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Sensorrealistische Bildsimulation fiir die Kl-basierte Sichtpriifung und Objektlageerkennung

Synthetische Daten
far die Automatisierung mit Ki

I Effenberger, F. Seiler, V. Eichinger

ZUSAMMENFASSUNG Die Kl-basierte Bildverarbeitung
ist eine Schllsseltechnologie fiir die Digitalisierung und Auto-
matisierung in der Produktion. Da erforderliche Bilddatenséatze
zum Beispiel fir die Qualitatssicherung unter hohem Zeit-
aufwand an realen Aufbauten aufgenommen und annotiert
werden mussen, bleibt erhebliches Automatisierungspotenzial
bislang ungenutzt. Einen gro3en Zeit- und Kostenvorteil bietet
die sensorrealistische Bildsimulation, die reprasentative Bild-
datensatze fiir das Training Kl-basierter Inspektions- oder
Handhabungssysteme synthetisch erzeugt.
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1 Einfiihrung

In den letzten Jahren wurden durch den Einsatz neuartiger
Verfahren des Maschinellen Lernens (ML) im Bereich der Bild-
verarbeitung enorme Durchbriiche erzielt. Vielversprechende Ein-
Verfahren mit Kiinstlicher
Intelligenz (KT) liegen einerseits in der industriellen Qualitits-
priifung, andererseits in der Bauteilzufithrung und Bauteilhand-
habung in Produktionslinien. Aktuell grofites Hindernis fiir die

satzgebiete fiir entsprechende

Umsetzung von Kl-basierten Automatisierungslosungen fiir diese
Anwendungen stellt die Verfiigbarkeit oder Bereitstellung geeig-
neter Daten dar. Denn fiir das Training von KI-Modellen werden
reprasentative und grofle Datensitze benétigt, die in Form von
Bilddaten der zu priifenden oder zu handhabenden Bauteile vor-
handen sein miissen. Die Aufnahme solcher Datensitze erfordert
einen realen Aufbau mit passenden Kameramodellen, Objektiven
und geeigneter Beleuchtung. Da zusitzlich das Vorbereiten des
Bilddatensatzes fiir das ML-Training einschlieflich des Annotie-
rens der Bilder durchgefithrt werden muss, ist dieses Vorgehen
nicht nur zeitaufwendig, sondern auch sehr kostenintensiv.

Ein zusitzliches Problem fiir den Anwendungsfall der Defekt-
erkennung ist, dass oft nur sehr wenige Schlechtteile vorliegen,
die meist nicht die Bandbreite moglicher Defekte abdecken. Sind
bestimmte Fehlertypen in den Trainingsdaten unterreprisentiert
oder ist die Anzahl der Fehlerbilder fiir die einzelnen Defektklas-
sen sehr unterschiedlich, werden die Defekte vom KI-Modell
nicht zuverlissig erkannt oder der falschen Defektklasse zugeord-
net. Fir die Bauteilzufiihrung und Bauteilhandhabung sind fiir
die Erstellung von Trainingsdaten teilweise auch umgebende
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Synthetic data for Al-based automation

ABSTRACT Al-based image processing is considered as key
technology for digitization and automation in production. Sin-
ce the necessary image data sets, e.g. for quality assurance,
have to be recorded and annotated on real structures in a
time-consuming manner, considerable automation potential
remains unused. Sensor-realistic image simulation, which syn-
thetically generates representative image data sets for training
Al-based inspection or handling systems, offers major time
and cost advantages.

Elemente wie Forderbinder oder Robotergreifer relevant, die fiir
die Bildaufnahme in den Aufbau integriert werden miissen.

Die Verwendung synthetischer Daten bietet eine gute Mog-
lichkeit, um diesen Aufwand zu reduzieren und damit schneller
und kostengiinstiger KI-basierte Automatisierungslésungen in die
industrielle Anwendung zu bringen. Sensorrealistische, syntheti-
sche Daten, wie sie am Fraunhofer IPA entwickelt werden, sind in
vielerlei Hinsicht von groflem Vorteil. Aufgrund des hiufigen
Mangels an fehlerhaften Bauteilen bei optischen Priifaufgaben
herrscht ein Mangel an Fehlerbildern, die fiir das Training der KI
genutzt werden konnen. Dies erschwert die Erstellung robuster
ML-Modelle fiir die zuverlassige Fehlerdetektion an den Bautei-
len. Die Einbringung synthetischer Defekte in das 3D-Modell des
Bauteils ermoglicht die Generierung von Datensitzen fiir die
Qualititskontrolle, auch in Abwesenheit defekter Teile. Zudem ist
die manuelle Annotation grofler Datensitze fiir maschinelle Lern-
verfahren eine zeitaufwendige und sich wiederholende Aufgabe,
die fehleranfillig ist und oft zu Inkonsistenzen im annotierten
Datensatz fiihrt. Bei der Verwendung synthetisch erzeugter Feh-
lerbilder wird hingegen die Annotation automatisch mitgeliefert.

Rendering-Techniken haben in den letzten Jahren erhebliche
Fortschritte erzielt und erschaffen immer realistischere Visualisie-
rungen und immersive Erlebnisse. Davon profitiert nicht nur die
Spiele- und Unterhaltungsindustrie, sondern auch die Bildsimula-
tion, die mithilfe von 3D-Modellen und physikalisch korrekten
Rendering-Verfahren synthetische Bilddaten generiert. Das Ziel
der am Fraunhofer IPA entwickelten Software zur sensorrealisti-
schen Bildsimulation ist es, synthetische Datensitze zu erstellen,
die zum Trainieren eines maschinellen Lernmodells verwendet
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Bild 1. Prozesskette zur sensorrealistischen Bildsimulation auf Basis von 3D-Modellen und physikalisch korrektem Rendering. Grafik: Fraunhofer IPA

werden konnen, das anschliefend auf reale Kamerabilder oder
3D-Sensordaten angewendet werden kann.

Durch Verwendung virtueller Szenen und die automatische
Erstellung von Ground-Truth-Daten kann die IPA-Methode den
manuellen Aufwand fiir die Annotation erheblich reduzieren und
so eine effiziente und skalierbare Datengenerierung ermdoglichen.
Eine grofle Herausforderung bei dieser Technik ist die Dominen-
liicke (,,Domain Gap“), die zwischen realen Bildern und syntheti-
schen Daten besteht. Modelle, die nur mit synthetischen Daten
trainiert wurden, neigen dazu, einen erheblichen Leistungsabfall
zu erfahren, wenn sie auf reale Kamerabilder angewendet werden.
Um dieses Problem zu losen, werden synthetische Daten sehr
genau modelliert und ein hohes Maf} an Vielfalt in die syntheti-
schen Daten eingefiihrt. Anhand von zwei realen Anwendungen,
der automatischen Sichtpriifung von Metallscheiben und der Bau-
teilerkennung fiir die Handhabung, wird die Leistungsfihigkeit
der sensorrealistischen Bildsimulation demonstriert. Es wird
gezeigt, dass ein KI-Modell, das ausschlieflich mit synthetischen
Daten trainiert wurde, bei realen Daten sehr gute Ergebnisse
erzielen kann.

2 Stand der Technik

Um automatisch synthetische Datensitze von zufilligen
Objektanordnungen zu generieren, wurden in den letzten Jahren
mehrere Pipelines eingefiihrt. Diese Pipelines basieren meist auf
3D-Grafiksoftware wie ,Blender” [1, 2] oder ,Unity3D“ [3]
Innerhalb dieser Frameworks wird eine Vielzahl von festen
Objektinstanzen erzeugt. Anschlieffend werden diese Objekte
einer Starrkorpersimulation unterzogen, die ihr Fallverhalten
genau darstellt und die Physik von Bewegung und Kollision nach-
ahmt. Diese Simulation stellt sicher, dass ein vielfiltiges und
reprisentatives Spektrum an Szenarien generiert wird. Die resul-
tierenden Daten sind wertvoll fiir Bildverarbeitungsaufgaben, wie
etwa die Objekterkennung fiir den Griff in die Kiste oder den
Griff vom Band. Zusitzlich zu den simulierten Bildern werden
Tiefenkarten, Objektposen und semantische Segmentierung auto-
matisch generiert. Den Daten fehlen jedoch Informationen zur
Greifbarkeit der Objekte in der Szene.

Anstelle einer Starrkorpersimulation prasentieren Raistrick
etal. [4] das Infinigen-Framework zur Generierung prozeduraler
Szenen der natiirlichen Welt. Die generierten Bilder weisen eine
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hohe Vielfalt auf, sind aber nicht fotorealistisch. Auch wurden

keine Experimente mit realen Datensitzen durchgefiihrt.

Eine weitere Anwendung konzentriert sich auf das Generieren
synthetischer Bilder fiir die visuelle Inspektion und Objekterken-
nung. Napier et al. [5] zeigen, wie ein Netzwerk zur Segmentie-
rung ausschlieflich mit prozedural generierten synthetischen
Daten trainiert werden kann. Aufgrund einer Verzerrung in den
synthetischen Daten liefert nur ein Teil der realen Testdaten gute
Ergebnisse. Schmedemann et al. [6] zeigen, dass die Generierung
prozeduraler Defekte zur Erweiterung eines kleinen realen
Datensatzes verwendet werden kann. Hier fiithrt die Kombination
von synthetischen und realen Daten zu besseren Ergebnissen als
die Verwendung ausschlieflich realer Daten. Ergebnisse, die aus-
schliefllich auf synthetischen Daten basieren, werden in der
Arbeit nicht beriicksichtigt.

Frithere Arbeiten identifizierten die Doménenliicke als hiufige
Herausforderung bei der Verwendung synthetischer Trainings-
daten fiir Aufgaben des maschinellen Sehens [7]. Modelle gehen
normalerweise davon aus, dass Trainings- und Testdaten sehr
dhnlich sind. Synthetische Daten unterscheiden sich jedoch von
realen Daten. Es wurden verschiedene Techniken ausgearbeitet,
um den Transfer zwischen synthetischen Trainingsdaten und
realen Testdaten zu erleichtern. Dabei gibt es im Wesentlichen
drei grundlegende Strategien:

1. Doménenanpassung: Ziel der Dominenanpassung ist es, die
statistische Abweichung zwischen Quell- und Zieldomine zu
verringern [8]. Die Anpassung kann durch die KI-Architektur
erfolgen, beispielsweise durch Verwendung einer bestimmten
Verlustfunktion, wie ,Adversarial Loss“ Hierbei gleichen sich
die Merkmale, die aus synthetischen Daten gewonnen werden,
den Merkmalen von realen Bildern an. Jedoch bedeutet ein
itberlappender Merkmalsraum nicht automatisch, dass die
Merkmale der synthetischen Bilder fiir das zu l6sende Problem
geeignet sind.

2. Sensor-Realistic Rendering: Dieser Ansatz strebt Fotorealismus
in den generierten Bildern an. Dies wird durch realistische
Objektgeometrie, physikalisch korrekte Positionierung von
Objekten in einer Szene, prizise Materialmodelle und Beleuch-
tung erreicht. Eine wichtige Technik fiir diesen Ansatz ist Phy-
sically Based Rendering (PBR) [9]. Der manuelle Aufwand der
Szenenmodellierung steigt jedoch mit zunehmendem Anspruch
an Realismus und Detailgrad.
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Bild 2. Vergleich realer Kamerabilder von Unterlegscheiben mit Defekten (obere Reihe) und synthetisch erzeugter Defektbilder der Unterlegscheiben (untere
Reihe). Foto: Fraunhofer IPA

3. Dominenrandomisierung: Dieses von Tobin et al. [10] ent-
wickelte Konzept umfasst die Randomisierung synthetischer
Daten in einer Weise, dass die synthetische Domine eine hohe
Variation aufweist. Dies erlaubt es, ein Modell zu trainieren,
das robust gegeniiber verschiedenen Szenarien ist. Die Domi-
nenrandomisierung erlaubt die Verwendung weniger realisti-
scher Renderings, deren Erstellung weniger Aufwand erfordert.
Bei dieser Technik werden Parameter fiir das Rendering von
Daten zufillig variiert. Beispiele fiir solche Parameter sind
Materialparameter, Texturen, Beleuchtungseinstellungen, Grofie
und Position von Objekten, Objektformen und Hintergriinde.

3 Verfahren

Das am Fraunhofer IPA entwickelte Verfahren zur sensor-
realistischen Bildsimulation folgt der traditionellen Verarbei-
tungspipeline fir Renderings aus 3D-Daten (Bild 1) und nutzt
als Basis die Open-Source-Software Blender [11].

Zunichst wird ein Modell fiir das gewtiinschte Objekt erstellt.
Alternativ konnen vorhandene CAD-Daten verwendet werden.
Zusitzlich wird eine UV-Karte fiir das Objekt generiert, die im
Shading-Prozess verwendet werden kann. Beim Shading werden
alle Parameter und Texturen fiir das Material des Objekts defi-
niert. Anschliefend wird eine 3D-Szene basierend auf dem realen
Messaufbau mit der Simulation von Licht und Sensoren erstellt.
In dieser Szene werden zusitzliche Verarbeitungsschritte wie die
Simulation von Verformungen, Defekten oder zufilligen Anord-
nungen von Objekten durchgefiihrt. Schlieflich wird der Rende-
rer fiir das physikalisch basierte Rendering der Szene angewen-
det. Der Shading-Prozess und die Verarbeitungsschritte werden in
den folgenden Abschnitten erldutert.
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Wenn die grundlegende 3D-Szene vorbereitet ist, ermoglicht
das Verfahren zur Bildsimulation dem Benutzer, Parameter zu
definieren und Schwellwerte fiir alle weiteren Verarbeitungs-
schritte und die Bildgenerierung festzulegen. Der Benutzer kann
Parameter fiir alle Teile der 3D-Szene, wie Szenenanordnung,
Beleuchtung, Schattierung, Verformung, Defekte und Rendering,
angeben. Anhand der Benutzereinstellungen werden Szenenvaria-
tion, Rendering und Verarbeitung vollstindig automatisiert, um
mit geringem Aufwand grofle Datensitze zu erzeugen. Auflerdem
werden ausgewihlte Annotationen wihrend des Rendering-
Prozesses automatisch erzeugt.

3.1 Shading

Objekte in der realen Welt weisen hiufig eine grofle Vielfalt in
ihrem Erscheinungsbild auf. Dies erschwert die Oberflachen-
modellierung, da ein Shader nicht alle méglichen Variationen ab-
decken kann. Dies ist auch bei den zur Untersuchung der Defekt-
entstehung verwendeten Unterlegscheiben zu beobachten. Daher
wurden fiir die Unterlegscheiben vier Basis-Shader definiert, um
extreme Fille der Vielfalt abzubilden. Bild 2 zeigt ausgewihlte
Kamera-Referenzbilder in der oberen Reihe und Beispiele von
simulierten Bildern fiir die vier Shader in der unteren Reihe. Es
ist offensichtlich, dass die Unterschiede zwischen den realen und
synthetischen Daten minimal sind. Dariiber hinaus wird die in
den realen Daten vorhandene Varianz auch in den synthetischen
Daten abgebildet.

Der Grofiteil des Erscheinungsbildes wird durch Oberflichen-
strukturen bestimmt, die durch Hinzufiigen einer Normalenkarte
(Normal Map) zum Shader reproduziert werden konnen. Fiir die
Unterlegscheiben wird der Shader mit verschiedenen Strukturen
und Kratzmustern erweitert. Die Grundstruktur wird durch eine
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Bild 3. Grundlegende Struktur fir die Modellierung der Unterlegscheiben
(links) und verschiedene Kratzmuster (Mitte und rechts).
Grafik: Fraunhofer IPA

Rauschtextur vorgegeben. Verschiedene Kratzmuster werden
durch die Kombination von Rausch-, Wellen- und Voronoi-
Texturen erzeugt, wie in Bild 3 dargestellt.

Die Kombination dieser Strukturen in Farb- und Normalen-
karten ermdoglicht die Modellierung komplexer Oberflichener-
scheinungsformen. Da alle Texturen prozedural generiert werden,
haben alle generierten Farb- und Normalenkarten ein zufilliges
und einzigartiges Erscheinungsbild, was stark variierende synthe-
tische Daten ermoglicht.

3.2 Erzeugung von Defekten

Fiir die automatische Sichtpriifung wurde am Fraunhofer IPA
ein Defektgenerator implementiert, der durch Anderung der
Objektgeometrie automatisch Defekte auf 3D-Modellen erzeugen
kann. Dieses Verfahren wurde fiir die Defektklassen Kratzer,
Dellen, Beulen und Kerben entwickelt und wird in Abschnitt 4.1
am Anwendungsfall der Defekterkennung und -klassifikation fiir
Unterlegscheiben demonstriert. Jeder dieser Defekte wird dabei
an einer zufilligen Stelle und mit einem zufilligen aber reprisen-
tativen Erscheinungsbild erzeugt. In den folgenden Abschnitten
werden die unterschiedlichen Fehlerarten und deren synthetische
Erzeugung beschrieben.

3.2.1 Kratzer und Beulen

Displacement Maps ermdglichen die Simulation von Beulen
und Kratzern auf einer Oberfliche, indem sie eine Verschiebung
von Punkten des Oberflichennetzes entlang des Normalenvektors
ermoglichen. Ein Grauwertbild codiert dabei den Verschiebungs-

ii
Il

W
il

/({‘
-§

>
KL/
SS=

\
§§

TITELTHEMA - FACHAUFSATZ

grad fiir jeden Punkt durch seinen Intensititswert. Um diese Kar-
ten auf die Oberfliche eines 3D-Objekts anzuwenden, ist es not-
wendig, ein UV-Layout zu erstellen, das die dreidimensionale
Oberfliche des Objekts in eine zweidimensionale Darstellung
tibersetzt (siehe Bild 1).

Um Beulen zu simulieren, werden Displacement Maps mit
einem glockenformigen Intensititsprofil genutzt, um das Erschei-
nungsbild realer Beulen nachzubilden. Displacement Maps fiir
Kratzer werden mit prozeduralen Techniken erstellt, welche eine
erhebliche Varianz in Form, Grofle und Tiefe ermoglichen. Fir
das Einbringen der feinen Details von Kratzern in das virtuelle
3D-Modell ist ein hochauflésendes Oberflichennetz des Bauteils
notig, das sicherstellt, dass die Nuancen jedes Kratzers realistisch
dargestellt werden konnen.

3.2.2 Dellen und Kerben

Fur die synthetische Erzeugung der Defekte Dellen und
Kerben wird ein Hilfsobjekt erstellt, das als Negativform fiir die
Verformung von Dellen und Kerben dient. Dieses Hilfsobjekt
wird zufilligen Verformungs-, Translations- und Skalierungs-
prozessen unterzogen, um die Vielfalt der resultierenden Bilder
zu erhéhen. Anschlieffend wird ein Boolescher Operator auf das
Original- und das Hilfsobjekt angewendet, der eine subtraktive
Schnittmenge erzeugt. Diese Schnittmenge entfernt die Form des
Hilfsobjekts aus dem Originalobjekt, wodurch das verformte Ori-
ginalobjekt entsteht. Bild 4 zeigt eine vereinfachte Darstellung
dieser Methode zur Erzeugung von Kerben.

3.3 Zufallige Objektanordnungen
fiir die Objektlageerkennung

Fir die Erzeugung zufilliger Objektanordnungen wird eine
Physics Engine, zum Beispiel aus Blender [11], verwendet. Bei
diesem Verfahren werden mehrere Instanzen eines unverform-
baren Objekts erstellt und dann eine Starrkérpersimulation ange-
wendet, um ihr Fallverhalten zu modellieren.

Durch die Simulation kénnen zufillige Anordnungen und
Schiittungen von Objekten automatisiert erzeugt werden. Vor
allem fiir das Objekthandling ist es wertvoll zu wissen, welche
Objekte gegriffen werden konnen. Daher wird in der virtuellen
3D-Szene iiberpriift, welche Objekte nicht von anderen Objekten
verdeckt werden. Diese Objekte konnen dann automatisch anno-
tiert werden. Im Anschluss konnen die annotierten Datensitze fiir
das Training eines KI-Modells zur Erkennung greifbarer Objekte
verwendet werden.
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Bild 4. Vereinfachte Darstellung der Erzeugung von Kerben mithilfe eines Booleschen Operators. Grafik: Fraunhofer IPA
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4 Anwendungstests
mit erzielten Ergebnissen

Der Nutzen synthetischer Daten in realen Bildverarbeitungs-
anwendungen wird anhand zwei verschiedener Anwendungsfille
unter Anwendung der vorgestellten Methoden und Prozessschrit-
te aufgezeigt. Die beiden Anwendungsfille stammen aus dem
Bereich der optischen Inspektion und Objekterkennung.

4.1 Kl-basierte Sichtpriifung an Metallscheiben

Um das vorgestellte Verfahren zur sensorrealistischen Bild-
simulation im Bereich der automatischen KI-basierten Sicht-
priffung zu demonstrieren, wurden defekte Metallscheiben mit
Beulen, Dellen, Kratzern und Kerben betrachtet. Fiir den Test-
datensatz wurden 40 Bilder fiir jede Defektklasse aufgenommen.
Fiir den Trainingsdatensatz wurden 500 synthetische Bilder fiir
jede Defektklasse mit dem Bildsimulationsverfahren erzeugt. Die-
se Bilder wurden verwendet, um das neuronale Netz ,Efficient-
Det” [12] als modernen Objektdetektor zu trainieren. 809% der
Bilder wurden fiir das Training genutzt und 20 % fiir die Validie-
rung des Modells. Das trainierte KI-Modell wurde anschlieflend
mit den realen Kamerabildern der Metallscheiben getestet. Neben
dem rein auf synthetischen Daten trainierten KI-Modell wurden
zum Leistungsvergleich zwei zusitzliche KI-Modelle mit einem
realen Datensatz (35 Bilder pro Defektklasse) beziehungsweise
mit einem gemischten Datensatz aus realen und synthetischen
Bildern trainiert (500 synthetische Bilder und 35 reale Bilder je
Defektklasse).

Fur den Vergleich wurde jeweils die Precision, also wie viel
Prozent der von der KI erkannten Defekte sind tatsichlich Defek-
te, und der Recall, das heifdt wie viel Prozent der vorhandenen
Defekte wurden von der KI korrekt erkannt, ausgewertet. Mit
einer erreichten Precision von 99 % und einem Recall von 100 %
schnitt das Modell auf Basis gemischter Daten am besten ab, da
die Kombination aus synthetischen und realen Daten potenziell
zu robusteren Merkmalen der Klassen fiihrt. Die Performance des
Modells auf Basis rein synthetischer Daten (Precision: 96 %,
Recall: 89 %) unterscheidet sich kaum von dem Ergebnis mit rea-
len Daten (Precision: 99 %, Recall: 86 %). Die Modelle konnen als
gleichwertig angesehen werden, wobei die Kratzererkennung auf
Basis der synthetischen Daten deutlich zuverlidssiger funktionierte
(Recall von knapp 89%). Bei der visuellen Inspektion koénnen
somit kleinere reale Datensdtze mit synthetischen Daten fiir eine
robuste Fehlererkennung angereichert werden. Die Tabelle bietet
eine Zusammenfassung der Ergebnisse unter Verwendung realer,
synthetischer und gemischter Trainingsdaten.

4.2 Kl-basierte Objekterkennung fiir Kunststoffspritzen

Die Anwendung der Objekterkennung wird anhand eines
Griff-in-die-Kiste-Szenarios demonstriert. Ziel war es Plastik-
spritzen zu erkennen, die fiir einen Roboter greifbar sind, also
nicht von anderen Spritzen verdeckt werden. Mithilfe der in
Abschnitt 3.3 vorgestellten Methode zur Generierung zufilliger
Anordnungen wurden automatisch 2000 synthetische Bilder von
Spritzen in einer Kiste erstellt. Der Fallprozess der leicht transpa-
renten Spritzenmodelle wurde mithilfe der Physics Engine simu-
liert. Ein Beispiel fiir eine synthetische Szene zeigt Bild 5.
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Tabelle. Ergebnisse der Kl-basierten Sichtpriifung im Uberblick.

Bump 1.0 0.971
Dent 1.0 0.971
Reale Daten Notch 1.0 0.971
Scratch 0.950 0.543
Total 0.992 0.864
Bump 1.0 0.914
Dent 0.909 0.857
Synthetische Daten Notch 1.0 0.914
Scratch 0.939 0.886
Total 0.962 0.893
Bump 0.972 1.0
Dent 1.0 1.0
Gemischte Daten Notch 1.0 1.0
Scratch 0.972 1.0
Total 0.986 1.0

Als Objektdetektor kommt das neuronale Netz ,EfficientDet”
zum Einsatz, das problemspezifisch angepasst wurde. Das KI-
Modell wurde rein mit synthetischen Daten trainiert, um die
greifbaren Spritzen zu identifizieren. Anschliefend wurden Tests
an realen Kamerabildern von den ungeordneten Spritzen in der
Kiste durchgefiihrt. Die Tests erreichten eine Precision von 96 %
und einen Recall von 93 %. Die erfolgreichen Erkennungsraten
demonstrieren die Leistungsfihigkeit des ML-Modells bei der
Erkennung greifbarer Spritzen. Die Visualisierung der Annotatio-
nen und eines Testbilds mit den Erkennungen des KI-Modells ist
in Bild 6 dargestellt.

5 Zusammenfassung und Ausblick

In diesem Beitrag wurde eine Methode zur Generierung
realistischer synthetischer Datensitze auf Basis von sensorrealisti-
scher Bildsimulation beschrieben. Der Schwerpunkt lag auf dem
Realismus der Daten durch physikalisch korrektes Rendering,
einerseits zur Simulation von Defekten fiir die Sichtpriifung und
andererseits zur Simulation von Szenen mit ungeordneten Objek-
ten fiir die Bauteilzufithrung oder -handhabung. Die Varianz der
Daten wurde durch flexible, an die Zielanwendung angepasste
Parameterdefinitionen erreicht. Die Datengenerierung wurde
automatisiert durchgefithrt anhand der vorgestellten Prozesskette
zur Bildsimulation mit Komponenten, vor allem fiir die Defekt-
generierung, die zufillige Objektanordnung in einer Szene und
das Rendering unter Berticksichtigung von Kamera, Beleuchtung
und Materialeigenschaften der zu untersuchenden Bauteile.

In zwei praktischen Anwendungsfillen wurde die Leistungs-
fahigkeit und Anwendbarkeit der Bildsimulationsmethode des
Fraunhofer IPA demonstriert. Synthetische Daten, die sowohl fiir
die Objekterkennung als auch fiir die visuelle Inspektion erzeugt
wurden, konnten erfolgreich zum Training neuronaler Netze ver-
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Bild 6. Annotationen greifbarer Spritzen, das hei3t ohne Verdeckung, in der synthetischen Szene (links); von der Kl erkannte greifbare Spritzen im realen

Kamerabild der Szene (rechts). Foto: Fraunhofer IPA

wendet werden. Die trainierten ML-Modelle waren in der Lage,
bei der Anwendung auf realen Kamerabildern genaue und zuver-
lassige Ergebnisse zu erzielen. Somit konnen synthetische Daten
als Alternative zu realen Daten verwendet werden, wenn ein
Mangel an Daten besteht. Zudem sind sie von groflem Vorteil,
wenn die Erfassung realer Daten zu zeitaufwendig ist oder reale
Datensitze angereichert werden miissen, um robustere KI-Model-
le zu erhalten.

Zukiinftige Forschungsarbeiten zielen darauf ab, Kl-basierte
Bildverarbeitungslésungen vollstindig virtuell auslegen und testen
zu konnen, ohne dass ein Hardwareaufbau des optischen Priif-
oder Erkennungssystems oder die zu untersuchenden oder zu
handhabenden Bauteile verfiigbar sein miissen.

WT WERKSTATTSTECHNIK BD. 114 (2024) NR.9

Literatur

[1] Denninger, M.; Winkelbauer, D.; Sundermeyer, M. et al.: BlenderProc2:
A Procedural Pipeline for Photorealistic Rendering. Journal of Open
Source Software 82 (2023) 8, #4901, doi.org/10.21105/j0ss.04901

[2] Greff, K.; Belletti, F; Beyer, L. et al.: Kubric: A scalable dataset
generator. ArXiv 2022, doi.org/10.48550/arXiv.2203.03570

[3] Unity Technologies: Unity Perception Package. Stand: 2020.

Internet: github.com/Unity-Technologies/com.unity.perception.
Zugriff am 14.08.2024

[4] A. Raistrick, Lipson, L.; Ma, Z. et al.: Infinite Photorealistic Worlds
using Procedural Generation. ArXiv 2023, doi.org/10.48550/ar
Xiv.2306.09310

[5]1 Napier, C. C., Cook, D.; Armstrong, L. et al.: A Synthetic Wheat
L-System to Accurately Detect and Visualise Wheat Head Anomalies.
Proceedings of the 3rd International Conference on Smart and Innova-

495

4 - am 24.01.2026, 21:29:22.


https://doi.org/10.37544/1436-4980-2024-09-34
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

TITELTHEMA - FACHAUFSATZ

[6]

[71
[8]

[9]

tive Agriculture, ICoSIA 2022, pp. 379-391. DOI: doi.
0rg/10.2991/978-94-6463-122-7_36

Schmedemann, O. et al.: Procedural synthetic training data generation
for Al-based defect detection in industrial surface inspection. Procedia
CIRP 107 (2022), pp. 1101-1106

Nikolenko, S. I.: Synthetic Data for Deep Learning. arXiv 2019. DOI:
doi.org/10.48550/arXiv.1909.11512

Gopalan, R.; Li, R.; Chellappa, R.: Domain adaptation for object
recognition: An unsupervised approach. International Conference

on Computer Vision, Barcelona, Spain, 2011, pp. 999-1006, doi.
org/10.1109/ICCV.2011.6126344

Pharr, M.; Jakob, W.; Humphreys, G.: Physically Based Rendering:
From Theory To Implementation. Burlington: Morgan Kaufmann 2016

[10] Tobin, J.: Fong, R.; Ray, A. et al.: Domain Randomization for Transfer-

ring Deep Neural Networks from Simulation to the Real World. 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Vancouver, BC, Canada, 2017, pp. 23-30, doi:
10.1109/IR0S.2017.8202133

[11] Blender Foundation: Homepage. Internet: www.blender.org.

Zugriff am 14.08.2024

[12] Tan, M.; Pang, R.; Le, Q. V.: EfficientDet: Scalable and Efficient

Object Detection. ArXive 2019, arxiv.org/abs/1911.09070

496

Dr.-Ing. Ilra Effenberger
ira.effenberger @ipa.fraunhofer.de

Tel. +49 711/ 970-1853

Foto: Fraunhofer IPA

Frederik Seiler, M.Sc.

Verena Eichinger, M.Sc.

Fraunhofer-Institut fir Produktionstechnik
und Automatisierung IPA

Nobelstr. 12, 70569 Stuttgart
www.ipa.fraunhofer.de

LIZENZ

©®

Dieser Fachaufsatz steht unter der Lizenz Creative Commons
Namensnennung 4.0 International (CC BY 4.0)

WTWERKSTATTSTECHNIK BD. 114 (2024) NR. 9

4 - am 24.01.2026, 21:29:22.


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.37544/1436-4980-2024-09-34
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

