
even, the data association in the tracker has then to resolve a large number of ambiguities,
which most likely leads to a decrease in the performance.

In Chapter 3, a path clustering approach has been proposed to reduce the set of paths to
the principal moving directions. Here, it is now discussed if this clustering assures the de-
sired properties for the road course estimation presented in this chapter. Two observations
are made about the effects of the clustering on the system:

Observation 5.2 If paths, which lead to different estimated road courses, are in the same
cluster, only one road course hypothesis is generated. The other road courses are lost.

And similarly:

Observation 5.3 If paths, which lead to the same estimated road course, are in different
clusters, multiple road course hypotheses are generated that are equivalent. Complexity is
unnecessarily increased and ambiguities for the tracker are introduced.

Hence, it directly follows that:

Corollary 5.1 A path clustering is optimal for a motion-planning-based road course esti-
mation, if every cluster holds all paths that lead to the same estimated road course, whereas
different clusters hold paths that lead to different road courses.

A direct implementation of Corollary 5.1, however, requires estimating the boundaries
with every original path and comparing for similarity. This conflicts the motivation from
above about complexity and ambiguity reduction. Since the boundaries are extracted
based on the paths, it can be observed that if the paths separate the obstacles in the
environment equally, the resulting road course hypotheses are also equal. Furthermore, if
two paths separate the environment differently, there must be an obstacle between them.
In this case, according to the clustering predicate from Definition 3.1, they are then in
different clusters. Similarly, if the paths separate the environment equally, then there is no
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5.3 Path-based Road Boundary Estimation

obstacle in between them, and they are combined to the same cluster as of Definition 3.1.
Therefore, the proposed clustering from Chapter 3 yields the desired properties.

5.3.2 Road Boundary Estimation

This section now presents how the boundaries are estimated based on the cluster repre-
sentatives.

Boundary Element Extraction

Given a path 7 with path nodes 7@ € R? as described in Section 3.2.2, the occupied cells
0 € O CR? to the left and to the right of 7

O, ={o€O|det(r]' =7 y,0—1]") >0}
(5.1)
O, = {0 0| dct(Ti” -7 ,0— Ti”) < 0}

are determined with the closest two path nodes 7;* and 7>, from every o € O. Note the
definition of the grid coordinate system given in Appendix A.3.

In the occupancy grid, there are typically more occupied cells than just the road bound-
aries. They come from other static obstacles in the environment. Since 7 separates the
road course, it is assumed that the road boundary elements are close to it. Hence, the left
and right obstacle elements, O; and O,., are refined to extract the road boundary elements

B,y = {0 € Oy | Yoy argmin(||o; — 75]|) = 0}, (5.2)

where 7¢ denote the closest path cell from o. The distance from (5.2) must also be smaller
than some maximum distance d™**.

Furthermore, obstacles that are behind the end of the path, are excluded, since 7 does
not separate them, and the left/right classification is therefore ambiguous. In order to

detect them, a circle with radius d™** is centered at
T max M T
(Icnd ycnd) + d (COS chd sin ecnd) ) (53)

where (zcnd Yend Gcnd)T = 7(lg) is the end configuration of the path. Figure 5.2 shows
the boundary cell extraction.

Semantic Boundary Estimation

Often, a continuous boundary representation is required. Especially in the case of road
boundaries that consist of sparse road boundary elements, the semantic continuous bound-
ary is useful. The extracted set of road boundary elements B,y allows a variety of methods
to be applied, since they can be given in an ordered sequence based on the separator path.
Even a simple polygonal chain is possible. For increased robustness, penalized regression
splines [135] are used here. They allow controlling the smoothness over the flexibility of the
curve and can thus be adapted to different scenarios and application requirements. The
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Figure 5.2: Extraction of the boundaries. The closest cells are searched for within some
maximum distance (empty circles). Cells behind the path (blue) are excluded
from the search (gray circle), since left/right classification is ambiguous, leading
to incorrect boundary estimations (green).

estimated semantic boundaries together with the extracted boundary elements are then
used to validate the road course hypotheses, which is described next.

5.4 Road Course Validation

Even though several constraints are exploited by the motion planner, it is not guaran-
teed that all principal moving directions correspond to valid road courses. Especially in
scenarios with sparse boundaries, it is possible that a collision-free and feasible path is
found that leaves the true road course in between two boundary elements. Therefore,
all road course hypotheses are validated based on their shape in every time step, as de-
scribed in Section 5.4.1. In addition, their plausibility is filtered over time, as described in
Section 5.4.2.

5.4.1 Single Frame Validation

Every road course hypothesis p; is validated in the current frame, i.e., in the current time
step, by calculating its probability

p(pi | &1, &2, &3, &a) = 0 p(pi) p(&1s &2, &3, Ea | pi)

=np(e) [[r(& 10, (5.4)

given certain properties §; observed from valid road courses. They are assumed to be con-
ditionally independent. Four properties were identified and used in the experiments. They
are given in the following. It is noted that these properties were derived experimentally
from data recorded with a laser scanner in real street environments. No claims about
completeness are made. All properties only rely on the shape of the boundaries and do
not use color, features, or object classification. The individual properties are evaluated in
Chapter 6.
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5.4 Road Course Validation

1) Constant Boundary Width

The width of a valid road course typically is rather constant or changes slowly. Strong devi-
ations in the width are therefore a hint for an invalid estimation. Let dg s = ||5i(s) — 5:(s)]|
be the distance between corresponding values at the left and the right continuous semantic
boundary, f;(s) and f,(s). Then,

(5:5)

max, dg — min, dg s
i) = fwl 1— L= — 3
])(51 | p) f < dgax ?

where d* is a predefined maximum distance and f,, : [0,1] — [0, 1] is a weighting function.
In the implementation a sigmoid function is used.

2) Uniform Road Boundary Element Distribution

The boundary elements are often distributed rather uniformly, such as traffic cones in road
construction sites. Furthermore, large gaps in between boundary elements, in comparison
to the average distance between the boundary elements in the scene, are also typically not
exhibited in real street environments. Let ,uél’r} and Uél’r} be the mean and the standard
deviation of the distances d,{)i{r} = Hb1{1+71} — bl{l’T}H between consecutive boundary elements

of the left or right boundary. Then,

/ (1 e dfy) ) - o;w>
S max Lr Lr
Ay — ;té - alf }

p(& | pi) = min . (5.6)
ot
fw 1— I:nax
b

The symbols 0" and dj** denote predefined maximum values. Equation (5.6) is evaluated
for the left and the right boundary individually and the minimum value is chosen.

3) Equal Endpoint Tangents

In scenarios where the road boundaries are given by a sparse set of boundary elements,
road course hypotheses that depart from the true road course often exhibit boundary
estimations, which point apart of each other at the end. In such a case, the separator path
leads to the extraction of the backfaces of the true road boundary elements. Let

v = /))ll(send) U = ﬂ;(send) V. = <COS eend) (5 7)
(18] (Sena) | ' (181 (sena) ||’ $I1 fena
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denote the normalized tangent vector at the endpoint of the left and the right boundary, as
well as the tangent vector in the endpoint of the separator path 7(lg) = (xcnd Yend Gcnd)T.
Then,
if (<, v, + <y, v;) < 180

(5.8)
0 else

where <tvy, vy = cos™L(vy - v).

4) Boundary Length Equals Separator Length

Finally, the lengths of the estimated semantic boundaries are analyzed. Since they are
calculated based on a separator path 7, they are expected to exhibit the same length as 7,
i.e., the goal path length ls. Let

Send Send
lm:/ [1B(s)]|ds  and lﬁ,-:/ [18;(s)l|ds (5.9)

50 50

denote the lengths of the boundaries. Then,

min(lg,, ,)

w( ] ) if min(lﬁl, lﬂr) < l(;
p(&alpi) = ¢

(5.10)

1 else

The single-frame road course probabilities are recursively filtered with a binary Bayes
filter, as shown next.

5.4.2 Recursive Bayesian Validation

In order to increase the robustness of the estimated road courses, the probability of each
tracked road course is recursively filtered. Road course tracking, and thus also association,
is described in the next section. For now assume that the individual single-frame prob-
abilities are correctly associated to the corresponding tracks. Let & = {&1...&4} and
p(p | &) denote the probability of road course p being valid in the current frame. Then,
p(p | &) is calculated recursively from p(p | &14-1) and the current estimation p(p | &)
using Bayes rule and the log odds ratio [157]

plol&) . )

A =1lo + A 5.11
d(p) =log § o8 BT T 1(p) (5.11)
with o(0)
p(p
A log -0 5.12
o) =8y 12
The probability of p being valid is recovered from (5.11) as
(0] ) 2 (513)
. = _— D.
P S 1+ exp(Ae(p))
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5.5 Road Course Tracking

The tracked probability p(p | &1.4) is then used by the tracker to determine one of three
possible states:

Potential Road Course: Denotes a new track candidate. If the single-frame probability
p(p | &) exceeds a certain threshold and the road course has not been associated to
an existing track, a new track is created. If the track is successfully associated over
multiple frames and the filtered probability p(p | &1.1) exceeds a second threshold,
the state of the track is changed to valid road course.

Valid Road Course: Denotes a stable track. There can be multiple valid road courses in
order to represent road junctions or forks in the road.

Primary Road Course: Denotes the selected road course. It only exists if the separator
path is used to navigate the vehicle, as described in Section 5.5.2.

The tracker, which is centered on the paths from the path planner, is presented in the
following.

5.5 Road Course Tracking

In this section, it is shown how the road course hypotheses are tracked over time to assure
consistency in the estimation as well as increased robustness. Section 5.5.1 presents the
general idea of the tracker and Section 5.5.2 describes the association.

5.56.1 Tracking Road Courses based on Paths

The obvious and usual way of tracking road course estimations is by tracking the esti-
mations themselves. Often, the parameters of the mathematical model that is used to
represent them are tracked with a Bayes filter. The current estimations are predicted,
associated, and correct using the current measurements.

If the road courses are estimated on an occupancy grid, i.e., a representation where the
sensor measurements are already filtered over time, filtering the road course hypotheses
with the occupancy grid as measurement, corresponds to filtering the data twice. There-
fore, changes in the shapes of the estimations due to new measurements, may appear too
slowly. Here, a different approach is used. Contrary to directly tracking the road courses,
tracking is done indirectly based on the separator paths from the motion planner. In ad-
dition, the boundaries that form the road courses are extracted from the current grid in
every time step. Hence, a quick reaction to changes in the environment is guaranteed,
while keeping consistency.

Tracking deals with the problems of track creation, track deletion, track merging, and
track splitting. They are all handled based on the result of the data association, which is
discussed in the next section.
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5.5.2 Path Association

Central to any tracker is the data association problem, i.e., the association of existing tracks
to the current measurements or current-frame estimations. Two different approaches are
presented in the following.

Nearest Cluster Association

The first variant presented associates the individual road course estimations based on the
closest cluster. In every frame, a set of road courses Ry, is estimated with a set of cluster
representatives Trep, Which in turn come from a set of paths 7; planned from the current
position of the vehicle in the grid. Every tracked road course p € R;_; is then associated
to the current frame road courses Ry in the following way. The closest path

T; = arg min(max(Hﬂ? - Tﬂ\)) (5.14)
T€T: g

from the separator path 7 of the tracked road course p € R;_; is searched for in the set of

paths 7; = {7}. If 7; and 7 are within the gating window, the road course ¢ € Ry that

was estimated based on the cluster of 7; is associated to the tracked road course p. Note

that the separator path 7w needs to be resampled onto the current graph at time ¢ for the

computation of (5.14).

Having associated every p € R;_1 to a ¢ € Reur, the probability of p being a valid road
course is updated as described in Section 5.4.2 with the probability of ¢, which is calculated
as shown in Section 5.4.1. The new tracked road courses R; hold the boundaries of the
current frame estimations Ry, thus they always correspond to the newest occupancy
grid, which incorporates the newest sensor measurements.

If a tracked road course p € R; 1 cannot be associated, it is deleted, as no similar
path is found. To increase the chance that a similar path to the separator path 7 of the
tracked road course p € R;_; will be found by the motion planner, the node extraction
strategy from the A*-RRT planner from Algorithm 3.1, described in Section 3.2.4, is
slightly modified. An additional method is added after the first goal path is found that is
called with a low probability instead of the popRRT() method:

popTrackedPath(): The endpoint of one of the tracked paths is randomly picked. Similar
to the popRRT() method, its closest node in the list of open nodes Lopen is then
searched for and chosen next for expansion.

max

It is noted that the number of node expansion iterations n must be appropriate for

iter
this strategy to work. If njpa* is very low leading to a low number of goal paths 7T, tracks
will continuously be deleted and recreated, unless the gating window is not substantially
increased or even disabled. For the applications in this work, it is always assumed that the
local environment is rather densely sampled with goal paths, which implies a high number
of expansion iterations njjar.
Furthermore, if two tracked road courses are associated to the same cluster, then they
are merged. If a current frame road course ¢ € Reyr cannot be associated, but has a
high probability p(p | &), a new track is created with the state of Potential Road Course
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5.6 Results

as described in Section 5.4.2. Tracks are never split though. It cannot be differentiated
between a split due to a fork in the road corresponding to a correct split, and a split due
to an estimation that leaves the true road course between sparse boundary elements. In
the latter case, it is not desired that the filtered probability as well as a potential stable
tracking state is copied.

Direct Association

If the vehicle follows one of the paths from the planner, the road courses can directly be
associated. In Section 6.2.4 of the next chapter, an experiment is conducted, where a
vehicle is maneuvered autonomously solely based on the estimated road course without
any prior map information. In this case, the paths from the motion planner, which are
used and meant to estimate the road course, are used to navigate the vehicle as well. In
a general autonomous vehicle system, one is typically not interested in using the paths
for navigation as more information needs to be incorporated, such as other vehicles, lane
markings, or traffic rules.

If one of the paths is used for maneuvering the vehicle, it is clear that re-planning in
every cycle from the current pose of the vehicle leads to discontinuities and instabilities.
Instead, in this case, the search space of the path planner, i.e., the graph, is fixed in the
world coordinate system. The coordinate systems are described in Appendix A.3. Contrary
to keeping and re-evaluating all paths from the previous time step, in every cycle, a new
set of paths 7; is generated based on the old start pose, which has been used to plan at
time ¢ — 1. This fosters exploration and allows detecting new branches. However, the
primary path 7, of the primary road course that the vehicle is following, as well as all valid
tracked road courses, are directly inserted into the set 7; and hence data association is
directly accomplished without any distance based measures. In order to keep the bias of
re-inserting the tracked paths low, only the first couple of path nodes are inserted, while
the rest of the path is chosen so that the overall path cost is minimized. Once the vehicle
traverses the second node of the primary path 7,, this second node becomes the new start
pose of the motion planner, and the search graph is expanded by one level.

Due to the used motion primitives, 7, is not feasible and not optimized with respect to
a comfortable trajectory. One the one hand, the curvature is not continuous at the path
nodes, and on the other hand, the number of primitives typically is very low and thus
a strong discretization of the steering angles exists. Therefore, the path is smoothed for
the aforementioned autonomous navigation experiment. A variety of smoothing, trajectory
generation, and optimization techniques may be applied, such as [49, 182]. In Appendix A.4
the smoother that was used in the autonomous drive presented in Section 6.2.4 is described.

5.6 Results

This section gives first qualitative results. A quantitative evaluation of the presented road
course estimation system follows in the next chapter. In Figure 5.3 four scenarios are
shown. Each image presents an example of one of the four validation criteria presented
in Section 5.4.1: the semantic road boundary width in Figure 5.3a, the road boundary
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5 Road Course and Road Boundary Estimation

'- i > R

(c) Endpoint tangents &s3. (d) Boundary length &,.

Figure 5.3: Sample valid (green) and invalid (red) estimated road courses for each of the
presented criteria. The probabilities are given in Table 5.1.

element distribution in Figure 5.3b, the boundary endpoint tangent in Figure 5.3c, and
the road boundary length in Figure 5.3d. Two road course estimations are shown in each
figure, one of the valid road course in green and one of an invalid estimation in red that
was successfully detected because of the corresponding validation criterion.

Table 5.1 gives the detailed probabilities of both estimations for each figure and for
each criterion as well as the joint probabilities. The values were clamped to the interval
[0.15,0.85] to reduce the impact of a single estimation in the temporal filtering.
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5.7 Summary

Table 5.1: Road course plausibility values for Figures 5.3a-5.3d.

p&lp) p&lp) p&lp) p&lp) plpléia)

Figure 5.3a, valid RC  0.797 0.510 0.850 0.850 0.850
Figure 5.3a, invalid RC  0.163 0.451 0.668 0.850 0.240
Figure 5.3b, valid RC  0.767 0.738 0.822 0.845 0.850
Figure 5.3b, invalid RC ~ 0.677 0.193 0.842 0.799 0.555
Figure 5.3c, valid RC  0.628 0.691 0.830 0.850 0.850
Figure 5.3c, invalid RC ~ 0.356 0.155 0.286 0.850 0.150
Figure 5.3d, valid RC ~ 0.777 0.600 0.823 0.850 0.850
Figure 5.3d, invalid RC ~ 0.659 0.550 0.817 0.267 0.364

5.7 Summary

The boundaries of the road, which compose the road course, are important extracted and
interpreted information about the environment. Contrary to the variety of arbitrary static
obstacles in the world, they represent the ones, which define where the road is heading and
thus where the vehicle is supposed to maneuver.

A novel approach to road course estimation has been presented in this chapter. It is
independent of specific features or particular sensors, but is based on occupancy grids. In
addition to an abstraction from the sensor level, the grid representation assures a high
robustness over noise and with recent methods, such as the one proposed in Chapter 2,
also to be free of dynamic obstacles, which do not constitute to the road boundaries. The
method allows an estimation of multiple road courses at road junctions and can cope with
arbitrary-shaped and -structured road boundaries over a large planning horizon.

The approach estimates the road boundaries indirectly based on the principal moving
directions through the environment. A method for their extraction using motion planning
has been presented in Chapter 3. An estimated drivable velocity reduces the search space
of the path planner and significantly decreases, together with collision constraints, the
number of false positive principal moving directions in the case of sparse boundaries. The
principal moving directions are seen as boundary separators and greatly facilitate the
estimation of the boundaries.

Given the separators, the boundary obstacle elements are extracted and a continuous
semantic representation of the boundaries is obtained. This is especially useful in scenarios
with road boundaries consisting of sparse boundary elements, such as often exhibited in
road construction sites. Finally, the extracted boundaries are validated and filtered over
time, in addition to the applied constraints during the extraction of the principal moving
directions. In the following chapter, the proposed methods are evaluated.
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6 Evaluation

In this chapter the proposed methods are evaluated. It is noted that each of the previous
chapters already presented results. The path planning and clustering have already been
evaluated in Chapter 3, as well as the proposed methods for the calculation of the config-
uration space costs in Chapter 4. Here, it is focused on an evaluation of the grid-based
tracking and mapping and the road course estimation system. In addition to the qualita-
tive results given in Chapter 2 and Chapter 5, quantitative evaluations are presented in
Section 6.1 and Section 6.2. Furthermore, the road course estimation method was used to
autonomously maneuver a vehicle through an unmapped road construction site. Finally,
results from the road course estimation in dynamic environments with the static Bayesian
map from GTAM are given. Parts of the evaluations of the road course estimation have
been presented in [10] in the context of this work.

6.1 Evaluation of the Grid-based Tracking and Mapping

In this section GTAM, presented in Chapter 2, is evaluated. First, in Section 6.1.1 the par-
ticle convergence is analyzed and compared to the approach of [35]. Then, in Section 6.1.3
the classification is evaluated in a variety of real street scenarios that were labeled man-
ually. The classification is done for different parameters to show their effect. Finally, in
Section 6.1.4 the estimated velocities are evaluated and compared to a commercial object
tracking system. If not mentioned otherwise, the evaluation was done with data from
a laser scanner. Rather than with data from a radar sensor, no information about the
velocity is available.

6.1.1 Particle Convergence with Static Particle Sampling

First, the convergence of the particle filter is analyzed. One of the characteristics of
the presented particle filter from Section 2.3 is the initial velocity sampling distribution
from (2.22). Contrary to sampling from a pure uniform distribution as in [35], a uniform
distribution is combined with a Dirac distribution at (0,0) to allow the representation of
the static environment. To show how this distribution impacts the convergence of the
filter, the algorithm was tested in a synthetic static scenario. The exact same scan grid
was used as input to the filter in every time step, in order to exclude effects from sensor
noise. Let Xye denote the set of particles that were deleted after the resampling step and
Koy = X'\ Xgol the set of particles that have survived the resampling procedure. Figure 6.1

shows a plot of the Particle Destruction Rate

| Xgel|

PDR = — =l
‘Xdel| + |Xsurv|

(6.1)
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Figure 6.1: Comparison between uniform sampling and uniform + static sampling as proposed.
The particle destruction rate (left) and the cell convergence rate (right) are given.
The same input is applied in every time step.

i.e., the relative number of deleted particles. Compared are sampling from a uniform dis-
tribution only and sampling with (2.22) as proposed. The probability of sampling a static
particle was set to 0.3. A high PDR indicates that a large amount of the total parti-
cle population moves into areas that do not receive sensor data and is therefore deleted.
These particles are an overhead to the system as they do not support the measurements.
In addition, if many particles move out of the relevant areas and a particle survival prob-
ability Pyuy > 0 is used, in order to cope with occlusions and missed detections, a high
computational overhead is introduced due to a high number of particles in such areas.
Furthermore, the average Cell Convergence Rate

‘n;des _ ni('
7,max ’ (62)
X

CCR=1-

i.e., the relative difference between the desired number of particles in a cell ni’des and the
actual number of particles n} for all cells with a non zero cell weight, is given in Figure 6.1.
It shows how well the particles have converged towards the static objects.

As expected, with a pure uniform sampling distribution, the filter does not converge
towards a stable result. Around 1/4 of the total particle population constantly moves out
of the static objects and is therefore deleted in every time step. The result of the CCR
is very similar. Also, there exists a mismatch between the desired and the actual number
of particles of around 1/4. If static particle sampling is introduced and combined with
uniform sampling, the filter quickly converges after a couple of iterations to a stable result.

6.1.2 Parameter Evaluation

Next, the main different parameters are analyzed and evaluated, i.e., the maximum number
of particles per cell, the effect of sampling new random particles during resampling, and
the probability of sampling static particles.

Evaluation Metric and Ground Truth

The parameters were evaluated on a variety of real street scenarios including urban street
scenarios, one way streets, road junctions, as well as highways. Several sample images
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from the test data are given in Figure A.3 of the Appendix. The dynamic objects were
manually labeled in the data set to generate the static and dynamic ground truth for every
input scan grid. In order to evaluate the continuous Dempster—Shafer belief masses from
the particle map from (2.38) with the binary ground truth, the classifier

S if m'(S) = max  m'(A)
A€{S,D,{S,D}}
classiff GTAM(v') = ¢ D if m'(D) = Ae{s%z}{)g,D}} m'(A) (6.3)
undecided else

is applied on all cells for which m(S) + m(D) + m({S, D}) > 0. It classifies according to
the maximum of m(S), m(D), and m({S, D}). Then, using the labeled ground truth the
rates for True Dynamic (TDR), True Static (TSR), False Dynamic (FDR), False Static
(FSR), Undecided Dynamic (UDR), and Undecided Static (USR), defined as

true dynamics true statics
TDR = = — TSR= ‘ .
true dynamics + false statics true statics + false dynamics
FDR — - false .dynamics . PSR — f.'alse statics .
false dynamics + true statics false statics 4+ true dynamics
undecided dynamics undecided statics
UDR = y USR=————"7F— (6.4)
dynamics statics

are calculated. They reflect the observation that an undecided classification, i.e., where
the mass of the set {S, D} is the highest, is not a false classification. The rates give the
relative number of unclassified cells. Note that in the evaluation, the undecided rates will
be relatively high, since all cells for which m(S) + m(D) + m({S, D}) > 0 are classified.
Hence, also cells that are observed to be occupied for the first time are classified. Since
the vehicle is moving for most of the time, there are many of such cells. As described
in Section 2.3.4, only the particles that have survived at least ¢ time steps are accounted
for the classification. Hence, for those cells m({S, D}) is the maximum and they will
contribute to the UDR and the USR.

Maximum Number of Particles per Cell

The maximum number of particles per cell ni(*max has a crucial impact on the computa-
tional performance, since it controls, together with the cell resolution, the total number
of particles. In Table 6.1 the evaluation rates from (6.4) on the test data are given for 5
different values of n;‘“"’". Rather surprisingly, the rates regarding the classification do not
change much with the number of particles. Even with a low number of particles, high true
dynamic rates and true static rates are achieved. Note that the undecided dynamic rate
and the undecided static rate, as mentioned above, are rather high due to the classifier
of (6.3). The influence of the number of particles is further analyzed in Section 6.1.4 re-
garding the estimated velocities. Overall, setting the maximum number of particles to 32
is the most appropriate setting for the tested scenarios.
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Table 6.1: Classification performance with varying number of maximum particles per cell.

Particles per cell
16 32 64 128 256

True dynamic rate (TDR) 0.9628 0.9634 0.9697 0.9692 0.9718

False dynamic rate (FDR) 0.1365 0.0845 0.0835 0.0723 0.0702
Undecided dynamic rate (UDR) 0.4589 0.4710 0.4336 0.4294 0.4088
True static rate (T'SR) 0.8635 0.9155 0.9165 0.9277 0.9298

False static rate (FSR) 0.0372 0.0366 0.0303 0.0308 0.0282
Undecided static rate (USR) 0.3244 0.3131 0.3088 0.3058 0.3038

New Random Particles

If resampling, i.e., generating the new particle population from the one at time ¢ — 1, is
only done with the existing particles, i.e., the ones that moved into that particular cell
from the previous time instance, the particles quickly converge towards one hypothesis and
artifacts may occur. The velocity distribution may be badly represented by the particle
population, since all particles converge to one estimate. No particles remain in the other
areas of the distribution. This problem is called the particle deprivation problem [157].

Within the presented filter, these artifacts are most clearly visible at objects exhibiting
a uniform longitudinal shape parallel to the moving direction of the robot. Such objects,
unfortunately, occur often in real street scenarios, e.g., guard rails or tunnel walls. Due to
sensor limitations, only a small fraction of relatively constant length of the boundary object
is visible. If the robot moves, new parts of the object become visible, while other parts
passed by the robot, disappear. Cells of such stationary objects cannot be discriminated
from cells of objects that move with the same speed and in the same direction as the
robot. The particles therefore quickly converge towards such an estimate, as depicted
in Figure 6.2a. All cells corresponding to the stationary road boundary are filled with
particles that move similar to the ego vehicle and therefore have a high dynamic mass. If a
small fraction of new random particles is inserted into the existing particle population, this
problem is mitigated, as shown in Figure 6.2b-d. Even a low fraction of random particles,
such as in Figure 6.2b, has a high effect on the resulting estimation. It comes, however,
at the price of destroying the existing tracks with new particles that are randomly created
and have not yet caught the real environment, such as visible in the dynamic object in
Figure 6.2d.

For purposes of computational efficiency, new random particles are only inserted when
the number of particles in a particular cell is increased from the number of particles from
t — 1 after the motion update. Due to noise added during the motion update, this is,
however, constantly the case for a certain number of particles. A constant number of
med nb "‘axJ random particles is created at most.

If velocities, or parts of it, can be measured, such as with a radar sensor, individual
particle weights, i.e., intra-cell weights, can be calculated, as discussed in Section 2.3.3.
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Figure 6.2: Effect of increasing the cell particle population with new random particles instead
of just duplicating them to fight particle deprivation. Scene consists of two guard
rails to the left and the right of the robot and one moving vehicle to the front.
Figures (a)—(d) show results on laser scanner data only, whereas Figure (e) shows
position sampling and cell weighting with a laser scanner, and velocity sampling
and intra-cell weighting with a radar sensor.

Hence, the choice of the value of the parameter w.,,q can be determined automatically.
The particle weights are used to calculate wyanq individually for each cell according to

Whona = fu (1= maxwly ), (6.5)

where each wfk] is normalized between 0 and 1. As before, the index ¢ denotes the cell index
and f,, a weighting function. Hence, if a cell contains one or more particles with a high
weight according to the current measurement, then wy,,q is low or even zero. Dynamic
cells from real moving objects are therefore not affected by the random particles, such as in
Figure 6.2e. If the maximum particle weight in cell 7 is, however low, then w,,,q increases.
This prevents the filter from converging against a wrong estimation in static boundaries.
In Figure 6.2e, the same scene is shown, where only the laser scanner data was used for
the position sampling of the particles and for calculating the cell weights, and the radar
sensor was used for the velocity sampling and for calculating the intra-cell weights.

The effect of sampling random particles during resampling was also evaluated quanti-
tatively. Figure 6.3a shows the true dynamic rate, the true static rate, the undecided
dynamic rate, and the undecided static rate over different values of wpanq. The higher
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Figure 6.3: Plots over the ratio w,,,q of sampling random particles during resampling. Left,
true static rate, true dynamic rate, undecided static rate, and undecided dynamic
rate for the probability of sampling static particles wg during initial sampling of
0.5. Right, cutout for different values of wg.

Wrand, the higher is the true static rate, since the problem discussed above is mitigated.
The true dynamic rate, however, decreases, since the existing tracks are destroyed through
the new random particles. Moreover, with increasing values of w;,,q the undecided rates,
in particular the undecided dynamic rate, increase. Less cells are classified, since less cells
hold enough particles that have survived at least ¢ steps. The parameters w,,,q and wg,
i.e., the probability of sampling static particles during initial sampling, analyzed in the
following section, are dependent on each other. Therefore, in Figure 6.3b the curves for
the TSR and the TDR are given for different fixed values of wg. The points of interest,
i.e., the intersection of the TSR and the TDR, are marked with squares.

Pure Static Particles

Similar to the previous section, the prior wg of sampling static particles in the initial
sampling distribution from (2.22) is evaluated. In Figure 6.4a, the true static rate, the
true dynamic rate, the undecided static rate, and the undecided dynamic rate are plotted
over different values of wg. As expected, the higher wg, the higher is the true static rate,
while the true dynamic rate decreases. The undecided rates stay relatively constant with
the undecided static rate slightly decreasing with increasing wg, since more static particles
are initially generated and therefore the static world can be better classified.

Similar to Figure 6.3, the top left part of the plot is presented in Figure 6.4b, in addition
to the full plot, in greater detail and for different values of wy,nq. As mentioned above,
the two parameters, w;.,q and wg influence each other. From Figure 6.3 and Figure 6.4 it
follows that it is beneficial to combine a low value of wg with a high value of wyanq, and
vice-versa, a high wg with a low value of wag, in order to achieve high true dynamic and
true static rates. With a pair of low wg and high w;ang, the highest TSR and TDR are

107

IP 216.73.216.60, am 24.01.2026, 06:28:16. © Inhak.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186246080

6 Evaluation

1 1
vl
0.8
0.95 1
0.6 |
(&) (&)
k g 09 |
0.4
—— TSR 0.85 Y
0.2 { —— TDR T Wrand = 0.08
UDR Wrand = 0.04
USR Wrand = 0.02
0 - . . . 0.8 . . - -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
ws ws

(a) TSR, TDR, UDR, and USR for w;ana = 0.04. (b) TSR and TDR for different values of wyand-

Figure 6.4: Plots over the probability of sampling static particles during initial sampling wg.
Left, true static rate, true dynamic rate, undecided static rate, and undecided
dynamic rate for the ratio w.,q of sampling random particles during resampling
of 0.04. Right, cutout for different values of wyanq-

achieved, although the difference is marginal. The undecided rates are, however, rather
high with such a parameter pair. If a high number of actual classifications is desired, then
a pair of high wg and low w;anq is recommended. For the application in this thesis, the
intermediate way is chosen, i.e., a wg of 0.5 and a wapq of 0.03.

6.1.3 Classification

In this section, the classification with the proposed initial velocity sampling distribution
is compared to the classification of [35] with pure uniform sampling. The evaluation data
set was the same as in the previous section.

Evaluation Metric

In order to compare the approach to the classification of [35], a different classifier than (6.3)
is used, since the classifier of [35] is binary. Slightly different to the previous section, only
the cells in which there exist at least L0.2 7L§(*ma"J particles that have survived ¢ steps are
classified according to

S if m'(S) > mi(D)

classifyBinaryGTAM(') = (6.6)
D else

and compared to the classification of [35], i.e.,
S if o, <woy, A p, <woy,

classifyDanescu(v') = (6.7)
D else
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Figure 6.5: Receiver operating characteristic curve of (6.6) and (6.7).

Note that the classification with (6.7) is done with pure uniform velocity sampling as used
in [35]. The rest of the particle filter, such as weighting and resampling, is done as given
in this work.

Results

In Figure 6.5 the receiver operating characteristic (ROC) curve on the labeled ground
truth data is given. The ROC parameter for classifyBinaryGTAM was wg, i.e., the prob-
ability of sampling static particles. It was varied in the range [0,1]. The parameter for
classifyDanescu was the weight w from (6.7). It was varied in the range [0,20]. Contrary
to the previous section, the classifiers here are binary, and therefore only the true positive
rate over the false positive rate is given. Positive, in this case, was the class dynamic, but
due to the symmetry of the ROC curve, the class static is simply mirrored and thus not
given. Additionally, there are no undecided rates. Every cell with enough old particles is
classified with both classifiers. Hence, the number of classifications is equal.

It is noted that for this evaluation, the power of the estimation result was significantly
reduced. In fact, there exist continuous masses in the Dempster—Shafer theory of evi-
dence for the class static {S}, dynamic {D}, static-dynamic {S, D}, as well as unknown
{©}, instead of only a binary two-class classifier. The proposed classifier still performs
significantly better.

6.1.4 Estimated Velocities

Finally, the estimated velocities are evaluated. They are compared to a commercial object
tracking that works with the same sensor. Note, that the grid-based tracking is entirely
cell-based and no higher level object representation exists. As creating objects out of
the grid representation, such as with a clustering algorithm, was not topic of this work,
the cells corresponding to the dynamic object under evaluation were manually clustered by
drawing a box around them. The velocity and the orientation of the object were calculated
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by taking the weighted average of the mean velocity of all dynamic cells weighted by their
dynamic evidences m’(D).

Two scenarios are shown: one in which the dynamic object, i.e., another vehicle, is
passing by in parallel, shown in Figure 6.6, and one in which the object passes at around 45
degrees, shown in Figure 6.7. In each scenario the object passes with two different speeds,
around 30 and 60 km/h. Moreover, the tests are done with two different maximum numbers
of particles per cell, 32 and 128, in order to evaluate if the results are improved if the number
of particles is increased. Rather surprisingly, but consistent with the observations from
Section 6.1.2, the difference is hardly noticeable in Figure 6.6 and moderate in Figure 6.7.
Hence, the computational overhead of increasing the maximum number of particles per
cell is usually not worth the improvement.

The difference in the accuracy between the commercial object tracking and the grid-
based estimation is also moderate, although the particle map shows slightly more noise,
especially in the orientation. Note, that this is a good result for the particle map, since no
higher-level object-based information is used. It is expected that an object-to-object asso-
ciation and filtering is able to estimate more stable and accurate results as an independent
set of cells. The biggest difference, however, is the reactiveness of the particle map. In this
evaluation, particles had to have survived at least 4 time instances, i.e., 0.4 s in this setup,
to be accounted for. Hence, every plot shows this constant offset. The commercial object
tracking needs substantially longer to detect the dynamic object as such. If a separate
object tracking is now used, in order to filter out the dynamic object in an occupancy
grid map, there will always be a certain delay in which the dynamic objects will produce
artifacts. Note, that although it also takes the particle map 0.4s with this parameter set
to yield velocity and orientation estimations, static and dynamic evidences are directly in-
ferred from these velocities as described in Section 2.3.4. Therefore, the resulting uniform
Dempster—Shafer environment representation and thus also the Bayesian occupancy grid
do not have this issue.
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Figure 6.6: Evaluation of the estimated velocities in comparison to a commercial object track-
ing. Estimated velocity (left) and orientation (right) of an object passing the ego
vehicle in parallel.
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Figure 6.7: Evaluation of the estimated velocities in comparison to a commercial object track-
ing. Estimated velocity (left) and orientation (right) of an object passing the ego
vehicle at around 45 degree.
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6.2 Evaluation of the Road Course Estimation

6.2 Evaluation of the Road Course Estimation

This section presents an evaluation of the road course estimation. In Section 6.2.1 and
Section 6.2.2 the validation and the accuracy are analyzed respectively. Both evaluations
were conducted on a data set, which includes a variety of boundaries from different real
street scenarios, such as highways, urban areas, and road construction sites. The test set
includes guardrails, concrete walls, fences, walls of buildings, vegetation, traffic cones and
other sparse traffic markers, parked vehicles, and plastic barriers. Several sample images
from the test set are shown in Figure A.4 of the Appendix. The ground truth road course
in the data set was labeled manually.

Next, in Section 6.2.3 the approach is compared to separating the environment with the
predicted vehicle trajectory, as done by many grid-based road course estimation methods
as described in Chapter 5. The comparison was done on a road construction site marked
with traffic cones. Finally, Section 6.2.4 presents results from the autonomous drive. All
evaluations were conducted on a standard occupancy grid from laser scanner data in static
environments, in order to focus on the road course estimation alone.

6.2.1 Road Course Validation

Here, an evaluation of the road course validation, presented in Section 5.4, is given. Each
criterion &, ..., &, is analyzed individually. Only the single frame evaluations are given,
not the tracked ones, in order to focus on the validation. Figure 6.8 shows receiver op-
erating characteristic curves for the different criteria. They are generated by computing
p(&; | pi) > a and p(&; | p;) < a with varying parameter ¢ € [0, 1] and by comparing to the
labeled ground truth. The comparison to the ground truth is done with the separator
path of the estimations by checking whether it stays within the ground truth or whether
it crosses the ground truth boundaries. The result of the ROC curves was then also used
to tune the weighting functions f,.

The best overall classification is achieved by the equal endpoint tangent criterion ;.
Also, the constant boundary width criterion & performed well. The performance of the
uniform boundary criterion & and the length criterion &, depend on the particular scenario.
Criterion & performs well in organized, well-structured environments, such as highway con-
struction sites, but fails if the boundary elements are positioned arbitrarily. The validation
with the joint probability from (5.4) performs the best over all scenarios.
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Figure 6.8: ROC curves for the evaluation of the single frame road course validation.
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6.2 Evaluation of the Road Course Estimation

Table 6.2: Accuracy of tracked primary estimated road course for different planning horizons.

Planning horizon
30m 50m  70m

Average deviation (in cells @ 0.1m) 1.37 2.22  2.58
Average boundary length (in m) 27.7 46.9 62.13
True positive rate 0.99 0.96 0.95

6.2.2 Boundary Estimation Accuracy

In this section, the accuracy of the estimated boundaries of the tracked, primary road
course is evaluated. It is compared to the labeled ground truth. Table 6.2 shows the
average deviation of the boundaries with three different planning horizons: 30, 50, and
70 meters. It is expected that since the ground truth boundaries are generated manually,
additional inaccuracies are introduced. The average deviation is within 1-3 cells. Also
given, is the average length of the estimated boundaries. It can be observed that in 70m,
the average estimated length deviates by 8 meter. This is due to limits from the sensor
and its mounting position. Increasing the planning horizon does therefore not necessary
mean that the road course can be estimated over a greater distance. Furthermore, the true
positive rate of the primary tracked road course is shown. It reflects the recursively filtered
probability of the road course validation, as well as the dynamic and collision constraints.

6.2.3 Comparison to Predicted Vehicle Path

Next, the approach is compared to separating the environment simply based on a pre-
dicted vehicle path, as done by many state-of-the-art grid-based road course estimation
approaches, instead of using motion planning. To this end, the motion planner was dis-
abled and replaced by the predicted vehicle path. Two different models are used, a constant
heading model, i.e., the vehicle orientation separates the environment, and a constant cur-
vature model based on the current angle of the front wheels. The comparison was done on
an S-shaped curve made up of traffic cones at a distance of around 7m with a road width
of around 3.5 m.

Two variants of each type of predicted vehicle trajectory were applied as the approaches
in the literature differ. On the one hand, the predicted trajectory was checked for collision
in the workspace, denoted by W, i.e., it was followed until the first occupied grid cell
was found. And on the other hand, collisions where checked, as in this work, in the
configuration space, denoted by C. In Table 6.3, the true positive rate of the different
variants are given. As expected, with the collision check in the workspace, the true positive
rate is low, since the boundaries are sparse. In the configuration space, using the predicted
trajectory, the same true positive rate as with using motion planning is achieved in this
particular scenario. In this setup, due to the collision constraints, the predicted trajectory
does not pass in between two boundary elements, although in other scenarios this may
easily happen. However, Figure 6.9 shows the length of the separator path until the first
collision for the approaches in the configuration space. It is clearly visible that with the
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Table 6.3: Evaluation against using the predicted vehicle path as boundary separator for an
S-shaped curve marked with traffic cones.

This work Const. heading Const. curvature

C w C w C

True positive rate 1.0 0.51 1.0 0.82 1.0

£

=}

g

¥ .

= 10 Const. heading

E Const. curvature

A 0 T T 1 1 1 1

0 40 80 120 160 200 240

Frame number

Figure 6.9: Length of the separator path until first collision in the configuration space C for
an S-shaped curve marked with traffic cones. The maximum value, set to 40m,
is continuously reached by the path planner of this work.

predicted trajectory, the length, which is set to a maximum of 40 m, can rarely be reached,
while it is constantly reached when using motion planning.

In addition, it is noted that with using the predicted trajectory branches, junctions, and
forks in the road cannot be detected. Moreover, it is strongly relied on a good start state,
i.e., a correct orientation of the vehicle and, in the case of the constant curvature model,
also a correct wheel angle.

6.2.4 Autonomous Navigation in an Unmapped Road Scenario

The road course estimation system was also integrated into a vehicle and used to control
it through an unmapped road construction site. The boundaries were marked with traffic
cones, plastic barriers, parked vehicles, vegetation, and walls of buildings. Images of the
scene are shown in Figure 6.11. No GPS or prior map of the environment was used, but
only the data from a single 4-layer laser scanner.

In Figure 6.10 the clustered paths, the path representatives with the extracted boundary
cells, and the semantic boundaries with the smoothed trajectory that was the input of the
controller are shown. Four different time steps are given. Figure 6.10a shows an S-curve,
where two clusters were detected according to the paths that leave the valid road course.
Due to the validation and the tracking, such wrong hypotheses are eliminated. Figure 6.10b
shows a fork in the road. This time the two clusters correspond to two real road courses
and both are successfully detected. A couple of frames later, in Figure 6.10c, the system
detects that one of the branches is blocked. The tracked primary road course switched to
the branch to the right. Finally, Figure 6.10d shows a strong curve. Figure 6.12 gives the
driven trajectory and highlights the positions of the presented time instances.
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6.2 Evaluation of the Road Course Estimation

(b) t =27.4s.

A

Figure 6.10:

(d) t =55.7s.

Autonomous navigation through an unmapped street scenario at four different
time instances. The left column shows the clustered paths, the middle column
the cluster representatives and the extracted boundary cells, and the right column
the semantic boundary of the primary and all valid road courses as well as the
smoothed trajectory for the controller.
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(b) t = 15.2s.

(d) t = 30.2s.

(e) t =55.7s.
Figure 6.11: Camera images from the results from Figure 6.10

Z 10

Figure 6.12: The driven trajectory of the scenario from Figure 6.10.

118

IP 216.73.216.60, am 24.01.2026, 06:28:16.
m

° Inhak.
mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186246080

6.3 Qualitative Evaluation of the Road Course Estimation with GTAM

6.3 Qualitative Evaluation of the Road Course Estimation
with GTAM

Finally, in this section, the road course estimation is applied on the static Bayesian map
from the grid-based tracking and mapping. Whereas the scenarios in Section 6.2 are static,
in this section, results from dynamic environments are given.

Figure 6.13a shows the used separator path, the extracted boundary cells, and the
continuous semantic boundary on the static Bayesian map from GTAM. Figure 6.13b
shows the static, the dynamic, and the free space evidences from the Dempster—Shafer
map, which forms the basis to compute the static Bayesian map. The 3 dynamic objects,
visible in blue, do not lead to occupied cells in the static map and therefore the path planner
is able to find collision-free paths that satisfy the goal length, as shown in Figure 6.13c.
The grids were generated from radar sensor data.

In Figure 6.14, a scenario is given, which shows a single-lane road construction site,
where a vehicle is driving in front of the ego vehicle. Again, Figure 6.14a shows the
separator path of the valid tracked road course, the boundary cells, and the semantic
boundary, Figure 6.14b the DST map, and Figure 6.14c the clustered paths. Although
multiple clusters, and thus principal moving directions, are found in this scenario, the one
corresponding to the valid road course was successfully detected due to the validation and
the tracking. In the previous scenario, with a radar sensor and with objects moving in
radial direction, a static map can also be computed by simply filtering the data with the
Doppler measurements. In this case, however, with a laser scanner, the vehicle in front of
the ego vehicle leads to occupied cells, as depicted in Figure 6.14e. Thus, the valid road
course is blocked in a standard occupancy grid and no collision-free paths can be found
by the road course estimation. With the static map from GTAM, the dynamic objects are
treated accordingly, as demonstrated in Figure 6.14d, and the valid road course is detected.
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(a) Estimated valid road course. (b) DST map. (c) Paths.

Figure 6.13: The road course estimation on the static Bayesian map from GTAM from radar
sensor data.
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=

(a) Estimated valid road course.

(b) DST map. (c¢) Clustered paths on static map. (e) Standard occupancy grid.

Figure 6.14: The road course estimation on the static Bayesian map from GTAM from laser
scanner data in a dynamic environment.
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6.4 Summary

This chapter has given evaluations of the presented algorithms in addition to the results
already given in the previous chapters. First, an analysis of the grid-based tracking and
mapping has been shown. The convergence of the proposed filter has been analyzed and
compared to the approach from [35]. The problem of particle deprivation, which leads to
problems in the detection of continuous road boundaries, such as guard rails and tunnel
walls, has been discussed and it has been shown how it is mitigated. The main parameters
are evaluated, i.e., the maximum number of particles per cell, the ratio of new randomly
created particles to fight the aforementioned particle deprivation, and the probability of
static particles in the initial particle sampling probability. Plots and tables have been
given, which demonstrate their effects. The classification between static and dynamic has
also been compared to the one from [35] and an ROC curve has been provided. Finally, the
estimated velocities have been evaluated and compared to a commercial tracking algorithm.

In addition to GTAM, the road course estimation has been evaluated. Receiver operating
characteristic curves for each criterion of the road course validation, as well as for the
combined validation, have been given. The accuracy and the true positive rate of the
tracked primary road course have been shown for different planning horizons. The approach
has also been compared to relying only on the predicted vehicle trajectory, instead of using
motion planning. Moreover, the road course estimation system was integrated into a test
vehicle and used to navigate through an unmapped single lane street scenario.

Finally, qualitative results from the road course estimation in dynamic environments
with the use of the static Bayesian map from GTAM have been presented.
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7 Conclusion

In this thesis new ideas and concepts for tracking and mapping, the extraction of prin-
cipal moving directions, workspace cost evaluation for motion planning, and road course
estimation have been presented and validated in experiments with a vehicle in street envi-
ronments.

Grid-based Tracking and Mapping

A robust, real-time representation of the local static and dynamic environment is an es-
sential component to enable autonomous navigation. Occupancy grid mapping is widely
considered as the standard approach for creating a local map of the static obstacles. How-
ever, it assumes the world to be static, which leads to map errors in dynamic environments.
If dynamic objects are mistaken for static ones, crucial navigation errors occur, especially
for robots moving at high speeds, such as autonomous vehicles. Similarly important is a
robust representation of the dynamic world. If different representations are used for the
static and the dynamic environment, inconsistencies leading to errors are likely to occur.

Grid-based Tracking and Mapping (GTAM), a novel method that simultaneously esti-
mates the static and the dynamic environment in a grid representation, has been presented.
Particle filters are used to estimate a 2D continuous velocity distribution for every cell of
the grid according to the input sensor data. New particles are sampled from a combi-
nation of a uniform distribution and a Dirac distribution at zero velocity, in order to be
able to exactly represent the static environment. The estimated velocities are then used
to derive continuous evidences for static and dynamic occupancy in a Dempster—Shafer
model. The proposed FSD frame of discernment allows representing uncertainties in the
static/dynamic classification, as well as evidence for unclassified occupancy. Moreover, a
combination rule for temporal evidence filtering has been given, and it has been shown
how the DST model is reduced to a standard Bayesian occupancy grid.

An obvious way to remove moving objects and their artifacts in occupancy grids is to
use a standard object tracker and to filter the corresponding measurements. However, ob-
ject tracking algorithms usually require a certain amount of time to detect and track new
objects, during which the corresponding sensor measurements are not removed for the grid
update. Moreover, the removal of scan points is a binary operation. Uncertainties in the
estimation of the dynamic world cannot be incorporated. If a static object, such as a road
boundary, is mistaken for a dynamic one, the whole structure is filtered out and can there-
fore not be detected by extractors anymore, such as road course estimation. In addition,
there is typically no common low-level representation of the static and the dynamic envi-
ronment, as standard object tracking algorithms use shape and model assumptions. The
grid representation has become very popular, since it does not rely on such assumptions
and allows representing arbitrary shapes; and with GTAM also the dynamic world.
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Detection of Principal Moving Directions

Forks in the road and road junctions represent points of decision of the robot and impact
navigation. Algorithms that extract information about the road, such as the road course
and the road boundaries, often depend on knowing the topology of the road. Different to
the topology given directly by the obstacles, the road topology may differ, such as when
sparse boundary elements, like traffic cones, mark the road.

A novel approach to detect the principal moving directions has been presented. The
problem is considered as path planning and path clustering. A local path planner has been
developed that is able to efficiently plan a set of paths without goal poses to plan towards.
Two different families of planning algorithms have been combined to efficiently sample a
set of equal length paths that approximate the reachable set. The search is performed on a
graph with a set of motion primitives that are adapted according to an expected drivable
velocity on the given road. It is created and evaluated online. The A* algorithm is applied
to yield a focused search towards the goal criterion and to assure that the optimal path,
given the graph discretizations, is found. Using the same partially-explored graph, the
node expansion strategy is adopted from the Rapidly Exploring Random Tree algorithm
to achieve a uniform exploration of the search space.

The principal moving directions are then detected by clustering the paths. A novel
clustering method has been presented that groups local trajectories according to the ob-
stacles in the environment. Different to path homotopy, the trajectories do not need to
have equal end states. A path equivalence definition has been provided. It is efficiently
approximated by sampling endpoints of inter-trajectories, forming polygons, and by eval-
uating the polygons against the environment. The computational complexity is linear in
the number of trajectories and thus scales well, compared to higher-order complexities of
standard clustering algorithms, such as k-means, hierarchical clustering, or DBSCAN.

Since motion planning is used for the detection of the principal moving directions, con-
straints due to the shape and the possible motions under a given velocity are exploited.
Therefore, the approach yields good results even with sparse road boundaries, as with a
given road velocity, the probability of wrong estimations is greatly reduced. The number
of principal moving directions is implicitly estimated and does not need to be given. The
basis for planning paths is a map of the static world, which is achieved with GTAM even in
dynamic environments. One of the key enablers for real-time path planning on workspace
cost maps are the configuration space costs.

Configuration Space Costs

Checking robot configurations for collision and evaluating their costs takes the most com-
putational resources of the majority of current motion planning algorithms. With config-
uration space obstacles, whole robot configurations are checked for collision using single
look-ups. They thus, depending on the complexity of the planning problem, provide huge
performance increases, compared to direct evaluations. They are pre-computed by incor-
porating the robot geometry into the obstacles.

Many planning problems use costs rather than only binary obstacle information, in
order to find optimal paths or trajectories. Costs are often given due to the workspace.
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Examples of workspace costs are distances to objects or traffic rules, such as driving in the
right-most lane. Configuration space costs have been introduced and defined. They are a
generalization of the configuration space obstacles and allow the evaluation of the cost of a
complete configuration, which includes the check for collision, with a single look-up. Two
methods for their efficient calculation have been presented. FAMOD, which is approximate
in the output range but is able to handle arbitrary robot footprints and vHGW-360, which
works with rectangular footprints but yields resolution-exact results.

Real robots have a shape and an extent, and they are not points in the workspace. Hence,
similar to collision checking, if the costs are given in the form of a workspace cost map, the
shape needs to be incorporated and it has been shown how. Costs are a generalization of
collision, as the highest cost value is simply used to denote collision. During the design of
an algorithm, there is often a trade-off between pre-computation and computation on-the-
fly. During the performance tests, it was observed that it typically only requires the check
of a four-digit number of configurations with the proposed methods on a graphics card to
break-even with the time it takes for pre-computation and the same amount of look-ups.
Since large planning problems easily require the check of millions of configurations, the
discrete calculation of the configuration space costs will often provide huge speed-ups.

Road Course Estimation

The road course and the road boundaries represent the shape of the road ahead of the
vehicle. They define where it is allowed to move and what the curvatures of the roadway
are. The road boundaries are therefore important semantic information about the road
layout. While in a-priori map-based navigation, they can be used for localization, in sensor-
based navigation, they represent one form of guidance, as demonstrated in the experiments
in the previous chapter.

A novel approach has been presented that is based on motion planning. The detected
principal moving directions through the environment are used as road boundary separators,
i.e., they divide the obstacles in the environment into a part that contains the left boundary
and one that holds the right boundary. In these obstacle sets, the boundary elements
are detected and a semantic continuous representation is obtained. Due to the principal
moving directions, which are found by considering collision and velocity constraints, the
approach also works with multiple present road courses, with arbitrary road shapes, and
with sparse road boundary elements. Moreover, since it works on a grid representation,
it is independent of specific features or particular sensors. The detected road courses and
their boundaries are validated and tracked to achieve a high robustness.

Rather than directly fitting a road model into the sensor data or into an occupancy
grid, the presented method works indirectly over motion planning. Sparse boundaries
are particularly challenging, since the number of occupied grid cells corresponding to the
road boundaries is low. Additionally, there can be a significant number of occupied cells
corresponding to arbitrary static structures, leading to a failure in direct model fitting.
Furthermore, estimating the number of road courses is a challenging problem by itself
and influences the road model. The number of road courses is estimated according to the
number of principal moving directions and refined by validation and tracking. Apart from
model fitting, simply relying on the predicted vehicle trajectory has also been demonstrated
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to lead to wrong separations or limited planning horizons. It only works well for particular
road boundaries and shapes and assumes that there is always exactly one road course. The
presented approach uses all of the above components: GTAM for a map of the environment,
the principal moving directions as boundary separators, and the configuration space costs
to efficiently calculate collisions and costs with workspace cost maps.

All of the presented methods have been implemented under consideration of real-time
performance. Most parts have been developed as parallel GPU software. The algorithms
have been evaluated with a full-sized autonomous vehicle platform. The input data has
been recorded in real street environments, urban as well as highway scenarios, and au-
tonomous navigation experiments have been conducted on a closed track.

This thesis concludes with a motivation for future research. Regarding environment
modeling and perception for autonomous vehicle local navigation, there are still many
challenges that have to be faced. The increasing computational performance alone will
not automatically solve all the problems, although parallel hardware, such as graphics
cards, allows more complex algorithms to be applied in real-time applications. Driven by
the increase of interest in autonomous vehicles during the last years, this area of research
is expected to continue to yield new and superior concepts and algorithms with an even
broader range of possible impact.
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A Appendix

This chapter presents additional material to the main chapters of this thesis. Section A.1
presents the research vehicles and the sensors used for the evaluations and Section A.2
presents the hardware for the computations. Section A.3 gives details about the coordinate
systems and Section A.4 details about the smoother that was used to create the input for
vehicle control. Finally, Section A.5 presents sample images for the evaluation data sets.

A.1 Prototype Vehicle and Sensor Setup

The test vehicles, with which the algorithms were evaluated, are a modified BMW 5 series
car (F10) on the one hand, and a modified BMW i3 car (I01), on the other hand. The
sensors that were used consist of a 4-layer laser scanners and imaging radar sensors. The
test vehicle and the sensor positions are given in Figure A.1. Amongst other additional
equipment, the vehicle is also equipped with a DGPS (Differential Global Positioning
System) in order to precisely localize it in the world.

All sensors are fully integrated into the vehicle and not, as in other automated driving
prototype cars, mounted on the body of the car. Many research automated driving vehicles
use a 360 degree laser scanner mounted on the top. This has several advantages for
the environment perception algorithms. There is only one sensor with full 360 degree
field of view, the placement of the sensor allows observations over the top of other traffic
participants and over a large distance, and additionally, the size and the weight of the sensor
do not matter, since the space on top of the vehicle is not limited. Typically in such a
setup, accurate, large, and expensive laser scanners are used. Although robust environment
perception is much harder with sensors that are fully integrated in the vehicle, since they
are typically low over the ground and have a limited field of view, from an aerodynamic
and efficiency point of view, non-integrated sensors are inferior and facilities such as car
washers cannot be used.

The used 4-layer laser scanner has a horizontal field of view (FOV) of 110 degrees and
a vertical FOV of 3.2 degrees. It runs at 12.5Hz with an angular resolution between
0.125 and 0.5 degrees decreasing from the sensor axis to the outside. It aslo has another
operating mode at 25 Hz and a constant 0.25 degree resolution. The maximum detection
range is at around 200m. In practice, however, the maximum detection range, especially
for continuous road boundaries parallel to the sensor axis, is quite below.

The radar sensor has a horizontal field of view of 18 degrees with a 1 degree angular
resolution and a maximum range of 200m. It runs at 15Hz. The sensor is similar to
a series production radar used in driver assistance systems, such as the adaptive cruise

control (ACC).
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(b) A modified BMW i3 car.

. Laser Scanner Radar

(c) Used sensors in the work of this thesis.

Figure A.1: The test vehicles and the sensors used in this thesis. Images courtesy of BMW
Group. Most results were obtained with the two sensors to the front.
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A.2 Hardware and Software Computing Platform

A.2 Hardware and Software Computing Platform

In the following, the hardware used for the computations is given. All CPU programs
were developed in C++ and compiled with Microsoft Visual Studio 2010 under 64-bit
Microsoft Windows 7. The GPU was programmed with Nvidia CUDA 5.0. All timing
and performance measurements throughout this thesis were done on the same machine.
Standard PC hardware was used. It is given in the following table:

Table A.1: Computing hardware.

CPU Intel Core i7-3770 @ 3500 MHz, 4 cores, 8 threads, 8 MB cache
GPU Nvidia GeForce GTX 660 Ti, 1344 CUDA cores,

2048 MB memory, PCI Express 3.0
Primary memory 8192 MB

A.3 Local Grid Mapping

In this section, the different coordinate systems and the layout of the grid structure are
described.

World Coordinate System (WCS) The world coordinate system represents a fixed posi-
tion in the world and does not move over time. Note that world in this case does not
necessarily equal the physical world, as described below. Initially, the WCS equals
the vehicle coordinate system.

Vehicle Coordinate System (VCS) The vehicle coordinate system is fixed at a certain
position on the vehicle, in particular at the center of the rear axis. The x axis points
into the orientation of the vehicle and the y axis to the left.

Sensor Coordinate System (SCS) The sensor coordinate system SCS* denotes the origin
of a particular sensor k. The z axis points into the direction of the sensor axis and
the y axis to the left. The origin of the SCS is given in the vehicle coordinate system,
since it stays constant over time.

Map Grid Coordinate System (MGCS) The map grid coordinate system denotes the fil-
tered grid map. Since grids are essentially images, the conventional image coordinate
system is used, i.e., the origin is at the top left corner of the grid, the x axis points to
the right (over the columns of the matrix) and the y axis point downwards (over the
rows). Positive angles, in this work, always go from the z axis to the y axis and are
therefore clockwise in the grid coordinate systems. Note that in different implemen-
tations, one can choose to set the origin at the bottom left corner and setting the axis
equal to the WCS. This way, the transformation between the WCS and the MGCS
is easier, since the y does not have to be inverted and the angles match. Since the
algorithms are implemented on a graphics card, the conventional image coordinate
system was nevertheless preferred. In any case, it is noted that the grid coordinate
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system and the way how the grid actually resides in memory needs to be consistent.
In particular, the first array element is the origin of the grid coordinate system.

Scan Grid Coordinate System (SGCS) The scan grid coordinate system represents a
single scan of one particular sensor. The coordinate system is similar to the MGCS.
Different coordinate systems are used for scans and the map, since the map can cover
a larger region than a single scan. Moreover, it is beneficial that the layout of the
SGCS is optimized to efficiently cover the field of view of the particular sensor, e.g.,
for a sensor that observes an area to the right of the robot, it is advantageous that
the VCS is to the left of the center of the scan grid.

In order to filter over time while the robot is moving, the map grid from the previous
time step and the current scan grid must be transformed so that the same locations of the
world are combined. Here, an approach similar to [71] and [168] is used. If the vehicle
is set to a fixed position with fixed orientation in the grid, every update needs to rotate
the previous map according to the difference of the vehicle orientations at ¢ and ¢ + 1
due to the movement. This requires resampling, which leads to discretization and aliasing
errors [168]. Therefore, the position of the vehicle, or more precisely the origin of the
vehicle coordinate system, is not fixed but rotates on a circle with radius r,,, centered at
the grid center, with the current vehicle orientation, i.e., the z axis of the VCS, always
pointing towards this center. This way, two grids can be aligned by a translation only.
Unless only sensors to the front are used and the vehicle is primarily driving forwards,
such as in this work, the radius r,, will often be 0, especially if the robot is equipped with
sensors that perceive 360 degrees of the environment.

The new origin of the local grid of size ncens X Neens in the world coordinate system at
time ¢

oMES — round (0}705 + Ry (rm O)T + (—7cens/2 nccns/Q)T) (A1)

is calculated based on the current location 0y “® and the current orientation 6 of the vehicle
coordinate system, which in turn is computed using odometry information. Note that
although discrete cells are used, the position of the vehicle is stored using continuous
values. Note also, that here it is assumed that the units used throughout all coordinate
systems are cells to ease notation.

Similarly, the coordinate system of the scan grid is set such that the current orientation
of the sensor axis yielding that particular scan, i.e., the x axis of the SCS, points towards
the scan grid center rotating on a circle with some other radius r,. While for the map
grid, r,, will often be 0 as mentioned above, for one particular sensor scan, it is beneficial
that the field of view of the sensor has maximum overlap with the scan grid. The available
memory is then used more efficiently. Figure A.2 shows a diagram of the relations between
the coordinate systems. Note that the map grid is only shown for one particular time
step ¢, while two scan grids from two different time steps ¢ and ¢ + 1 are shown.

The grid discretization can be thought of as an infinite rasterization of the world that is
fixed through the initial placement of the world coordinate system WCS and stays constant
over time. The local grid maps at time instance ¢, i.e., MGCS; and SGCS;, are an exact
integer window of this grid world. Since the origins of the grid coordinate systems are
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A.4 Path Smoothing

stored in the WCS, the grids are easily aligned correctly without the need of resampling,
as the cells always perfectly align.

The world coordinate system does not represent absolute coordinates, as in simultaneous
localization and mapping, but a drift space using odometry. The odometry information
needed to obtain VCS; is calculated in a separate central component, so that it is equal
for all modules, such as mapping or path planning. The drift space has the advantage of
being smooth and continuous over time. Moreover, absolute coordinates are irrelevant for
this work, since the grid is only used online and is not stored. If an offline, large map
is required, then the local grids can be aligned with SLAM methods [157]. Note that
compared to other mobile robots, odometry in full-sized vehicles is locally very accurate
under moderate dynamics. Slipping of wheels almost never occurs due to stability systems
and accelerations are typically modest.

A.4 Path Smoothing

This section describes the smoother, which was used to generate the trajectory for the
autonomous navigation experiment in Section 6.2.4.

The smoothing consists of two steps. Let 7;' denote the nodes of the primary path,
which the vehicle follows. First, the path nodes 7,’ are optimized with a gradient descent
similar to [49], but with different optimization criteria. Subject to the optimization is

ijfj — min (A.2)
J
consisting of the sum of the individual weighted optimization terms

m m
A=Y=l fa= ) AT, = AT,
1 1
m m
fs="> 72 = ll, fo=> 1A% — Ay,
i i

m
=Y llmm =l (A.3)
I3

where 7', and 7{; denote node i of the original path and the current smoothed path
respectively, and 7' is initialized with 7. Moreover, v; denotes the angle between 7.;
and 77, 7; denotes the closest point from 77; on the generalized Voronoi diagram of the

semantic road boundary, and 7 | denotes the smoothed path from ¢ — 1.

After path node optimization, a penalized regression spline [135] is fit into 7. It allows
sampling the final path as dense as required by the underlying controller [169] as well as
assuring the continuity requirements.
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Figure A.2: Relation between the world coordinate system (WCS), the vehicle coordinate sys-
tem (VCS), the sensor coordinate system (SCS), the map grid coordinate system
(MGCS), and the scan grid coordinate system (SGCS).

132

IP 216.73.216.60, am 24.01.2026, 06:28:16. © Inhak.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186246080
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A.5 Data Sets

Two different ground truth data sets were created by manually labeling. One data set was
used for the evaluation of the grid-based tracking and mapping and one for the evaluation
of the road course estimation.

A.5.1 Grid-based Tracking and Mapping

The data set for the evaluation of GTAM in Section 6.1.2 and Section 6.1.3 consists of
around 5 minutes of real street scenarios. It includes short sequences of highways as well
as urban areas, different traffic participants, such as vehicles, pedestrians, and bicycles, and
different road boundaries, such as parked vehicles, guardrails, and tunnel walls. Figure A.3
shows sample camera images. The dynamic objects were labeled manually, so that in every
frame all true dynamic objects and their positions are available. The cycle time was at
80ms. With the labeled objects, masks were then generated that define whether each
occupied cell of every scan grid corresponds to a dynamic or a static object. According to
these classified scan grids, the evaluation was performed.

A.5.2 Road Course Estimation

The data set for the evaluation of the RCE also consists of real street scenarios, as well as
of simulated road construction sites marked with traffic cones. The duration totals around
7.5 minutes. Similar to the data set from the previous section, this one also consists of
short sequences of various streets. It contains highways and urban areas and a variety of
different road boundaries, such as guardrails, walls, bushes, traffic cones and other traffic
markers, and parked vehicles. Figure A.4 shows sample camera images. Only static scenes
are used in this data set to focus on the road course estimation alone. Similar to the
dynamic objects from the previous section, in this data set, the semantic continuous road
boundaries were labeled manually with splines. Again, the cycle was at 80 ms and at every
frame all true valid road boundaries are available.
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Figure A.3: Camera images from the data set used for the evaluation of the grid-based tracking
and mapping.

134

IP 216.73.216.60, am 24.01.2026, 06:28:16. © Inhak.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186246080

A.5 Data Sets

Figure A.4: Camera images from the data set used for the evaluation of the road course
estimation.
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