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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Sensorrealistische Bildsimulation für die KI-basierte Sichtprüfung und Objektlageerkennung

Synthetische Daten  
für die Automatisierung mit KI

I. Effenberger, F. Seiler, V. Eichinger

Z U S A M M E N FA S S U N G  Die KI-basierte Bildverarbeitung 
ist eine Schlüsseltechnologie für die Digitalisierung und Auto-
matisierung in der Produktion. Da erforderliche Bilddatensätze 
zum Beispiel für die Qualitätssicherung unter hohem Zeit -
aufwand an realen Aufbauten aufgenommen und annotiert 
 werden müssen, bleibt erhebliches Automatisierungspotenzial 
bislang ungenutzt. Einen großen Zeit- und Kostenvorteil bietet 
die sensorrealistische Bildsimulation, die repräsentative Bild-
datensätze für das Training KI-basierter Inspektions- oder 
Handhabungssysteme synthetisch erzeugt. 

Synthetic data for AI-based automation 

A B ST R A C T  AI-based image processing is considered as key 
technology for digitization and automation in production. Sin-
ce the necessary image data sets, e.g. for quality assurance, 
have to be recorded and annotated on real structures in a 
 time-consuming manner, considerable automation potential 
remains unused. Sensor-realistic image simulation, which syn-
thetically generates representative image data sets for training 
AI-based inspection or handling systems, offers major time 
and cost advantages.

1 Einführung

In den letzten Jahren wurden durch den Einsatz neuartiger 
Verfahren des Maschinellen Lernens (ML) im Bereich der Bild-
verarbeitung enorme Durchbrüche erzielt. Vielversprechende Ein-
satzgebiete für entsprechende Verfahren mit Künstlicher 
 Intelligenz (KI) liegen einerseits in der industriellen Qualitäts-
prüfung, andererseits in der Bauteilzuführung und Bauteilhand -
habung in Produktionslinien. Aktuell größtes Hindernis für die 
Umsetzung von KI-basierten Automatisierungslösungen für diese 
Anwendungen stellt die Verfügbarkeit oder Bereitstellung geeig-
neter Daten dar. Denn für das Training von KI-Modellen werden 
repräsentative und große Datensätze benötigt, die in Form von 
Bilddaten der zu prüfenden oder zu handhabenden Bauteile vor-
handen sein müssen. Die Aufnahme solcher Datensätze erfordert 
einen realen Aufbau mit passenden Kameramodellen, Objektiven 
und geeigneter Beleuchtung. Da zusätzlich das Vorbereiten des 
Bilddatensatzes für das ML-Training einschließlich des Annotie-
rens der Bilder durchgeführt werden muss, ist dieses Vorgehen 
nicht nur zeitaufwendig, sondern auch sehr kostenintensiv. 

Ein zusätzliches Problem für den Anwendungsfall der Defekt-
erkennung ist, dass oft nur sehr wenige Schlechtteile vorliegen, 
die meist nicht die Bandbreite möglicher Defekte abdecken. Sind 
bestimmte Fehlertypen in den Trainingsdaten unterrepräsentiert 
oder ist die Anzahl der Fehlerbilder für die einzelnen Defektklas-
sen sehr unterschiedlich, werden die Defekte vom KI-Modell 
nicht zuverlässig erkannt oder der falschen Defektklasse zugeord-
net. Für die Bauteilzuführung und Bauteilhandhabung sind für 
die Erstellung von Trainingsdaten teilweise auch umgebende 

 Elemente wie Förderbänder oder Robotergreifer relevant, die für 
die Bildaufnahme in den Aufbau integriert werden müssen. 

Die Verwendung synthetischer Daten bietet eine gute Mög-
lichkeit, um diesen Aufwand zu reduzieren und damit schneller 
und kostengünstiger KI-basierte Automatisierungslösungen in die 
industrielle Anwendung zu bringen. Sensorrealistische, syntheti-
sche Daten, wie sie am Fraunhofer IPA entwickelt werden, sind in 
vielerlei Hinsicht von großem Vorteil. Aufgrund des häufigen 
Mangels an fehlerhaften Bauteilen bei optischen Prüfaufgaben 
herrscht ein Mangel an Fehlerbildern, die für das Training der KI 
genutzt werden können. Dies erschwert die Erstellung robuster 
ML-Modelle für die zuverlässige Fehlerdetektion an den Bautei-
len. Die Einbringung synthetischer Defekte in das 3D-Modell des 
Bauteils ermöglicht die Generierung von Datensätzen für die 
Qualitätskontrolle, auch in Abwesenheit defekter Teile. Zudem ist 
die manuelle Annotation großer Datensätze für maschinelle Lern-
verfahren eine zeitaufwendige und sich wiederholende Aufgabe, 
die fehleranfällig ist und oft zu Inkonsistenzen im annotierten 
Datensatz führt. Bei der Verwendung synthetisch erzeugter Feh-
lerbilder wird hingegen die Annotation automatisch mitgeliefert. 

Rendering-Techniken haben in den letzten Jahren erhebliche 
Fortschritte erzielt und erschaffen immer realistischere Visualisie-
rungen und immersive Erlebnisse. Davon profitiert nicht nur die 
Spiele- und Unterhaltungsindustrie, sondern auch die Bildsimula-
tion, die mithilfe von 3D-Modellen und physikalisch korrekten 
Rendering-Verfahren synthetische Bilddaten generiert. Das Ziel 
der am Fraunhofer IPA entwickelten Software zur sensorrealisti-
schen Bildsimulation ist es, synthetische Datensätze zu erstellen, 
die zum Trainieren eines maschinellen Lernmodells verwendet 
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werden können, das anschließend auf reale Kamerabilder oder 
3D-Sensordaten angewendet werden kann.

Durch Verwendung virtueller Szenen und die automatische 
Erstellung von Ground-Truth-Daten kann die IPA-Methode den 
manuellen Aufwand für die Annotation erheblich reduzieren und 
so eine effiziente und skalierbare Datengenerierung ermöglichen. 
Eine große Herausforderung bei dieser Technik ist die Domänen-
lücke („Domain Gap“), die zwischen realen Bildern und syntheti-
schen Daten besteht. Modelle, die nur mit synthetischen Daten 
trainiert wurden, neigen dazu, einen erheblichen Leistungsabfall 
zu erfahren, wenn sie auf reale Kamerabilder angewendet werden. 
Um dieses Problem zu lösen, werden synthetische Daten sehr 
 genau modelliert und ein hohes Maß an Vielfalt in die syntheti-
schen Daten eingeführt. Anhand von zwei realen Anwendungen, 
der automatischen Sichtprüfung von Metallscheiben und der Bau-
teilerkennung für die Handhabung, wird die Leistungsfähigkeit 
der sensorrealistischen Bildsimulation demonstriert. Es wird 
 gezeigt, dass ein KI-Modell, das ausschließlich mit synthetischen 
Daten trainiert wurde, bei realen Daten sehr gute Ergebnisse 
 erzielen kann.

2 Stand der Technik

Um automatisch synthetische Datensätze von zufälligen 
 Objektanordnungen zu generieren, wurden in den letzten Jahren 
mehrere Pipelines eingeführt. Diese Pipelines basieren meist auf 
3D-Grafiksoftware wie „Blender“ [1, 2] oder „Unity3D“ [3]. 
 Innerhalb dieser Frameworks wird eine Vielzahl von festen 
 Objektinstanzen erzeugt. Anschließend werden diese Objekte 
 einer Starrkörpersimulation unterzogen, die ihr Fallverhalten 
 genau darstellt und die Physik von Bewegung und Kollision nach-
ahmt. Diese Simulation stellt sicher, dass ein vielfältiges und 
 repräsentatives Spektrum an Szenarien generiert wird. Die resul-
tierenden Daten sind wertvoll für Bildverarbeitungsaufgaben, wie 
etwa die Objekterkennung für den Griff in die Kiste oder den 
Griff vom Band. Zusätzlich zu den simulierten Bildern werden 
Tiefenkarten, Objektposen und semantische Segmentierung auto-
matisch generiert. Den Daten fehlen jedoch Informationen zur 
Greifbarkeit der Objekte in der Szene.

Anstelle einer Starrkörpersimulation präsentieren Raistrick 
et al. [4] das Infinigen-Framework zur Generierung prozeduraler 
Szenen der natürlichen Welt. Die generierten Bilder weisen eine 

hohe Vielfalt auf, sind aber nicht fotorealistisch. Auch wurden 
keine Experimente mit realen Datensätzen durchgeführt.

Eine weitere Anwendung konzentriert sich auf das Generieren 
synthetischer Bilder für die visuelle Inspektion und Objekterken-
nung. Napier et al. [5] zeigen, wie ein Netzwerk zur Segmentie-
rung ausschließlich mit prozedural generierten synthetischen 
 Daten trainiert werden kann. Aufgrund einer Verzerrung in den 
synthetischen Daten liefert nur ein Teil der realen Testdaten gute 
Ergebnisse. Schmedemann et al. [6] zeigen, dass die Generierung 
prozeduraler Defekte zur Erweiterung eines kleinen realen 
 Datensatzes verwendet werden kann. Hier führt die Kombination 
von synthetischen und realen Daten zu besseren Ergebnissen als 
die Verwendung ausschließlich realer Daten. Ergebnisse, die aus-
schließlich auf synthetischen Daten basieren, werden in der 
 Arbeit nicht berücksichtigt.

Frühere Arbeiten identifizierten die Domänenlücke als häufige 
Herausforderung bei der Verwendung synthetischer Trainings -
daten für Aufgaben des maschinellen Sehens [7]. Modelle gehen 
normalerweise davon aus, dass Trainings- und Testdaten sehr 
ähnlich sind. Synthetische Daten unterscheiden sich jedoch von 
realen Daten. Es wurden verschiedene Techniken ausgearbeitet, 
um den Transfer zwischen synthetischen Trainingsdaten und 
 realen Testdaten zu erleichtern. Dabei gibt es im Wesentlichen 
drei grundlegende Strategien:
1. Domänenanpassung: Ziel der Domänenanpassung ist es, die 

statistische Abweichung zwischen Quell- und Zieldomäne zu 
verringern [8]. Die Anpassung kann durch die KI-Architektur 
erfolgen, beispielsweise durch Verwendung einer bestimmten 
Verlustfunktion, wie „Adversarial Loss“. Hierbei gleichen sich 
die Merkmale, die aus synthetischen Daten gewonnen werden, 
den Merkmalen von realen Bildern an. Jedoch bedeutet ein 
überlappender Merkmalsraum nicht automatisch, dass die 
Merkmale der synthetischen Bilder für das zu lösende Problem 
geeignet sind.

2. Sensor-Realistic Rendering: Dieser Ansatz strebt Fotorealismus 
in den generierten Bildern an. Dies wird durch realistische 
 Objektgeometrie, physikalisch korrekte Positionierung von 
 Objekten in einer Szene, präzise Materialmodelle und Beleuch-
tung erreicht. Eine wichtige Technik für diesen Ansatz ist Phy-
sically Based Rendering (PBR) [9]. Der manuelle Aufwand der 
Szenenmodellierung steigt jedoch mit zunehmendem Anspruch 
an Realismus und Detailgrad.

Bild 1. Prozesskette zur sensorrealistischen Bildsimulation auf Basis von 3D-Modellen und physikalisch korrektem Rendering. Grafik: Fraunhofer IPA
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3. Domänenrandomisierung: Dieses von Tobin et al. [10] ent -
wickelte Konzept umfasst die Randomisierung synthetischer 
Daten in einer Weise, dass die synthetische Domäne eine hohe 
Variation aufweist. Dies erlaubt es, ein Modell zu trainieren, 
das robust gegenüber verschiedenen Szenarien ist. Die Domä-
nenrandomisierung erlaubt die Verwendung weniger realisti-
scher Renderings, deren Erstellung weniger Aufwand erfordert. 
Bei dieser Technik werden Parameter für das Rendering von 
Daten zufällig variiert. Beispiele für solche Parameter sind 
 Materialparameter, Texturen, Beleuchtungseinstellungen,  Größe 
und Position von Objekten, Objektformen und Hintergründe.

3 Verfahren

Das am Fraunhofer IPA entwickelte Verfahren zur sensor -
realistischen Bildsimulation folgt der traditionellen Verarbei-
tungspipeline für Renderings aus 3D-Daten (Bild 1) und nutzt 
als Basis die Open-Source-Software Blender [11]. 

Zunächst wird ein Modell für das gewünschte Objekt erstellt. 
Alternativ können vorhandene CAD-Daten verwendet werden. 
Zusätzlich wird eine UV-Karte für das Objekt generiert, die im 
Shading-Prozess verwendet werden kann. Beim Shading werden 
alle Parameter und Texturen für das Material des Objekts defi-
niert. Anschließend wird eine 3D-Szene basierend auf dem realen 
Messaufbau mit der Simulation von Licht und Sensoren erstellt. 
In dieser Szene werden zusätzliche Verarbeitungsschritte wie die 
Simulation von Verformungen, Defekten oder zufälligen Anord-
nungen von Objekten durchgeführt. Schließlich wird der Rende-
rer für das physikalisch basierte Rendering der Szene angewen-
det. Der Shading-Prozess und die Verarbeitungsschritte werden in 
den folgenden Abschnitten erläutert.

Wenn die grundlegende 3D-Szene vorbereitet ist, ermöglicht 
das Verfahren zur Bildsimulation dem Benutzer, Parameter zu 
 definieren und Schwellwerte für alle weiteren Verarbeitungs-
schritte und die Bildgenerierung festzulegen. Der Benutzer kann 
Parameter für alle Teile der 3D-Szene, wie Szenenanordnung, 
 Beleuchtung, Schattierung, Verformung, Defekte und Rendering, 
angeben. Anhand der Benutzereinstellungen werden Szenenvaria-
tion, Rendering und Verarbeitung vollständig automatisiert, um 
mit geringem Aufwand große Datensätze zu erzeugen. Außerdem 
werden ausgewählte Annotationen während des Rendering-
 Prozesses automatisch erzeugt.

3.1 Shading

Objekte in der realen Welt weisen häufig eine große Vielfalt in 
ihrem Erscheinungsbild auf. Dies erschwert die Oberflächen -
modellierung, da ein Shader nicht alle möglichen Variationen ab-
decken kann. Dies ist auch bei den zur Untersuchung der Defekt -
entstehung verwendeten Unterlegscheiben zu beobachten. Daher 
wurden für die Unterlegscheiben vier Basis-Shader definiert, um 
extreme Fälle der Vielfalt abzubilden. Bild 2 zeigt ausgewählte 
Kamera-Referenzbilder in der oberen Reihe und Beispiele von 
 simulierten Bildern für die vier Shader in der unteren Reihe. Es 
ist offensichtlich, dass die Unterschiede zwischen den realen und 
synthetischen Daten minimal sind. Darüber hinaus wird die in 
den realen Daten vorhandene Varianz auch in den synthetischen 
Daten abgebildet.

Der Großteil des Erscheinungsbildes wird durch Oberflächen-
strukturen bestimmt, die durch Hinzufügen einer Normalenkarte 
(Normal Map) zum Shader reproduziert werden können. Für die 
Unterlegscheiben wird der Shader mit verschiedenen Strukturen 
und Kratzmustern erweitert. Die Grundstruktur wird durch eine 

Bild 2. Vergleich realer Kamerabilder von Unterlegscheiben mit Defekten (obere Reihe) und synthetisch erzeugter Defektbilder der Unterlegscheiben (untere 
Reihe). Foto: Fraunhofer IPA 
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Rauschtextur vorgegeben. Verschiedene Kratzmuster werden 
durch die Kombination von Rausch-, Wellen- und Voronoi-
 Texturen erzeugt, wie in Bild 3 dargestellt. 

Die Kombination dieser Strukturen in Farb- und Normalen-
karten ermöglicht die Modellierung komplexer Oberflächener-
scheinungsformen. Da alle Texturen prozedural generiert werden, 
haben alle generierten Farb- und Normalenkarten ein zufälliges 
und einzigartiges Erscheinungsbild, was stark variierende synthe-
tische Daten ermöglicht.

3.2 Erzeugung von Defekten

Für die automatische Sichtprüfung wurde am Fraunhofer IPA 
ein Defektgenerator implementiert, der durch Änderung der 
 Objektgeometrie automatisch Defekte auf 3D-Modellen erzeugen 
kann. Dieses Verfahren wurde für die Defektklassen Kratzer, 
 Dellen, Beulen und Kerben entwickelt und wird in Abschnitt 4.1 
am Anwendungsfall der Defekterkennung und -klassifikation für 
 Unterlegscheiben demonstriert. Jeder dieser Defekte wird dabei 
an einer zufälligen Stelle und mit einem zufälligen aber repräsen-
tativen Erscheinungsbild erzeugt. In den folgenden Abschnitten 
werden die unterschiedlichen Fehlerarten und deren synthetische 
Erzeugung beschrieben.

3.2.1 Kratzer und Beulen

Displacement Maps ermöglichen die Simulation von Beulen 
und Kratzern auf einer Oberfläche, indem sie eine Verschiebung 
von Punkten des Oberflächennetzes entlang des Normalenvektors 
ermöglichen. Ein Grauwertbild codiert dabei den Verschiebungs-

grad für jeden Punkt durch seinen Intensitätswert. Um diese Kar-
ten auf die Oberfläche eines 3D-Objekts anzuwenden, ist es not-
wendig, ein UV-Layout zu erstellen, das die dreidimensionale 
Oberfläche des Objekts in eine zweidimensionale Darstellung 
übersetzt (siehe Bild 1).

Um Beulen zu simulieren, werden Displacement Maps mit 
 einem glockenförmigen Intensitätsprofil genutzt, um das Erschei-
nungsbild realer Beulen nachzubilden. Displacement Maps für 
Kratzer werden mit prozeduralen Techniken erstellt, welche eine 
erhebliche Varianz in Form, Größe und Tiefe ermöglichen. Für 
das Einbringen der feinen Details von Kratzern in das virtuelle 
3D-Modell ist ein hochauflösendes Oberflächennetz des Bauteils 
nötig, das sicherstellt, dass die Nuancen jedes Kratzers realistisch 
dargestellt werden können.

3.2.2 Dellen und Kerben

Für die synthetische Erzeugung der Defekte Dellen und 
 Kerben wird ein Hilfsobjekt erstellt, das als Negativform für die 
Verformung von Dellen und Kerben dient. Dieses Hilfsobjekt 
wird zufälligen Verformungs-, Translations- und Skalierungs -
prozessen unterzogen, um die Vielfalt der resultierenden Bilder 
zu erhöhen. Anschließend wird ein Boolescher Operator auf das 
Original- und das Hilfsobjekt angewendet, der eine subtraktive 
Schnittmenge erzeugt. Diese Schnittmenge entfernt die Form des 
Hilfs objekts aus dem Originalobjekt, wodurch das verformte Ori-
ginalobjekt entsteht. Bild 4 zeigt eine vereinfachte Darstellung 
dieser Methode zur Erzeugung von Kerben.

3.3 Zufällige Objektanordnungen  
 für die Objektlageerkennung

Für die Erzeugung zufälliger Objektanordnungen wird eine 
Physics Engine, zum Beispiel aus Blender [11], verwendet. Bei 
diesem Verfahren werden mehrere Instanzen eines unverform -
baren Objekts erstellt und dann eine Starrkörpersimulation ange-
wendet, um ihr Fallverhalten zu modellieren. 

Durch die Simulation können zufällige Anordnungen und 
Schüttungen von Objekten automatisiert erzeugt werden. Vor 
 allem für das Objekthandling ist es wertvoll zu wissen, welche 
Objekte gegriffen werden können. Daher wird in der virtuellen 
3D-Szene überprüft, welche Objekte nicht von anderen Objekten 
verdeckt werden. Diese Objekte können dann automatisch anno-
tiert werden. Im Anschluss können die annotierten Datensätze für 
das Training eines KI-Modells zur Erkennung greifbarer  Objekte 
verwendet werden. 

Bild 3. Grundlegende Struktur für die Modellierung der Unterlegscheiben 
(links) und verschiedene Kratzmuster (Mitte und rechts).  
Grafik: Fraunhofer IPA

Bild 4. Vereinfachte Darstellung der Erzeugung von Kerben mithilfe eines Booleschen Operators. Grafik: Fraunhofer IPA
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4 Anwendungstests  
 mit erzielten Ergebnissen

Der Nutzen synthetischer Daten in realen Bildverarbeitungs-
anwendungen wird anhand zwei verschiedener Anwendungsfälle 
unter Anwendung der vorgestellten Methoden und Prozessschrit-
te aufgezeigt. Die beiden Anwendungsfälle stammen aus dem 
 Bereich der optischen Inspektion und Objekterkennung.

4.1 KI-basierte Sichtprüfung an Metallscheiben

Um das vorgestellte Verfahren zur sensorrealistischen Bild -
simulation im Bereich der automatischen KI-basierten Sicht -
prüfung zu demonstrieren, wurden defekte Metallscheiben mit 
Beulen, Dellen, Kratzern und Kerben betrachtet. Für den Test -
datensatz wurden 40 Bilder für jede Defektklasse aufgenommen. 
Für den Trainingsdatensatz wurden 500 synthetische Bilder für 
jede Defektklasse mit dem Bildsimulationsverfahren erzeugt. Die-
se Bilder wurden verwendet, um das neuronale Netz „Efficient-
Det“ [12] als modernen Objektdetektor zu trainieren. 80 % der 
Bilder wurden für das Training genutzt und 20 % für die Validie-
rung des Modells. Das trainierte KI-Modell wurde anschließend 
mit den realen Kamerabildern der Metallscheiben getestet. Neben 
dem rein auf synthetischen Daten trainierten KI-Modell wurden 
zum Leistungsvergleich zwei zusätzliche KI-Modelle mit einem 
realen Datensatz (35 Bilder pro Defektklasse) beziehungsweise 
mit einem gemischten Datensatz aus realen und synthetischen 
Bildern trainiert (500 synthetische Bilder und 35 reale Bilder je 
Defektklasse).

Für den Vergleich wurde jeweils die Precision, also wie viel 
Prozent der von der KI erkannten Defekte sind tatsächlich Defek-
te, und der Recall, das heißt wie viel Prozent der vorhandenen 
Defekte wurden von der KI korrekt erkannt, ausgewertet. Mit 
 einer erreichten Precision von 99 % und einem Recall von 100 % 
schnitt das Modell auf Basis gemischter Daten am besten ab, da 
die Kombination aus synthetischen und realen Daten potenziell 
zu robusteren Merkmalen der Klassen führt. Die Performance des 
Modells auf Basis rein synthetischer Daten (Precision: 96 %, 
 Recall: 89 %) unterscheidet sich kaum von dem Ergebnis mit rea-
len Daten (Precision: 99 %, Recall: 86 %). Die Modelle können als 
gleichwertig angesehen werden, wobei die Kratzererkennung auf 
Basis der synthetischen Daten deutlich zuverlässiger funktionierte 
(Recall von knapp 89 %). Bei der visuellen Inspektion können 
 somit kleinere reale Datensätze mit synthetischen Daten für eine 
robuste Fehlererkennung angereichert werden. Die Tabelle bietet 
eine Zusammenfassung der Ergebnisse unter Verwendung realer, 
synthetischer und gemischter Trainingsdaten.

4.2 KI-basierte Objekterkennung für Kunststoffspritzen 

Die Anwendung der Objekterkennung wird anhand eines 
Griff-in-die-Kiste-Szenarios demonstriert. Ziel war es Plastik-
spritzen zu erkennen, die für einen Roboter greifbar sind, also 
nicht von anderen Spritzen verdeckt werden. Mithilfe der in 
 Abschnitt 3.3 vorgestellten Methode zur Generierung zufälliger 
Anordnungen wurden automatisch 2000 synthetische Bilder von 
Spritzen in einer Kiste erstellt. Der Fallprozess der leicht transpa-
renten Spritzenmodelle wurde mithilfe der Physics Engine simu-
liert. Ein Beispiel für eine synthetische Szene zeigt Bild 5. 

Als Objektdetektor kommt das neuronale Netz „EfficientDet“ 
zum Einsatz, das problemspezifisch angepasst wurde. Das KI-
 Modell wurde rein mit synthetischen Daten trainiert, um die 
greifbaren Spritzen zu identifizieren. Anschließend wurden Tests 
an realen Kamerabildern von den ungeordneten Spritzen in der 
Kiste durchgeführt. Die Tests erreichten eine Precision von 96 % 
und einen Recall von 93 %. Die erfolgreichen Erkennungsraten 
demonstrieren die Leistungsfähigkeit des ML-Modells bei der 
 Erkennung greifbarer Spritzen. Die Visualisierung der Annotatio-
nen und eines Testbilds mit den Erkennungen des KI-Modells ist 
in Bild 6 dargestellt.

5 Zusammenfassung und Ausblick 

In diesem Beitrag wurde eine Methode zur Generierung 
 realistischer synthetischer Datensätze auf Basis von sensorrealisti-
scher Bildsimulation beschrieben. Der Schwerpunkt lag auf dem 
Realismus der Daten durch physikalisch korrektes Rendering, 
 einerseits zur Simulation von Defekten für die Sichtprüfung und 
andererseits zur Simulation von Szenen mit ungeordneten Objek-
ten für die Bauteilzuführung oder -handhabung. Die Varianz der 
Daten wurde durch flexible, an die Zielanwendung angepasste 
 Parameterdefinitionen erreicht. Die Datengenerierung wurde 
 automatisiert durchgeführt anhand der vorgestellten Prozesskette 
zur Bildsimulation mit Komponenten, vor allem für die Defekt -
generierung, die zufällige Objektanordnung in einer Szene und 
das Rendering unter Berücksichtigung von Kamera, Beleuchtung 
und Materialeigenschaften der zu untersuchenden Bauteile.

 In zwei praktischen Anwendungsfällen wurde die Leistungs -
fähigkeit und Anwendbarkeit der Bildsimulationsmethode des 
Fraunhofer IPA demonstriert. Synthetische Daten, die sowohl für 
die Objekterkennung als auch für die visuelle Inspektion erzeugt 
wurden, konnten erfolgreich zum Training neuronaler Netze ver-

Tabelle. Ergebnisse der KI-basierten Sichtprüfung im Überblick.

Reale Daten

Synthetische Daten

Gemischte Daten

Bump

Dent

Notch

Scratch

Total

Bump

Dent

Notch

Scratch

Total

Bump

Dent

Notch

Scratch

Total

Precision

1.0

1.0

1.0

0.950

0.992

1.0

0.909

1.0

0.939

0.962

0.972

1.0

1.0

0.972

0.986

Recall

0.971

0.971

0.971

0.543

0.864

0.914

0.857

0.914

0.886

0.893

1.0

1.0

1.0

1.0

1.0
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wendet werden. Die trainierten ML-Modelle waren in der Lage, 
bei der Anwendung auf realen Kamerabildern genaue und zuver-
lässige Ergebnisse zu erzielen. Somit können synthetische Daten 
als Alternative zu realen Daten verwendet werden, wenn ein 
Mangel an Daten besteht. Zudem sind sie von großem Vorteil, 
wenn die Erfassung realer Daten zu zeitaufwendig ist oder reale 
Datensätze angereichert werden müssen, um robustere KI-Model-
le zu erhalten. 

Zukünftige Forschungsarbeiten zielen darauf ab, KI-basierte 
Bildverarbeitungslösungen vollständig virtuell auslegen und testen 
zu können, ohne dass ein Hardwareaufbau des optischen Prüf- 
oder Erkennungssystems oder die zu untersuchenden oder zu 
handhabenden Bauteile verfügbar sein müssen.
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