

List of figures

Chapter 1

- 1.1: Detail of the chromatophore of a visual pigment in molecule model. A: Part in red; B: Part in magenta. *Source:* Menon et al, 2001: 1663.
- 1.2: A schematic from human cones sensitivity to the implementation of multilayer structure of instant colour film during exposure and after development. *Source:* Adapted from Fujita 2004: 377-378.
- 1.3: Sequence of procedures for making an anthotype. A: Crushed spinach with pestle and mortar; B: Coating process with beetroot extract; C: Coated paper drying; D: Framed anthotypes ready for exposure to sunlight. From above to below: pigment from beetroot, tobacco leaves, pigment from spinach and red rose. Anthotypes produced at the workshop of Simone Wicca at Imagineiro in January 2017 in São Paulo. Photos: Grazielle Lautenschlaeger.
- 1.4: Positive and negative photolithography steps. *Source:* Fraden 2004: 627.
- 1.5: Gossen's PANLUX Electronic Luxmeter. *Photo:* Grazielle Lautenschlaeger. *Source:* Media Archaeological Fundus / *Institut für Medienwissenschaft / Humboldt-Universität zu Berlin.*
- 1.6: Internal circuit of Gossen's Panlux Lightmeter. *Source:* Gossen's Panlux Electronic Luxmeter's operating instructions p. 5.
- 1.7: Presser's selenium cell. *Source:* Fournier D'Albe 1924: 41.
- 1.8: Photoelectronic relay system. A: Covered equipment: emission and reception parts; B: Lateral view of both parts; C: Detail of the circuit and the light-sensitive component. Photos: Grazielle Lautenschlaeger. *Source:* Media Archaeological Fundus – *Institut für Medienwissenschaft of Humboldt-Universität zu Berlin.*
- 1.9: *Colloquy of mobiles* (1968), by Gordon Pask, at the exhibition Cybernetic Serendipity, ICA London. *Source:* Medien Kunst Netz. Courtesy of Jasia Reichardt, Hermione Pask and Amanda Heitler.
- 1.10: *Equilibrium* (2008), by Guto Nóbrega. Courtesy of the artist.
- 1.11: *Relational Lights* (2010), by Ernesto Klar. *Photo:* Mário Ladeira. Courtesy of the artist and photographer.

1.12: Self-reflection of MIT Tangible Media Group on their own production according to changes in technological possibilities and their respective discourses.
 Source: Ars Electronica Catalogue 2016 Radical atoms.

Chapter 2

2.1: Diversity of eyes' anatomies. Source: Gregory 1998: 26.

2.2: Participant at the artwork *Zerseher* (1992), by Joachim Sauter and Dirk Luesebrink. Source: ART+COM Studio. Courtesy of the artists.

2.3: Schema of the anatomy of the human eye. Source: Gregory 1998: 36.

2.4: Illustration representing the retinal structural layers. Source: Gregory 1998: 54.

2.5: Picture of the author's retina. Highlights for the blood vessels in red rhizome shape, the optic disc (yellow spot on the left side), the point of exit for ganglion cell axons leaving the eye, the highest acuity area called fovea and the macula (blind spot) Photo: Ars Electronica's Brain Lab, 2016.

2.6: Schematic diagrams of the anatomic structure of the rods and cones. A generalized conception of the important features of a vertebrate photoreceptor cell (left) and the anatomical differences between the structure of rod and cone outer segments (right). Source: Modified from Young 1971 apud Guyton et al 1996: 578-9.

2.7: A pixel unit in a CCD. Source: Riesenbergs and Wuttig 2011: 323.

2.8: CCD's charge transfer modes. Source: Riesenbergs and Wuttig 2011: 323.

2.9: *A Parallel Image* (2008), by Gebhardt Sengmüller. A: Overview; B: Detail of lamps in the monitor side (output); C: Detail of LDRs (Light-dependent Resistors) lattice (input). Courtesy of the artist.

2.10: *Der Sehakt*. Example of the use of media as metaphors for explaining the process of seeing. Source: Kahn 1929, vol. 4, plate VIII apud Zielinski 2006: 49.

2.11: *Numarete* (1960), by Paul Weston. A: The device; B: Array of LDRs (Light-dependent resistors); C: Details of the LDRs; D: Schema of mathematical operations made by the machine. Source: Courtesy of Paul Weston and Heinz von Foerster Archive, Institute of Contemporary History, University of Vienna.

2.12: Schematic diagrams of the CMOS colour image sensors using Bayer mask colour filter. A: Conventional two-dimensional CMOS colour image sensor. Each pixel measures the intensity of light passing through B, G, and R colour filters; B: A three-dimensional, multi-stacked, organic-on-Si hybrid CMOS colour image sensor. Source: Nature 2015.

2.13: *Desvio para o vermelho. I: Impregnação* (1967-84), by Cildo Meireles. Mixed media. Variable dimensions. Photo: Eduardo Eckenfels. Courtesy of the artist, Galeria Luisa Strina and Inhotim.

2.14: *Three-camera Participation* (1969/2001), by Nam June Paik. Kunsthalle Bremen – Der Kunstverein in Bremen. Photo: Tobias Hübel. © Nam June Paik Estate.

2.15: Frames extracted respectively from the video series *Eye, machine I* (2000), *Eye, machine II* (2002) and *Eye, machine III* (2003) by Harun Farocki. © Harun Farocki GbR.

2.16: Tempt1 wearing his eye-tracking device. *Source:* The EyeWriter Project.

2.17: Simulation of visual perception through a retina implant. *Source:* Hornig & Velikay-Parel, 2013: 473.

2.18: Slovenian artist Špela Petrič performing *Skotopoeisis*. Photo: Miha Turšič. Courtesy of the artist.

2.19: Participant in the installation *Phototropy* (1994-1995) in Moscow. © Christa Sommerer & Laurent Mignonneau. Courtesy of the artists.

2.20: One of the set-ups for *Pulsu(m) Plantae* (2010), by Leslie Garcia: Sonifying the photosensitivity of a succulenta. Courtesy of the artist.

2.21: Heinz von Foerster explains the McCullough-Pitt neuron model using the example of a frog's retina at BCL. Courtesy of the Heinz von Foerster Archive, Institute of Contemporary History, University of Vienna.

Chapter 3

3.1: Photophone transmitter (left) and receiver (right). *Source:* Guillemin, Amédée 1882.

3.2: Sample of intermittent light disc from the mid-1920's. *Source:* Fournier D'Albe 1924: 67.

3.3: Schematic diagram by Raoul Hausmann with his idea for an Optophone. Extracted from the subtitle at Donguy's article: "lamp, lens, prism, sheet of quartz, set of micro-reliefs, slitted cylinder (calculating table), metal mirror or photo cell, speakers, optical screen." *Source:* Donguy 2001: 218.

3.4: Versions of the Optophone created by Peter Keene: 1999(A), 2000(B), 2004(C). Mixed media. Photos: Bertrand Runtz (A and B) and Roaln Ménégon (C). Courtesy of the artist.

3.5: Early mechanical-scan television system: Image transmission principle using Nipkow's disc and selenium cells. *Source:* Rowe, C. G. B. 1928.

3.6: US-American magazine presenting a DIY mechanical television receiver in late 1920's. *Source:* Science and Invention, 1928: Cover page and schematics cropped from p. 619.

3.7: *Photophon* (2013), by Aernoudt Jacobs. Details of the photoacoustic cell and the intermittent light disc of the installation assembled at the exhibition 'Cause and Nature of Sound' at *Le Bon Accueil* in Rennes, France. © Aernoudt Jacobs. Courtesy of the artist.

3.8: A: Setup of the *Heliophone* (2015), by Aernoudt Jacobs, at the roof of WTC Tower I, Brussels, Belgium; B: Detail of sunlight and the optical chopper. © Aernoudt Jacobs. Courtesy of the artist.

3.9: Detail of photo-acoustic cell used by Aernoudt Jacobs at *Photophone* and *Helio-phone*. *Source:* Roozen et al 2016: 1697.

3.10: *Photophon* (2010), by Klaus Filip and Noid. © Klaus Filip and Noid. Courtesy of the artists.

3.11: Radio transmitter circuit on which the customization of headphones from the Filip and Noid's *Photophon* was based. *Source:* Klaus Filip's personal archive. Courtesy of the artist.

3.12: *Phonotube* (2011), by Arcángel Constantini. © Arcángel Constantini. Courtesy of the artist.

3.13: Fotoliptófono (left) and detail of the pick-up (right). *Source:* Canalis 2010.

3.14: Circuit from the Fotoliptófono for recording circular pages, by Fernando Crudo. *Source:* Modified from Canalis 2010.

3.15: Circuit from the Fotoliptófono for reading waves from the rotating cylinder, by Fernando Crudo. *Source:* *Suplemento Blanco y Negro*, ABC de Madrid, July 2nd 1933.

3.16: *Stofftonband* (2013), by Kathrin Stumreich A: Overview of the machine; B and C: Detail of the optical reading system. Photo (C): Ben Keyserling. © Kathrin Stumreich. Courtesy of the artist.

3.17: Photocell implemented in recording and reproducing sound-film. A: Photography of an photocell e B: Schematic lateral view with with details of each composing element; C: In the structure where it is implemented D: Circuit of a technical ensemble in which the photocell reproduces audio information. *Source:* Fischer and Lichte, 1931. pp. 64 (A), 58 (B) and 66 (C and D).

3.18: Miss Jameson at the optophone. *Source:* Fournier D'Albe 1924: 132.

3.19: Schema of the sound output of an optophone. *Source:* Tiffany Chan / Maker Lab. July 4th 2016.

3.20: Performing *Self-portrait of an absence* at Praça Mauá/MAR - Museu de Arte do Rio, in the context of Soma Rumor - Encontro Latino-americano de Arte Sonora. June 29th 2019. Photo: Rafael Wallace. *Source:* Author's personal archive.

3.21: Frame of the video *An eye for Annai* (2005), by Jonathan Klassen and Daniel Rodrigues. Courtesy of the artists.

3.22: Frames extracted using the computer vision techniques of blob detection and optical flow. *Source:* Author's personal archive.

3.23: Signal flow in abstract and concrete levels of *Self-portrait of an absence*. *Source:* Author's personal archive.