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Abstract

Over the last decade, nonstandard discretization methods based on the fictitious domain
approach have gained increased interest. In these methods, the physical domain is embed-
ded into a fictitious one — resulting in an extended domain of a simple shape. Consequently,
structured meshes or Cartesian grids can be employed for the spatial discretization, thus
simplifying the mesh generation process significantly. Due to this reason, such methods
are a powerful tool for the numerical analysis of complex structures such as foam-like ma-
terials. A well-known example for these methods is the finite cell method (FCM), which
combines the fictitious domain approach with high order finite elements. In the FCM,
these elements are denoted as finite cells — thus giving the method its name — in order to
distinguish them from boundary-conforming finite elements. However, the simplification
in the mesh generation is accompanied by several numerical difficulties, induced by cut
finite cells, reducing the efficiency and robustness of the FCM. In this thesis, we focus on
the following issues in order to further improve the FCM.

The first topic is related to the numerical integration of finite cells. In general
adaptive Gaussian quadrature schemes are used — commonly resulting in a large number of
integration points, which renders the numerical integration computationally expensive. To
overcome this problem, we propose novel quadrature methods based on moment fitting.
Thereby, a promising approach is introduced that circumvents the necessity of having to
solve an equation system. We show that this moment fitting method results in efficient and
accurate quadrature rules for linear problems of the FCM, reducing the effort during the
numerical integration process significantly. Moreover, in order to improve the performance
for nonlinear applications, an adaptive moment fitting approach is presented.

The second topic addresses the ill-conditioning of the global system. To improve
the conditioning behavior, we propose a new basis function removal approach applied
to the hierarchic shape functions of the FCM. In this approach, shape functions with a
small contribution to the diagonal entries of the global system matrix are removed from the
ansatz. To this end, a global criterion based on the discrete gradient operator is introduced
to estimate the contribution. Moreover, by maintaining the nodal modes of the hierarchic
shape functions, the modified basis preserves the representation of the rigid body modes.
Several examples show that the basis functions removal improves the conditioning behavior
and, thus, the performance of the FCM significantly.

The last topic is related to the issue of severely distorted finite cells for appli-
cations in finite strain. To overcome this problem, we introduce a novel remeshing
strategy that is based on a multiplicative decomposition of the deformation gradient.
The essential idea of this strategy is to create a new mesh whenever the analysis fails due
to severe distortions of the computational mesh — and then to continue the simulation.
Further, a local radial basis function interpolation scheme for the implementation of the
data transfer is presented. Considering problems of different complexity, we show that the
remeshing strategy allows to improve the robustness behavior of the FCM considerably,
especially in combination with the presented basis function removal.

VII
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1 Introduction

1.1 Motivation

Novel materials — like composites or metal foams — as well as modern manufacturing pro-
cesses, such as additive manufacturing, allow to produce structures of high quality. Since
these structures provide a high lightweight potential, they have gained increased interest in
the automotive industry and in aerospace and maritime applications. Another interesting
application field is the design of medical implants, for instance. Here, the additive manu-
facturing process allows to produce patient-specific implants, e.g. bone or tooth implants
that are composed of very complex shapes or geometries. There is also increased inter-
est in these materials and manufacturing processes in other industrial fields, such as the
sports industry, for example. Due to the increased demand for more sophisticated products
and quality standards as well as low production costs, it has become necessary to apply
numerical simulation tools in the development phase. Here, the application of the finite
element method (FEM) is one of the most widely used standards in order to analyze and
optimize such kind of structures in the early stages of the development cycle. Therefore,
many commercial FEM software packages exist, such as Abaqus [1], ANSYS [2], LS-DYNA
[3], or MSC Software [4], just to name a few. However, since the discretization approach
of the standard FEM is based on boundary-conforming elements, the mesh generation of
structures with complex geometries often turns out to be difficult or, in some cases, even
practically impossible. Cottrell et al. [5] and Hughes et al. [6] mentioned that the effort in
the mesh generation makes up the main part of the analysis. Here, the time of the meshing
step is estimated at 80% regarding the overall analysis time.

In order to overcome the bottleneck in the mesh generation, nonstandard discretization
methods based on the fictitious domain approach can be applied instead of the standard
FEM. To the best knowledge of the author, the fictitious domain approach was first intro-
duced by Saulev [7, 8]. Further contributions that are based on a similar approach can be
found in Neittaanméki and Tiba [9], Peskin [10], Del Pino and Pironneau [11], Mittal and
Taccarino [12], Glowinski and Kuznetsov [13], Ramiére et al. [14, 15], Burman and Hansbo
[16, 17], and Elfverson et al. [18]. Several different terms have been found for these related
approaches — such as embedded domain method, immersed boundary method, CutFEM, or
CutIGA.

In the context of this thesis, we apply the finite cell method (FCM) which was introduced
in [19-22]. The FCM combines the fictitious domain approach with finite elements using
shape functions of higher order. Since its introduction, the FCM has been successfully
applied in various fields, e.g. applications to elastic and plastic problems in small and
large strain [19, 20, 23-33], homogenization of heterogeneous and cellular materials as well
as foams [34-40], topology optimization [41, 42], problems including material interfaces
[43-47], contact problems [40, 48-54], multi-physic problems [55-62], fracture simulation
(63, 64], or simulation of wave propagation [65-68]. In order to demonstrate the efficiency
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of the FCM, an illustrative example is given in Fig. 1.1 where a foam-like structure is
analyzed. Thanks to the fictitious domain approach, the mesh generation can be carried
out efficiently by employing a Cartesian grid, see Fig. 1.1b. Consequently, the effort in
the mesh generation is reduced significantly. Further, since the elements do not conform
to the boundary of the body, we denote them as finite cells — giving the method its name
— in order to distinguish them from boundary-conforming finite elements. Furthermore,
the high-order shape functions ensure high convergence rates, provided that the solution
of the problem is sufficiently smooth [21].

(a) (b) (c)

Figure 1.1: FCM analysis of a foam-like structure. (a) Geometry. (b) Spatial discretization.
(c) Results of the simulation.

The simplification in the mesh generation of the FCM due to the fictitious domain
approach, however, is accompanied by several numerical difficulties. Some of these issues
are listed below.

e A major bottleneck of the FCM is related to the numerical integration of finite
cells. Integrals of cells that are cut by the boundary of the domain are characterized
by discontinuous integrands, which is why standard Gaussian quadrature does not
perform well anymore. Thus, it is common to employ adaptive Gaussian quadratures
that are generally based on subcell meshes in order to resolve for the domain of
interest [19-21]. Then, standard Gaussian quadrature rules are applied on each
subcell. Although these adaptive integration methods are robust and can be carried
out in an automatic manner, they commonly result in many subcells and, thus, in a
large number of integration points. This in turn renders the numerical calculation of
the integrals of cut cells computationally expensive.

e Another well-known issue when applying the FCM is related to the ill-conditioning
of the global system matrix. Often, the ill-conditioning behavior is a result
of badly cut finite cells which possess a small support or result in nearly linearly
dependent shape functions. In order to overcome this problem, several approaches
have been proposed, e.g. applying a fictitious material [19-21] or preconditioning
techniques [69]. Although these approaches help to improve the solvability of the
resulting global equation system, the demand for novel approaches or the extension
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1.2 Goal and scope of this thesis

of existing methods in order to improve the robustness of the FCM are still a matter
of ongoing research — especially in the field of nonlinear problems.

e Further, the FCM suffers from severely distorted finite cells for applications in
finite strain. When considering this type of problems, the fictitious domain usually
undergoes much larger deformations than the physical one. Due to this reason,
badly cut cells get distorted severely during the analysis [25, 26]. As a result of this
behavior, the simulation is usually aborted because the Newton-Raphson procedure
does not converge anymore. In most of the case the analysis is aborted due to self-
penetration of cut finite cells.

e Another issue is to be seen in applications where the solution of the problem is not
smooth enough, for instance due to the occurrence of discontinuities or singularities.
A representative of this kind of problem are structures composed of heterogeneous
materials. Here, the material interface in cut finite cells represents a weak discontinu-
ity that can not be approximated accurately enough by employing a basis containing
smooth shape functions. As a result, increasing the order of the shape functions
does not improve the convergence behavior. Consequently, appropriate enrichment
and refinement strategies are required for the analysis of such kind of problems.
To this end, several strategies have been introduced within the context of the FCM
[43, 47, 59, 70].

e A further problem of the FCM is related to the treatment of boundary condi-
tions. In [20] Diister et al. presented an approach for the incorporation of inhomo-
geneous Neumann boundary conditions considering three-dimensional applications.
Here, the Neumann boundary is parameterized using a triangulated surface mesh. In
doing so, the load vector of the cells are computed by applying a Gaussian quadra-
ture on each triangle. Moreover, the Dirichlet boundary conditions are taken into
account in a weak sense. To this end, different approaches may be applied — such as
the Nitsche method or the penalty method [71-73].

1.2 Goal and scope of this thesis

The goal of this thesis is to further develop the FCM, in particular for nonlinear problems.
To this end, we are focusing on three main topics of the aforementioned difficulties.

e In doing so, the first topic is related to the numerical integration of finite cells.
Within the context of the FCM, it is common to employ adaptive Gaussian quadra-
ture schemes. However, since these quadrature schemes frequently result in a large
number of integration points, which renders the numerical integration computation-
ally expensive, we propose novel quadrature methods based on the moment fitting
approach in this thesis, in order to account for discontinuous integrals. To this end,
we present a moment fitting method based on distinct point distribution schemes.
Further, we propose an optimization procedure in order to solve the nonlinear mo-
ment fitting equation system, resulting in optimized points and weights. Further-
more, we introduce an efficient moment fitting method based on Gauss-Legendre
points and Lagrange polynomials, thus circumventing the necessity of having to solve
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the moment fitting equation system. Moreover, in order to improve the robustness
of the moment fitting quadratures for nonlinear problems of the FCM, an adap-
tive moment fitting approach is proposed. Considering several problems in linear
and nonlinear applications of the FCM, we show that the presented moment fitting
quadratures perform much more efficiently without loss in accuracy.

e The second topic of this thesis is addressed to the ill-conditioning of the resulting
global system matrix. Commonly, an approach utilizing a fictitious material is
applied in order to improve the conditioning behavior. In the scope of this thesis,
we introduce a basis function removal approach applied to the hierarchic shape
functions. In doing so, shape functions with only small contribution to the overall
solution are removed from the ansatz. Thereby, we ensure that rigid body modes are
preserved within the modified basis. This is especially of interest for applications in
finite strain. By studying benchmark problems in linear and nonlinear problems of
the FCM, we demonstrate that the presented basis function removal strategy allows
to improve the conditioning behavior of the FCM significantly. Further, we show that
the combination of the basis function removal together with the fictitious material
approach helps to improve the robustness of FCM applications in finite strain. This
is demonstrated by considering several problems of different complexity.

e The third and last topic of this thesis discusses the issue of severely distorted finite
cells for applications in finite strain, which originate from large deformations of
the fictitious domain within cut cells. As a result, the Newton-Raphson method fails,
thus terminating the analysis. In order to overcome this problem, we introduce a
remeshing strategy within the framework of a total Lagrangian formulation. The
basic idea of this strategy is that whenever the analysis fails (due to severe distortions
of the computational mesh), the simulation is continued based on a new mesh. In
doing so, the mesh generation of the deformed structure can be carried out in an
efficient manner thanks to the fictitious domain approach. For the transfer of the
necessary data from the old mesh to the new one, we present a local radial basis
function interpolation scheme. The performance of the proposed remeshing strategy
is demonstrated by considering several applications in hyperelasticity. Further, the
accuracy is investigated by means of a benchmark problem.

1.3 Qutline of this thesis

The outline of this thesis is as follows.

e In Chapter 2, basic elements of continuum mechanics are summarized that are
needed within this thesis. To this end, first kinematical relations and strain measures
are discussed. Next, the equilibrium equations are derived, as well as important
stress measures. Then, the constitutive equations regarding elastic and elastoplastic
material models in small and large strain are briefly described. Finally, the chapter
is concluded by deriving the weak and the linearized weak form of equilibrium.

e Chapter 3 provides a brief description of the FCM. In doing so, we first motivate the
essential idea of the fictitious domain approach and show the formulations of the weak
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1.3 Outline of this thesis

and linearized weak form with respect to the extended domain. Next, we describe
the spatial discretization and derive the governing equations of the discretized weak
form. The chapter is concluded by a detailed explanation of the Gaussian quadrature
method as well as an adaptive Gaussian quadrature scheme based on a spacetree
decomposition.

e Chapter 4 addresses the numerical integration of cut finite cells. To this end,
a detailed review of various numerical integration approaches in nonstandard dis-
cretization methods is provided at the beginning of the chapter. Next, the basic
idea and equations of the moment fitting approach are given. Then, various moment
fitting methods are introduced. The performance of the different moment fitting
quadratures in terms of accuracy and efficiency is studied by considering examples in
numerical integration as well as several applications for linear and nonlinear problems
of the FCM.

e In Chapter 5, we focus on the ill-conditioning behavior of the FCM. To this end, we
start with a detailed review on various approaches that were developed in order to im-
prove the conditioning of nonstandard discretization methods based on the fictitious
domain or related approaches. Next, we propose a basis function removal strategy
applied to the hierarchical shape functions that removes basis functions which pro-
vide a small contribution to the diagonal entries of the global stiffness matrix. The
influence on the conditioning behavior as well as the accuracy of the FCM is investi-
gated in detail with regard to linear and nonlinear benchmarks. Further, the effect on
the robustness for FCM applications in finite strain is studied by considering several
problems of different complexity.

e In Chapter 6, we present a remeshing strategy in order to overcome the problem
of severely distorted cells for FCM applications in finite strain. Thus, we start off
by introducing the necessary kinematical relations. Next, the remeshing procedure
is explained. Here, several remeshing criteria are proposed to decide whether the
analysis is continued based on a new mesh. For the spatial discretization, we employ
a surface triangulation in order to account for the deformed boundary of the structure
under consideration. The remeshing procedure is completed by introducing a local
radial basis function interpolation scheme in order to transfer the necessary data
from the old mesh to new one. The performance of the presented remeshing strategy
in terms of accuracy is investigated regarding a benchmark problem. Further, in
order to study the effect on the robustness, FCM applications of different complexity
are considered.

Finally, the thesis is concluded in Chapter 7. Here, we give a brief summary and provide
an outlook on further research opportunities in connection with the finite cell method.
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2 Basic elements of continuum
mechanics

In this chapter, we briefly outline the basic elements of continuum mechanics that are
needed for the formulation of the finite cell method considering quasi-static nonlinear
problems in solid mechanics. To this end, we start with the kinematics of a deformable body
and introduce important strain measures, see Sec. 2.1. Then, in Sec. 2.2, the governing
equilibrium equations are derived — in addition to fundamental stress measures. Next,
in Sec. 2.3, the constitutive equations are introduced describing the relationship between
stress measures and kinematic quantities, e.g. strain measures. Sec. 2.4 provides the strong
as well as the weak form of the nonlinear boundary value problem. The linearization of
the weak form is given in Sec. 2.5. In doing so, all stated relations are given with respect
to the initial (undeformed) and the current (deformed) configuration of a body. As the
formulations are described in brief, the interested reader is referred to the textbooks of
Wriggers [74], Belytschko et al. [75], Simo and Hughes [76], Bonet and Wood [77], and
Neto et al. [78] for a more detailed overview. For this thesis, we chose a notation that is
closely related to that used in Wriggers [74] and Neto et al. [78].

2.1 Kinematics

Kinematics provides a description of the motion and the deformation of a continuum with-
out reference to the cause, e.g. external loads. Thereby, in classical continuum mechanics,
we distinguish between two fundamental approaches: the Lagrangian and the Fulerian de-
scription of motion. While the Eulerian description is widely used in fluid mechanics, the
Lagrangian description is mostly applied in the context of structural (or solid) mechanics.
Since we are focusing on the analysis of quasi-static problems in solid mechanics, in this
thesis, kinematic relations and quantities — which are needed within the constitutive mod-
els and the weak (or variational) form — are described from the Lagrangian point of view.
In doing so, we start with the general description of the motion and the deformation of a
continuum, then concluding with the derivation of relevant strain measures.

2.1.1 Motion and deformation

Let us begin with the description of the motion and the deformation of a continuum. In
structural mechanics, a continuum is defined by a set of continuously distributed particles,
also called material points, forming a homogeneous body €2 with closed boundary 952, as
depicted in Fig. 2.1. The undeformed state of such a body at time 0 is called the initial
configuration €2 in which the location of a material point is defined by the position vector
X. Now, let us assume that the body experiences a deformation over time. Then, the
deformed state a of the body at time ¢ is called current configuration ¢ (£2). Based on
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the Lagrangian approach — which follows the motion of a particle in space and time — the
position of a material point in time is described by

=9 ((X,t) . (2.1)

Here, ¢ (X, t) defines a nonlinear bijective mapping where the material position X rep-
resents an independent variable. Further, the spatial position @ describes a variable de-
pending on both the material position X and the time ¢ > 0. In other words, the mapping
@ (X, t) relates the material coordinates X of the initial configuration 2 at time 0 with
the spatial coordinates of the current configuration ¢ (£2) at a fixed time instant ¢t. The
difference between the position vectors X and @ is represented by the displacement u

u=pX,t)-X . (2.2)

Consequently, the map can be expressed as a function of initial position of a particle and
its displacement as
p(X,t)=X+u . (2.3)

current configuration
(at time ¢)

initial configuration
(at time 0)

19,9

Figure 2.1: The motion and the deformation of a body €.

In order to provide a better understanding of the following formulations and relations,
we give a brief summary of the initial as well as the current configurations, respectively.

e The initial configuration (2 — also called reference, undeformed, or material configu-
ration — refers to the undeformed and stress-free state of a body at time 0. In this
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configuration, the position of the material points is defined by the initial (or mate-
rial) coordinates X which represent an independent variable. This means that X
does not change over time. In the following formulations, the usage of capital letters
for quantities or operators is associated with the initial configuration — e.g. Grad w
defines the gradient of the displacement vector with respect to the initial coordinates

(gradx u).

e The current configuration ¢ () — also called deformed or spatial configuration —
refers to the deformed state of a body at the current time ¢. In this configuration, the
position of the material points is defined by the spatial coordinates & which represent
a variable depending on both the material coordinates X and the time ¢. The
dependency is described by the nonlinear bijective mapping function & = ¢ (X, ).
In the following formulations, the usage of small letters for quantities or operators
is associated with the current configuration — e.g. grad u defines the gradient of the
displacement vector with respect to the current coordinates (grad, w).

In order to study the deformation (the change in size and shape) of a body when it
is mapped from the initial to the current configuration, let us introduce the deformation
gradient F' — which, in continuum mechanics, is an important quantity when it comes to
describing local deformation processes. To this end, we consider an infinitesimal vector
dX in the initial configuration, connecting two material points X and X + dX. Thus,
the vector dX can be interpreted as an infinitesimal line segment at point X. The related
deformed vector de in the current configuration is defined by the current positions of these
material points ¢ (X, t) and ¢ (X + d X, t), respectively. The transformation of the initial
vector dX to the current vector da is defined by the gradient of the deformation map

Iz
0X

Thus, with the definition of the deformation gradient F'

dx = dX =Grade (X,t) dX . (2.4)

F =Grady (X ,t) (2.5)

Eq. (2.4), finally, reads
do = FdX . (2.6)

Consequently, the deformation gradient F' represents a linear operator that maps an in-
finitesimal vector dX from the initial configuration to its counterpart da in the current
configuration. Further, to preserve the connection of the body during the deformation pro-
cess and to avoid self-penetration, we postulate the following condition for the determinant
of the deformation gradient

J=detF >0 . (2.7)

Moreover, the deformation gradient can be also formulated in terms of the displacements
by utilizing the relation stated in Eq. (2.3). Then, the deformation gradient F' reads
F =Gradep (X,t) =Grad X + Gradu=1+H , (2.8)

where H defines the displacement gradient and 1 denotes the second-order identity tensor.
Now, having introduced the deformation gradient allows us to describe the transforma-
tion of further geometric quantities such as surface and volume elements. To this end, let
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us consider an area element dA which is located at the surface 92 of the undeformed body
Q. Further, let us assume that the area dA is defined by two infinitesimal and linearly
independent vectors dX and dY describing tangents on an arbitrary point at surface 0€2.
Note that vector dX is not the same as in Fig. 2.1. Thus, the area element in the initial
configuration can be described by the cross product of the tangent vectors as

NdA=dX xdY (2.9)

where IN is the unit normal to the tangents and dA defines the area. Now, using the
transformation relation in Eq. (2.6), we can map the tangent vectors form the undeformed
surface 9 onto the deformed one ¢ (992). Thus, the deformed area element in the current
configuration can be described as

nde=de xdy=FdX x FdY | (2.10)

where n represents the unit normal to the deformed tangents and da defines the deformed
infinitesimal area. Finally, the area elements of the initial and the current configuration
are related to each other by the well-known Nanson formula

nda=JFTNdA . (2.11)

Next, let us discuss the change in volume of a body. To this end, we consider an
infinitesimal volume element dV' at an arbitrary point within the inside of the undeformed
body in the initial configuration. In doing so, the volume element is defined by three
infinitesimal and linearly independent vectors dX, dY’, and dZ. Observe that dX does
not represent the vector given in Fig. 2.1. Then, the volume of the undeformed element
can be described as

dV =(dX xdY)-dZ . (2.12)

Using the relation in Eq. (2.6), the deformed volume element do in the current configuration
reads
dv=(de xdy)-dz=(FdX x FdY)-FdZ . (2.13)

Thus, from Eq. (2.12) and (2.13), we can deduce the following mapping that relates the
undeformed volume element dV with the deformed one dv

dv=det FAV = JdV . (2.14)

Having described the local deformation process by introducing the deformation gradient
F'| let us conclude this section by mentioning some important transformation rules that
are needed to perform push forward and pull back operations. From a theoretical point
of view, there is no difference to describing the basic relations of continuum mechanics
with respect to the initial or the current configuration. Thus, formulations in the current
configuration can be transformed to the initial one by applying pull back operations and
vice versa by applying push forward operations. Some important transformation rules of
the push forward operations concerning the gradient and divergence operators are

gradf = FTGrad , gradf=GradgF , divB= %Div,@ , (2.15)
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where (3 represents a scalar field and 3 is a vector field. Further rules characterizing the
integral transformations are given as

/(.)dv:./'(.){]dv , / (Jnda = /(.)JF’TNdA (2.16)

o(2) Q ©(09) a9

Finally, the corresponding transformations of the pull back operations are obtained by
reformulation of the above expressions.

2.1.2 Strain measures

In the previous section, we introduced the deformation gradient that maps an infinitesimal
vector dX connecting two material points from the initial to the current configuration.
If the distance between the material points changes after deformation, we consider the
vector as strained — otherwise it is unstrained. Consequently, it is obvious that the strain is
independent in terms of rotation. Due to this fact, it is reasonable to split the deformation
gradient multiplicatively into a rotation and a stretch tensor where the stretch characterizes
the change in length of the deformed vector. The multiplicative split is also known as the
polar decomposition of the deformation gradient

F=RU=VR |, (2.17)

where R denotes the rotation tensor, which is orthonormal, and U and V define the
right and left stretch tensor, respectively. Thereby, U describes the stretch of a vector
with respect to the initial configuration and V' characterizes the stretch with respect to
the current configuration. Further, U and V are symmetric and positive definite tensors
which is why they can be represented in terms of their eigenvalues and eigenvectors by
applying the spectral decomposition

U=MNL,®L; and V =\e ®e; , (2.18)

where \; are the eigenvalues, also referred to as principal stretches, and L; as well as e;
characterize the Lagrangian and the Fulerian principal directions, respectively. Moreover,
the right and left Cauchy-Green tensors — which represent fundamental stretch measures
in continuum mechanics — are defined based on the stretch tensors U and V' as

C=U?=F"F and b=V?’=FF" . (2.19)

Now, with the definition of the stretch, we can formulate the squared distance of the
deformed vector da in terms of the stretch tensors as

[dz|? = dz-do = FAX - FdX = FTFdX -dX = CdX -dX = U*dX -dX . (2.20)

However, the stretch tensors do not represent a measure to describe the difference between
the deformed vector de with respect to its undeformed counterpart dX. Consequently,
additional measures are needed to describe the straining process. Thereby, one important
strain measure in the context of continuum mechanics is the Green-Lagrange strain tensor

E:é(cfl):%(UQfl):%(H+HT+HTH) (2.21)

10
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which vanishes for rigid body motions. This behavior defines a fundamental property that
strain measures have to satisfy when problems with large deformation, especially large
rotations, are considered. Note that the Green-Lagrange strain defines a tensor in the
initial configuration and, thus, that it can be described in terms of the principal stretches
and Lagrangian principal directions as

E= % (M-1)LieL . (2.22)

Now, with the definition of the Green-Lagrange strain tensor the squared distance of the
deformed vector can be formulated in terms of E as follows

[[dz|]* = (1 —2E)dX -dX . (2.23)

Considering problems of infinitesimal deformations — where the displacement gradient is
adequately small — the higher order term HT H of the Green-Lagrange strain tensor can
be neglected, thus resulting in the well-known infinitesimal strain tensor

e= % (H+H) . (2.24)
The infinitesimal strain tensor € is also known as engineering or small strain tensor.

Let us conclude this section by introducing further important strain measures from the
field of continuum mechanics. Following Seth (1964), Hill (1978), and Odgen (1984) a
generalization of the Lagrangian strain tensors — which are defined with respect to the
initial configuration — can be given as

E™ — {rln(Uml) m#o

(2.25)
InU m=0

where m is a real number. Observe that for any choice of m the related strain tensor
vanishes for rigid body motions (F = R). Further, note that for m = 2 the expression in
Eq. (2.25) results in the Green-Lagrange strain tensor. Other important strain tensors are

the Biot (m = 1), the Hencky (m = 0), and the Almansi strain tensor (m = —2). Moreover,
the relation in Eq. (2.25) can be rephrased in terms of its spectral decomposition
E"=fMNL;®L; (2.26)

where f ();) reads
1
LOm—1) m#0
Al — m
F) {m A m=0

A generalized formulation of the Fulerian strain tensors — which are defined with respect
to the current configuration — can be obtained in an analogous way

(2.27)

Lym -1 0
R ) m# (2.28)
InV m =20
Given in terms of its spectral decomposition, the Eulerian strain tensors read
e = f ()\1) e Xe; (229)
where
LA —1) m#0
A)=m" 2.30
F ) {ln/\i m=0 . ( )
11
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2.2 Equilibrium and stress measures

In this section, we derive the equilibrium equations and introduce important stress mea-
sures.

2.2.1 Equilibrium

In the following, let us derive the governing equilibrium equations of a general deformable
body that is subjected to prescribed displacements and under the action of body and
traction loads, as depicted in Fig. 2.2. In the figure, w defines the prescribed displacement
which is applied on the boundaries I'n and ¢ (I'p), pb and pyb denote the body loads per
unit volume acting on the domains Q and ¢ (Q), and ¢ as well as £ are the traction loads
per unit area which act on to the boundaries I'y and ¢ (I'x).

current configuration
(at time ¢)

initial configuration

(at time 0) ¢ E
t
Iy
u
I'p
Z,z
Y,y

X,z

Figure 2.2: A deformable body under the action of traction and body loads.

In order to derive the partial differential equations of the equilibrium, let us consider
the finite partial volume ¢ (Q) with boundary ¢ (F) of the deformed body in the current
configuration. Further, for reasons of simplicity, inertia terms are neglected since we are
dealing with quasi-static problems in this thesis. In doing so, the translational equilibrium
postulates that the sum of the external loads acting on the finite volume and its boundary

12
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has to vanish. This results in the following condition

tda + / pbdv=0 (2.31)

#(F) #(2)

where t is the stress vector acting on the boundary ¢ (1:‘2‘ and n denotes the normal vector
of the boundary. Now, replacing the stress vector ¢ with the relation between the Cauchy
stress tensor o and the normal vector n by applying Cauchy’s theorem, and using the
divergence theorem, the surface integral of the first term in Eq. (2.31) can be transformed
into a volume integral resulting in the following expression

/ (dive + pb) dv =0 . (2.32)
#(?)

For an any finite volume of the body, the formulation in Eq. (2.32) can only be satisfied if
the integrand vanishes
dive +pb=0 . (2.33)

Consequently, the relation in Eq. (2.33) defines the local equilibrium with respect to the
current configuration, which has to be fulfilled at any point within the inside of the de-
formed body ¢ (€2).

The well-known symmetry of the Cauchy stress tensor can be shown considering the
rotational equilibrium. In doing so, let us again consider the finite partial volume ¢ (Q)
in Fig. 2.2. Now, to achieve rotational equilibrium, the total moment of body and traction

loads with reference to any point, such as the origin, has to vanish

/ x x tda+ / x x pbdv=0 (2.34)

(1) o(%)
where we recall that the moment results from the cross product of the force with a position
vector &, see Fig. 2.1. Once again — using Cauchy’s theorem, which relates the stress vector

t with the Cauchy stress o and the normal vector m, and by applying the divergence
theorem — the rotational equilibrium can be formulated as follows

/ x X (on) dv+ / zxpbdv=0 . (2.35)

o) (%)
After some manipulations of Eq. (2.35) and by taking the translational equilibrium in
Eq. (2.33) into account, the rotational equilibrium implies the symmetry of the Cauchy

stress tensor
oc=0c" . (2-36)

2.2.2 Stress measures

Often, it is preferable to formulate the local equilibrium equation with respect to the initial
configuration of the undeformed body 2. In order to do so, it is necessary to introduce
further stress measures that are related to each other by special transformation rules.

13
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Applying Nanson’s formula Eq. (2.11) which describes the change in area between the
deformed ¢ (2) and the undeformed body €2, the surface integral of the stress vector ¢ in
Eq. (2.31) can be transformed to the initial configuration as

/tda: /anda,:/aJF’TNdA:/PNdA . (2.37)
(1) (1) P :

Eq. (2.37) introduces the stress tensor P which denotes the first Piola-Kirchhoff stress
tensor. From Eq. (2.37), the following relation between the first Piola-Kirchhoff and the
Cauchy stress tensor can be established

P=JoF T . (2.38)
Further, using the condition of conversation of mass
pdv = podV (2.39)

the volume integral in Eq. (2.31) can then be transformed to the initial configuration.
Thus, the translational equilibrium with respect to the initial configurations follows as

/' PNdA+ /pob =0 . (2.40)
T )

Once again applying the divergence theorem, the surface integral can be transformed into

a volume integral
/(DivP +pob) dV =0 . (2.41)

Q

The expression can only be satisfied if the term of the integral vanishes and, thus, the local
equilibrium with respect to the initial configuration reads

DivP +psb=0 . (2.42)

Since the first Piola-Kirchhoff stress tensor P is nonsymmetric, it is necessary to intro-
duce the second Piola-Kirchhoff stress tensor S — which is symmetric and which results
from a complete transformation of the Cauchy stress tensor

S=F'P=JF'oF " . (2.43)

Observe that S represents a pure mathematical quantity and, thus, can not be interpreted
in a physical manner. Within the constitutive theory, however, S occupies an important
role since it forms a work conjugated pair together with the Green-Lagrange strain tensor.

Another important stress measure is the so-called Kirchhoff stress tensor 7, which results
from a push forward of the second Piola-Kirchhoff stress tensor to the current configuration

T=FSFT | (2.44)
thus, the relation between the Kirchhoff and the Cauchy stress tensor is given as

T=Jo . (2.45)

14
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2.3 Constitutive equations

The kinematic relations as well as the equilibrium equations introduced in the previous
sections are formulated independently in terms of the material behavior of a body. Con-
sequently, further formulations are needed in order to solve boundary value problems in
continuum mechanics. The relations describing the material behavior of a deformable
body are governed by the constitutive equations. These equations include the necessary
formulations between stress measures and kinematic relations, e.g. strain measures. In
the scope of this thesis, we consider elastic and elastoplastic material models for problems
with small and finite strain. Therefore, this section serves to provide a brief description of
the underlying constitutive equations of the different material models.

2.3.1 Linear elasticity

In the simple case of an elastic and isotropic material behavior of a deformable body
undergoing small displacements and deformations, the constitutive equations are given as

o =2ue+Atrel . (2.46)

These equations, which are well-known as Hooke’s law, define the relation between the
Cauchy stress tensor and the infinitesimal strain tensor, which is also known as the engi-
neering strain tensor. In Hooke’s law, o depends linearly on €. This linear relationship is
defined by the Lamé parameters A and p, which are also known as the Lamé constants or
Lamé coefficients. Note that o can also be computed based on other material parameters,
e.g. Young’s modulus £ and Poisson’s ratio v.

2.3.2 Hyperelasticity

In order to describe the material behavior of an elastic and isotropic body undergoing
large displacements and deformations, hyperelastic material models are well-suited. These
models are characterized by a strain (or stored) energy density function describing a scalar
valued function

W (F)=W(C) (2.47)
that defines a potential [79]. Based on the strain energy function, the constitutive equations
can be derived by taking the derivative of W (F') or W (C') with respect to the deformation
gradient F' or the right Cauchy-Green tensor C| respectively. In doing so, the constitutive
equations of the first Piola-Kirchhoff stress tensor are given as

ow ow
— —29F—_ 2.4
OF oC (248)
and the constitutive equations with respect to the second Piola-Kirchhoff stress read
ow ow
_ 1 _
S=F oF 260 . (2.49)

Further, with the relation given in Eq. (2.38) and (2.45), the constitutive equations of the
Cauchy as well as the Kirchhoff stress tensor are obtained as
10W 2 oW
FT=ZF

_ 10w _ 29V nr
7= JoF iFact (2:50)
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and ow ow
_ 9 T
o= B F 2F8 Fo. (2.51)

In the scope of this thesis, we utilize a hyperelastic material model — introduced by
Ciarlet in [79] — that is based on a polyconvex strain energy density function

MK Al A
W —g(trC—?))JrZ(J -1) - <§+u) In.J (2.52)

with A and g denoting the Lamé parameters. Then, using the definitions in Eq. (2.48),
(2.49), (2.50), and (2.51) the constitutive equations of the different stress measures are
obtained as

pP= % (P=1)FT+p(F-FT) (2.53)

= % (P-1)c 't +pu(1-c) (2.54)
a:%(]Q—l)lJr%(b—l) (2.55)
77%(J2—1)1+u(b—1) ‘ (2.56)

2.3.3 Small strain elastoplasticity

Next, we briefly describe the governing equations of elastoplasticity regarding small strains.
For a more detailed overview of the material model, the reader is referred to [74, 76, 78, 80].
In this thesis, we assume a model that is based on .J; flow theory of plasticity with non-
linear isotropic hardening. The formulation of the material model starts with an additive
decomposition of the infinitesimal strain tensor € into an elastic €, and a plastic part €,

as
E=¢€.+€& . (2.57)

In doing so, the constitutive relation between the Cauchy stress tensor o and the strain
measure is given by an isotropic and linear elastic material model as

c=D,:(e—¢,)=D,:¢e. |, (2.58)

where D, defines the fourth-order elasticity tensor. Next, in order to account for admissible
stress states of o, the von Mises yield criterion is introduced

2
®(o,a)=||deve| — \/;K (@) <0 . (2.59)
Consequently, the elastic domain is defined by ® (o,a) < 0 and the plastic domain is
given by the isosurface of the yield function ® (o, @) = 0. Further, ® (o, @) > 0 denote

inadmissible stress states. In Eq. (2.59), ||dev || represents the Euclidean norm of the
deviatoric part of the Cauchy stress tensor — where the definition of dev o is given as

1
deveo =0 — gtra 1 . (2.60)
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Further, K (@) describes the nonlinear and isotropic hardening curve. In this thesis, K (&)
is composed of a linear and an exponential part as

K (@) =00+ ha + (00 — 00) (1 - e’m) . (2.61)

In Eq. (2.61), oy is the initial yield stress, h the linear hardening parameter, o, the
saturation stress, and w the hardening exponent. Further, & defines an internal variable
which is often referred to as equivalent plastic strain. Finally, the associative flow rule
describing the evolution of the plastic strain is given as

09 (0,a)

gy =i (2.62)

where v > 0 denotes the nonnegative plastic multiplier.

2.3.4 Finite strain plasticity

In the following, we give a brief explanation of the material model assuming J, flow theory
of plasticity for problems in finite strain. A more detailed description of the theory can be
found in [81-84].

The formulation starts with the multiplicative decomposition of the deformation gradient
F into an elastic F, and a plastic part F), as

F=F.F, . (2.63)

In doing so, an isotropic and compressible neo-Hookean model is applied in order to describe
the elastic part of the deformation. The elastic material model is based on the following
strain energy density function

A
We =W, (I L) =5 (h—1-Inly) + % (I —3—Inly) |, (2.64)

where A and g denote the Lamé parameters. Further, I; and I3 represent the first and
third invariant, which can be computed with respect to the elastic right Cauchy-Green
tensor C, as

L=trC., and [3=detC, |, (2.65)

or, with respect to the elastic left Cauchy-Green tensor b, as
Iy =trb, and I3=detb, . (2.66)

Utilizing the multiplicative decomposition of the deformation gradient in Eq. (2.63), the
elastic right Cauchy-Green tensor C, can then be computed as

C.=F'F. = (FF") (FF,') = F,"F'FF," = F,"CF," (2.67)
and the elastic left Cauchy-Green tensor b, as

b.= FEF' = (FF,') (FE,") = FE,'F,"F" = FC,'F" . (2.68)
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Consequently, the constitutive equations relating the different stress measures with C, and
b, are obtained as follows

P= i‘; = QF?)Z (2.69)
S = 2F;1?;/: = 2‘;2,/ (2.70)
o= Ji‘;VFVF' = §Fg‘g FT (2.71)
= ?;FT = 2b, %1; (2.72)

Further, in order to account for admissible stress states, the von Mises yield criterion is

utilized
@(T,(}):HgS:SfK(&) , (2.73)

where s defines the deviatoric part of the Kirchhoff stress tensor T
1
s=T— gtr‘r 1 . (2.74)

Furthermore, K (@) denotes the hardening curve. Here, we again assume the nonlinear
and isotropic hardening function given in Eq. (2.61). In accordance with Korele and
Stupkiewicz [82], the associative flow rule describing the evolution of the plastic variables
can be written in two equivalent forms as

. O (7, a
¢, = 25 F" w Fc, (2.75)
T
and 90 (r.5
C,l = —24F ! % FC,' (2.76)

where v > 0 denotes the nonnegative plastic multiplier. Finally, the relation defining the
evolution of the hardening variable a is given as

a=5 . (2.77)

2.4 Strong and weak form of equilibrium

For the quasi-static analysis of a deformable body, it is necessary to solve a boundary
value problem that is described by a system of partial differential equations coupling the
kinematic relations, the local equilibrium conditions, and the constitutive equations of
the underlying material model. However, finding an analytical solution of such boundary
value problems is, in general, only possible for simple problems. Therefore, it is common
to compute an approximate solution that is based on the weak (or variational) form of the
equilibrium — also known as the principle of virtual work. In doing so, the strong form of
the equilibrium is converted into a related weak form and, thus, the approximate solution
is computed in the sense of a weighted residual whose integral over the computational
domain vanishes. Moreover, the weak form holds also for the analytical solution of the
problem.

18

216.73.216.36, am 18.01.2026, 21:46:07. gaschlitzter Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186355188

2.4 Strong and weak form of equilibrium

2.4.1 Strong and weak form in the initial configuration

To derive the weak form, let us consider a deformable body with respect to the initial
configuration, as depicted in Fig. 2.2. Thus, the boundary value problem can be described
by the following set of equations

DivP +pob=0 on (2.78)
w=u on Ip (2.79)
PN=t on Iy , (2.80)

where Eq. (2.78) defines the strong form of the equilibrium which has to be satisfied
for every material point within the domain €. Further, the boundary value problem
is complemented by the formulation of the Dirichlet boundary conditions in Eq. (2.79)
and the Neumann boundary conditions in Eq. (2.80). Here, u denote the prescribed
displacements acting on the Dirichlet boundary I'p, and ¢ are the applied tractions acting
on the Neumann boundary I'y.

As mentioned before, finding an analytical solution that satisfies the strong form and
the boundary conditions is only possible for a selected set of simple problems. Due to this
reason, it is common to compute an approximate solution. Usually, however, inserting the
approximate solution into Eq. (2.78) results in a residual term of the equilibrium equations.
Applying the weak form, the residual term is reduced to zero in a weak sense. To obtain
the weak form, we multiply the strong form by a test (or trial) function i and integrate
the resulting expression over the computational domain €2

/DivP~ndV+/pUb-17dV:U . (2.81)
Q Q

Summarizing Eq. (2.81), an approximate solution can be computed in a weak sense by
postulating that the integral of the weighted residual has to vanish where the test function
7 is interpreted as a weighting function. Further, we demand that the test function 0, also
referred to as virtual displacements, vanishes at the Dirichlet boundary

n={n|n=0 on Tp} . (2.82)

Now, applying integration by parts formula of the first term in Eq. (2.81) and making
use of the divergence theorem results in the well-known expression of the weak form with
respect to the initial configuration

G(cpm):/P~GradndV7/p0bvnde/i~ndA:0 . (2.83)
Q Q I'n

Further, the first term of the weak form G (¢, n) describes the internal and last two terms
the external virtual work.

Moreover, by making use of the relation P = F'S we can substitute the first Piola-
Kirchhoff stress tensor P resulting in an alternative formulation of Eq. (2.83)

G(ap,n):/S~6Ed\/f/p0b-ndvf/f~n(1A:0 (2.84)
Q Q I'n

given in terms of the second Piola-Kirchhoff stress tensor S and the variation of the Green-
Lagrange strain tensor E.
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2 Basic elements of continuum mechanics

2.4.2 Strong and weak form in the current configuration

The weak form with respect to the current configuration can be derived in the same manner.
Considering a deformable body in the current configuration as depicted in Fig. 2.2, the
formulation of boundary value problem is given by the following set of equations

dive+pb=0 on ¢(Q) (2.85)
u=u on ¢(I'p) (2.86)
on=1t on ¢([y) ., (2.87)

where Eq. (2.85) is the strong form of the equilibrium and Eq. (2.86) and (2.86) describe
the corresponding Dirichlet and Neumann boundary conditions.

Starting from Eq. (2.85), we multiply the strong form of the equilibrium by a test
function 1. Next, we convert the resulting expression into an integral equation over the
domain ¢ (€2), thus, after some manipulations we obtain the weak form of the equilibrium
with respect to the current configuration

g(p.n) = /U~gradndv— /pb~ndV—

/ inda=0 . (2.88)
#(9) #(2) oi'N

~)

For sake of completeness, it should be mentioned that the expression in Eq. (2.88) can be
also obtained by applying a push forward operation of Eq. (2.83) which transforms the
weak form of the initial configuration 2 into the current one ¢ (£2).

Now, by taking advantage of the symmetry of the Cauchy stress tensor o, we can replace
the spatial gradient of the test function i by its symmetric part

1 .
Vin = 3 (gradn + grad'n) , (2.89)

thus, the weak form in the current configuration simplifies to

g(p,m) = /U-andvf/pb-nd‘/f / t-nda=0 . (2.90)

() () (I'n)

2.5 Linearization of the weak form

For the analysis of quasi-static boundary value problems in nonlinear solid mechanics, in
general, the finite element method — which is based on the weak (or variational) form
— is applied to find an approximate solution. Due to its nonlinear character numerical
algorithms have to be utilized to solve the weak form. Thereby, in most of the cases the
Newton-Raphson method is used since it ensures a quadratic convergence rate close to a
solution point. The starting point for the application of the Newton-Raphson method is
based on the linearization of the weak form.

2.5.1 Linearized weak form in the initial configuration

To derive the linearized weak form, which is the basis for applying the Newton-Raphson
procedure, let us consider the weak form in the initial configuration in Eq. (2.83). Next,
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2.5 Linearization of the weak form

we apply the Taylor series expansion of the weak form starting from an already known
equilibrium state denoted by ¢

Glp,m) =G(p.m) +DG(p,n) - Autr(pmn) . (2.91)

Then, by neglecting the higher order terms denoted by r (¢, n), we obtain the linearized
weak form
L(G)yep = G (5.m) + DG (5.m) - Au (292)

Now, for reasons of simplicity, we assume that the applied tractions t and body forces b
do not depend on the actual deformation. Therefore, the directional derivative of G (@, n)
only depends on the first term of the weak form and, thus, can be computed in the direction
of Au .
DG (p.1) - Au = / (DP - Aw) - GradndV . (2.93)
Q
Consequently, the directional derivative DG (¢, ) - Au depends on the directional deriva-
tive of the first Piola-Kirchhoff stress tensor DP - Aw. Further, assuming that the first
Piola-Kirchhoff stress tensor is a function of the deformation gradient, which in turn de-
pends on the actual configuration, Eq. (2.93) can be recast as

DG (¢,7) - Au = / (DP (F (%)) - Au) - GradndV . (2.94)
Q

Now, by applying the chain rule the directional derivative of the first Piola-Kirchhoff stress
tensor in the direction of Aw can be computed as

_ oP d _ -
DP (F (¢)) - Au = F & (F (@ +eAu)) » (2.95)
oP d _
=9F 4 (Grad (¢ + eAu)) » (2.96)
oP
=3F Grad Au (2.97)

The first term in Eq. (2.97) describes the material tangent tensor A which is obtained
from the constitutive model — for hyperelastic material models A is also referred to as the
first elasticity tensor. Thus, with the introduction of the material tangent tensor

oP

A=oF

(2.98)

finally, the linearized weak form with respect to the initial configuration can be summarized
as

/(AGradAu)~GradndV:—/P~GradndV+/.p0b~ndV+/f~'r/dA . (2.99)
Q Q Q I'n

Finally, it should be pointed out that the linearized weak form in the initial configuration
can be also formulated in terms of the second Piola-Kirchhoff stress tensor S and the
variation of the Green-Lagrange strain tensor J E. Both formulations are equivalent.
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2 Basic elements of continuum mechanics

2.5.2 Linearized weak form in the current configuration

The linearization of the weak form can be also formulated with respect to the current
configuration. To this end, we apply a push forward operation of Eq. (2.99) resulting in
the following expression

/ % (Agrad AuF) - gradn Fdv = — / %P ~gradn F dv + / pob - mdv
o () () ()
o [ iman (2.100)
»(I'n)

Substituting the first Piola-Kirchhoff stress tensor by P = JoF~T and by taking advan-
tage of the symmetry of the Cauchy stress tensor o yields

/ % (Agrad AuF) - gradn Fdv = — / oF 1. VinFdv+ / pb-ndv
() () ()
+ / t-nda (2.101)
#(T'N)

where V51 denotes the symmetric part of the gradient of the test function, see Eq. (2.89).
Due to the symmetry of V57, the following expression in Eq. (2.101) can be recast

oF T .VinF=0 -VinF 'F=0-Vn . (2.102)

Finally, using the relation from Eq. (2.102) and introducing the spatial tangent tensor a
the linearized weak form in the current configuration leads to

/ (agrad Au) - gradndv = — / o - Vindv + / pb-ndv+ / t-nda . (2.103)
) o(Q) o(Q) o(T)

According to Neto et al. [78], the relation between the material and spatial tangent tensor
is given as
1
Qi1 = inmknF'ij'ln . (2104)
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3 The finite cell method

This chapter is intended to give a brief overview of the finite cell method (FCM) that is
based on a combination of the fictitious domain approach and shape functions of higher
order [19-22]. In Sec. 3.1, we therefore present the essential idea of the fictitious domain
approach which provides an efficient and simple mesh generation strategy. Thereby, we
show the formulation of the weak form and its linearization accounting for the fictitious
domain. Next, in Sec. 3.2, the spatial discretization is explained. Here, the mapping
relations based on rectangular cells are given, as well as the derivation of the discrete
equation system. Sec. 3.3 focuses on the numerical integration process of the FCM. Here,
we describe the Gaussian quadrature method as well as an adaptive Gaussian quadrature
scheme utilizing a spacetree decomposition in order to resolve for the integration domain.

3.1 Fictitious domain approach

In the last decade, the interest in fictitious domain methods — such as the finite cell method
[19-22], CutFEM [16, 17, 85], or CutIGA [18] — has increased significantly in the field of
structural mechanics. This is due to the reason that these methods provide a simple and
efficient mesh generation strategy for boundary value problems that possess a complex
geometry — in contrast to body-conforming discretization methods like the classical finite
element method (FEM).

In the following, we briefly describe the essential idea of the fictitious domain approach
and its implementation within the context of the finite cell method. To this end, let
us take a look to the boundary value problem depicted in Fig. 3.1. Here, we consider a
body € that is subjected to Dirichlet boundary conditions w on I'p and Neumann boundary
conditions t on I'y. Now, following the fictitious domain approach, the body € is immersed
or embedded into a fictitious domain 2.\, which is why fictitious domain methods are
also often referred to as immersed or embedded domain methods. In doing so, the resulting
extended domain €2, is composed of a simple shape that can be easily discretized by
employing structured meshes or Cartesian grids, for instance. To distinguish the boundary-
nonconforming elements from standard boundary-conforming ones in the context of the
FCM, we call these elements finite cells. Consequently, the underlying meshing strategy of
the FCM allows to decouple the approximation of the primary variables, i.e. displacements,
from the approximation of the geometry. Finally, in order to resolve for the domain of the
body, the indicator function « is introduced — which is one for material points within the
physical domain Q and zero for points within the fictitious one 2.\Q

1 VX eQ
a_a(X)_{o VX € 0\ 31)

Consequently, the FCM provides a simple mesh generation and analysis for a wide vari-
ety of geometric models such as voxel-based models provided by quantitative computer
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3 The finite cell method

0 2\ Q.

o+
]
Q
117
—

Il
Il
K

I'p

Figure 3.1: Basic concept of fictitious domain methods.

tomography scans (qCT-scans), B-rep models obtained from commercial CAD-programs,
or level set representations. Moreover, note that finite cells which are completely located
within the fictitious domain may be neglected for the analysis.

3.1.1 Weak forms

Next, to find an approximate solution of the boundary value problem using the finite cell
method, we have to reformulate the weak form of equilibrium in Eq. (2.83) and Eq. (2.88)
with respect to the extended domain €2.. Taking advantage of the indicator function « the
weak form of the initial configuration can then be written as

G¢ (p,m) :/aP~GradndV—'/apob'ndV—/fndA:O . (3.2)
Qe I'n

Qe

Further, starting with the relation in Eq. (2.88), we can derive the weak form of equilibrium
with respect to the current configuration in an analogous manner

9> (p,m) = / ao-gradndv — / apb-ndV — / t-nda=0 |, (3.3)
©(9e) #(Q) e(I'n)

where ¢ (€.) characterizes the current configuration of the extended domain. Conse-
quently, the apparent difference of G2 (¢, n) and g2 (¢, n) with the weak forms G (¢,n)
and ¢ (¢, m) is characterized by the terms concerning the volume integrals. Note that —
based on the definition of the indicator function «, which describes a discontinuous func-
tion — equivalence between the weak forms of the extended domain and the weak forms of
the physical domain is ensured, see Dauge et al. [21].

3.1.2 Linearized weak forms

Since we are focusing on nonlinear problems in solid mechanics, approximation procedures
have to be applied in order to solve the weak form of equilibrium. As stated in Sec. 2.4, we
employ the Newton-Raphson method that is based on the linearization of the weak form.
Then, using the relations of Eq. (2.94), (2.97), and (2.98) — which are derived assuming
conservative loads that do not depend on the actual deformation — the directional derivative
of G% (¢,m) in the direction of the displacement increment Awu reads

DG (@, m) - Au = / a(AGrad Au) - GradndV . (3.4)
Qe
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3.2 Spatial discretization

Thus, with the definition in Eq. (2.92), finally, the linearized weak form of equilibrium
with respect to the initial configuration can be written as

/oz(AGradAu)-GradndV: /a (pob-n — P -Gradn) dV + /f~ndA . (3.5)
’ Qe I'n

e

Moreover, to derive the linearized weak form in the current configuration, we apply a push
forward operation of Eq. (3.5). Then, after some reformulations and by taking advantage
of the symmetry of the Cauchy stress tensor, we obtain

/ a(agrad Au) - gradmpdv = / a (pb-ndv —0o- an) dv + / t-nda . (3.6)
©(Qe) () @('n)

3.2 Spatial discretization

In general, solving boundary value problems in solid mechanics is not straightforward. Due
to this reason, an efficient approach is to spatially discretize the domain of the problem
and then to find an approximate solution based on the chosen discretization. Applying
the FCM, the spatial discretization is carried out by subdividing the undeformed extended
domain into a set of n, nonoverlapping finite cells Q¢

Ne

o= , (3.7)
c=1

where each cell ¢ incorporates a set of shape functions used for the local approximation of
the unknown solution.

3.2.1 Mapping

In the context of the FCM, it is common to employ structured meshes or Cartesian grids as
shown in Fig. 3.2. In the figure, Q¢ describes the initial and ¢ (Q¢) the current configuration
of a finite cell c. Further, Qf, characterizes the domain of the parent cell which is defined
by the local coordinates &. Furthermore, Q¢ defines the mapping from the local to the
initial coordinates

X =X(§)=Q(§=Q" (3.8)
and q° is the mapping from the local to the current coordinates
z=z(§) =q"(§) =q" . (3.9)
Moreover, the gradients of the mappings are given as
aXL'
J¢= Grad X = 3.10
rad¢ E)E ( )
and 5
j¢=Grad¢z = 0‘2 (3.11)
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3 The finite cell method

parent cell

Iy

Figure 3.2: Spatial discretization of the extended domain.
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3.2 Spatial discretization

respectively. Thus, with the definition of the deformation gradient F = dx/0X, we can
deduce the following kinematic relation between j¢ and J¢

.. Ox¢ Oz 0X°

= ~ox- e ~ T (3.12)

Since, we employ rectangular cells for the spatial discretization, the kinematic relations
are simplified significantly, as demonstrated in the following. For reasons of convenience,
the subsequent formulations are stated in the standard matrix notation. Therefore, in order
to distinguish between matrix and tensor quantities, matrices are denoted by upright bold-
faced symbols. In doing so, the mapping of a rectangular and hexahedral finite cell from
the local to the initial coordinates reads

Xmin + 1/2 (1 + 5) HX
X=Q = | Y + Y2 (1+n) Hy | | (3.13)
Zmiu + 1/2 (1 + C) HZ

where Xpin, Yinin, and Zpi, denote the minimum coordinates of the cell and Hy, Hy, and
H are the lengths. Then, the derivative of the initial coordinates with respect to the local
coordinates is given by the following Jacobi matrix

Xe X, X He 0 0
F=|Y. Y, Y|==|0 H 0| . (3.14)
Ze Z, Z¢ 0 0 Hy

Note that the Jacobi matrix J¢ represents a constant matrix. Consequently, the determi-
nant of J¢ is also a constant

1
detJ® = inHyHZ . (315)

Moreover, with the relation given in Eq. (3.12), the Jacobi matrix j of the current config-
uration can be computed as

Te Ty T FnHx FpHy FisHz
= 1\Ye Yy vye| =FI= 5 oy Hyxy FyHy FyHy , (3.16)
g Zn 2 Fs1Hx FpHy Fs3Hy

thus, its determinant follows as

1
detj* = detF* detd” = detF” S HyxHy Hy . (3.17)

3.2.2 Discretization of the weak forms

Next, we define an ansatz on each finite cell that is used for the discretization of the dis-
placement (trial) and virtual displacement (test) function. For reasons of convenience, the
following formulations are given in standard matrix notation. In doing so, the displacement
or trial function u is approximated within each finite cell ¢ as

ur~u*=NU’ in Q° . (3.18)
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3 The finite cell method

Following the Bubnov-Galerkin method, the same ansatz is used for the approximation of
the virtual displacement or test function

nx~n°=NV® in Q° . (3.19)

In Eq. (3.18) and (3.19), N denotes the matrix including the individual shape functions.
Further, U¢ is the displacement vector comprising the unknown displacement values and
V¢ is the virtual displacement vector containing the arbitrary virtual displacements. Con-
sidering the three-dimensional case, the matrix vector notation of the displacement u® in
Eq. (3.18) can be written as

Uy

W

N, O 0 ... N, 0 0]|W
w=NU=|0 N, 0 0 N, 0 : , (3.20)

0o 0 N 0 0 NJ|u,

Wn

where N; denote the n individual shape functions and U;, V;, and W; define the 3 x n
associated unknown displacements (with ¢ = 1,...,n). For the choice of N;, it is possible
to employ different shape functions such as Lagrange or Bernstein polynomials, B-splines,
or NURBS - just to name a few. In this work, we employ hierarchic shape functions
which provide high convergence rates for smooth problems of the FCM. For the two-
dimensional case, the hierarchic shape functions are categorized into three groups: nodal,
edge, and internal modes. A representative shape function of each group is plotted in
Fig. 3.3. The extension of the hierarchic shape functions for the three-dimensional case is
straightforward. Here, the shape functions are categorized into four groups: nodal, edge,
face, and internal modes. A detailed description of the hierarchic shape functions is given
in the textbook by Szabé and Babuska [86] or in the contribution by Szabé et al. [87].

In the following, we show how to derive the discrete equation system that needs to
be solved. As mentioned before, we employ the Newton-Raphson method to find an ap-
proximate solution for the weak form of equilibrium. Then, inserting the ansatz of the
displacement and the test function from Eq. (3.18) and (3.19) into the linearized weak
form in Eq. (3.5) results in the following linear equation system that needs to be solved

<
i

¢ 05 4

(a) Nodal mode. (b) Edge mode. (c) Internal mode.

Figure 3.3: Hierarchic shape functions of a quadrilateral cell given in the parent domain.
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3.2 Spatial discretization

within each Newton-Raphson iteration 4

K (U') AU = Fl, (U) = AFou (3.21)
Here, K& (U%) denotes the tangential stiffness matrix, and U as well as AU are the
displacement and displacement increment vector, respectively. Further, Fi , (U?) describes
the internal and Foy the external load vector. Furthermore, A defines the accumulated load
factor that is used to apply the load in an increment-wise manner. Moreover, the tangential
stiffness matrix and the internal load vector are computed based on the displacement
solution of the previous iteration.

Finally, since the support of the shape functions NN; is defined by the domain of the finite
cells ¢, the global quantities in Eq. (3.21) are obtained during the assembling process

Ne X Ne e
K%“ = A k" ) ant = A f:;lf and Fext = A fecxt ’ (322)
c=1 c=1 c=1

where A denotes the assembling operator. Thereby, for each finite cell ¢, the local stiffness
matrix k¢ is calculated as
K = / aGTAGAV | (3.23)

Qe

the local internal load vector ¢ as
fle = /aGTPdV : (3.24)
Qe

and the local external load vector f5; is computed as

f:xt:/apoNdeVJr / NTtdA . (3.25)
I'n®

Qe

Note that these are the local cell quantities with respect to the initial configuration.
Thereby, G denotes the discrete gradient operator which contains the derivatives of the
individual shape functions with respect to the coordinates X, Y, and Z of the initial
configuration

Nix 0 0 Nox 0 07
Ny 0 0 Noy 0 0
Nz 0 0 Noz 0 0
0 Nx 0 0 Nux 0
G=|0 Ny 0 ... 0 Ny 0 (3.26)
0 Mz 0 ... 0 N 0
0 0 Ny 0 0 Nux
0 0 Ny 0 0 Ny
L0 0 Nz ... 0 0 Nyl

The discretization of the linearized weak form of the current configuration can be ob-
tained in a similar manner or by applying corresponding push forward operations. Here,
the interested reader is referred to the thesis of Gnegel [40].
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3 The finite cell method

3.3 Numerical integration

When it comes to computing the local cell quantities, special care has to be taken during
the numerical integration process. Thereby, we have to distinguish between cut and noncut
finite cells. For the numerical integration of the noncut cells, we employ Gaussian quadra-
ture rules which define a widely used standard within the context of the finite element
method. However, Gaussian quadratures do not perform well for the computation of the
discontinuous integrals of the cut cells induced by the indicator function «. Due to this
reason, the numerical integration of the cut cells is carried out, usually, applying adaptive
Gaussian quadrature schemes.

3.3.1 Gaussian quadrature

Before we introduce the Gaussian quadrature method, let us start with the basic idea of
the numerical computation of integrals considering the one-dimensional case — for a more
detailed overview the interested reader is referred to the textbooks of Schwarz and Kockler
[88] or Schaback and Wendland [89]. The following formulas are stated with respect to the
local coordinate £ on finite or infinite interval (a, ). In doing so, the integral of a function
g(&) is approximated by a weighted sum

b n
[o©ac~ Y hgle) with a<&<...<&<b . (3.27)
" i=1

In Eq. (3.27), n denotes the number of integration or quadrature points, & define the
position of the integration points, and \; are the corresponding weights. The set of &;
and \; is also referred to as quadrature (or integration) points and weights. Now, for
the numerical integration of polynomials, the maximum quadrature order p, is limited by
Pq = 2n — 1. This relation can be deduced by the following example. Suppose we want to
compute the integral of a polynomial ps,(§) of order 2n

n

pon(€) =TI (€ -&)° with a<& <. <& <b (3.28)

i=1

where the roots of ps,(§) coincide with the position of the integration points. From the
structure of p, (§) one can easily deduce the relation

b
[pm©yd>0 . (3.20)
However, the weighted sum of the quadrature yields
Z)\i Pzn(@) =0 . (3-30)
i=1

Consequently, we obtain the following inequality

[ €06 £ 3 A& (331
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3.3 Numerical integration

from which we can conclude that the maximal possible quadrature order is limited by
Pg=2n— 1.

Optimal points and weights are obtained by the Gaussian quadrature method, to be
explained in more detail in the following. To this end, let us start with the more general
form of the Gaussian approach where the integral of a function g(¢) is replaced by an
equivalent weighted integral as

[o©de= [ f@uig)ag with w(§)>0 Vee(ab) - (3.32)

In Eq. (3.32), w(&) defines a positive weight function on interval (a, b). In accordance with
Eq. (3.27), the integral is then approximated by a weighted sum as

b n
/f(f)w(f) dE~ S NF(E)w(E) with a<& <. <& <b | (3.33)
" i=1

Consequently, we have 2n unknowns: n unknown abscissa values &; and n unknown weights
;. There are several possible approaches to determine the 2n unknowns. For example,
one could solve a nonlinear equation system — but a technically more elegant approach is
presented in this contribution, based on the usage of orthogonal polynomials. To this end,
let us assume that f(£) = fon,—1(§) defines a polynomial function of order 2n — 1. Further,
we formulate a polynomial p, (&)

(€ =TI~ &) (3.34

i=1

where the roots of p,(£) coincide with the distinct abscissa values &. Then, applying
Euclidean division of polynomials for fs,1(§) and p,(§), we obtain the following relation

Jon-1(§) = Pu()@n-1(§) +1n1(§) (3.35)

where quotient ¢,_; and remainder r,_; define polynomials of order < (n — 1). Now,
inserting Eq. (3.35) in Eq. (3.33) yields

b b
[ Fons©w(©) A = [ pu(©an1(©)w(©) + rar(©ul©) € (3.30)

Further, assuming orthogonality between p,, () and any polynomial of order less than n
on interval (a,b) with respect to the weight function w(§) results in

b
[ u(€)a1(©u(©) ds =0 (3.37)
and, finally, Eq. (3.36) simplifies to
b b
[ fna(©u(©)de = [ras(©uie)de . (3.38)
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3 The finite cell method

Next, let us have a look at the right-hand side of Eq. (3.33). Then, based on the assumption
that & define the n distinct roots of p, (), the weighted sum simplifies to

DNSE) =D Xipn(E)gn1(&) + Xirna (&) =D Niraa(&) (3.39)
i=1 i=1 i=1
Consequently, with Eq. (3.38) and (3.39), we can derive the following relation
b b "
[ Fon (@€ d = [ra(©ui€)dg ~ 3 Airua(&) (3.40)
a a i=1

Thus, the only thing left to be done is to compute the n unknown weights \;. However,
this can easily be carried out by employing the Lagrange polynomials through points &; to
interpolate the remainder r, (&)

Mﬂ@Zimq@M@ . (3.41)

Thus, inserting Eq. (3.41) in Eq. (3.40), finally, the weights A; can be computed as

b
A= [L©uEds (3.42)

Quadrature formulas that follow this approach are denoted as Gaussian quadrature formu-
las, e.g. Gauss-Legendre, Gauss-Laguerre, Gauss-Hermite, Gauss-Chebyshev, or Gauss-
Jacobi quadrature. From among these formulas, the most commonly used one is the
Gauss-Legendre quadrature, which is based on Legendre polynomials L;(§) and a positive
weight function w(¢) =1 on interval (—1,1).

For the numerical integration of the local cell quantities of noncut cells, we employ the
Gauss-Legendre quadrature. In doing so, a multidimensional quadrature rule is obtained
by simply applying a tensor product of the one-dimensional quadrature points. In the
following, this is demonstrated for the computation of the local stiffness matrix k¢. To
this end, we start off by performing a change of variables from initial (X,Y,Z) to local
coordinates (&,7, ()

ke = / aGTAGAV = / GTAGAV = / a GTAG detJ* ) (3.43)
Qe Qe g
1 1 1
- / / GTAG detJ®dédnd¢ (3.44)
—-1-1-1

where detJ® defines the determinant of the Jacobian matrix which is constant, see
Eq. (3.15). Note that, since the cell is not cut, the value of the indicator function «
is one. Consequently, the entries of k¢ are computed as

11 1 n n o n
K = / / / GTAG detJ®dédnd¢ ~ 3 373" GE A, Ge, det* A AN, (3.45)
—1-1-1 r=1s=1t=1
g
= Z G{lAgngi detJ® )\7 (346)
i=1
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3.3 Numerical integration

with

g=[6& ¢ om]" and A=A (3.47)

denoting the position and the weights of the n, quadrature points. Moreover, expressions
of the following form Gg, represent the value of a quantity at integration point &;. In this
case, the value of the discrete gradient operator G at quadrature point &;.

3.3.2 Adaptive Gaussian quadrature scheme

In order to compute the integrals of the cut cells, special care has to be taken during
the numerical integration process. This is due to the fact that the indicator function
« transforms the continuous integrals into discontinuous integrals. However, standard
Gaussian quadrature rules, introduced in the previous section, show a weak performance
facing such kind of integrals. Due to this reason, it is common to apply adaptive schemes
for the numerical integration of cut finite cells. These schemes are based on spacetree
decomposition to resolve for the physical and the fictitious subdomain, respectively. In
the context of the FCM, the subdomains are usually resolved by a quadtree (2D) or an
octree (3D) subdivision. In the following, we briefly explain the basic idea of the adaptive
integration method.

To this end, let us consider the FCM problem depicted in Fig. 3.4 with respect to the
initial configuration. For reasons of simplicity, we consider the two-dimensional case. Here,
standard Gaussian quadrature rules are applied for the three noncut cells. However, for
the cut cell Q° on the bottom right, an adaptive integration scheme based on a quadtree
subdivision is employed. In doing so, the cut cell is subdivided on its parent cell domain Qf
with local coordinates (£, 7). Consequently, the parent cell defines the root of the quadtree.
Then, at the first refinement level (k = 1), the cut cell is subdivided into four uniform
subcells. This procedure is repeated for each cut subcell 2Ff until the final refinement
level (k = 4) has reached. As it can be seen from the figure, with increasing tree depth
(or refinement) level of the quadtree, the accuracy of the resolution of the physical and
the fictitious subdomain is improved. Finally, the numerical integration of the cut cell is
conducted by employing a standard Gaussian quadrature on each subcell sc of the quadtree
mesh. Thereby, the numerical integration is carried out on the parent subcell domain Qg
with local coordinates (r, s). From this procedure, it is obvious that the approximation of
the geometry is carried out using the integration mesh instead of the mesh applied for the
discretization of the computational domain. Consequently, the simple mesh generation
approach of the FCM is accompanied by a more elaborate quadrature method used for
the numerical computation of cut finite cells. However, note that the generation of the
integration mesh can be performed easily and in an automatic manner. Moreover, since
it is used only for integration purposes, the integration mesh is subjected to much less
restrictions as compared to the computational mesh, e.g. hanging nodes are no problem.

After addressing the basic idea of the adaptive integration method in a schematic man-
ner, let us once again return to the three-dimensional case. In doing so, the subcell mesh
is generated employing an octree, which defines the analogue of the quadtree (2D) for
the three-dimensional case. Then, the computation of the local stiffness matrix k¢ can be
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3 The finite cell method

carried out as follows

w:/aeﬁumvz/aeﬂuhmyah (3.48)
Qe fZCD
1 1 1
- / / / a GTAG detJ® dedpd¢ (3.49)
—-1-1-1
1 1 1 Nse
~ / / / 3 0 GTAG detd® detd* drdsdt (3.50)
S1-1 5 sest
aa,(;gzx&(;gldetJCdetJSCAi (3.51)
sc=11i=1

To this end, the integral with respect to the initial coordinates (X,Y,Z) is first trans-
formed to the local coordinates (£, 7, ¢) of the parent cell domain QF, similar to Eq. (3.44).
However, since a standard Gaussian quadrature is applied on subcell level, the integra-
tion process of the cut cells is accompanied by an additional integral transformation from
the local coordinates (€, 7,¢) of the cell ¢ to local coordinates (r, s, t) of each subcell sc.
Thereby, detJ*® represents the determinant of the Jacobian matrix J* depending on the
mapping relation between the cell ¢ and the subcell sc. Due to the rectangular shape, the
mapping relating the local coordinates (&, 7, ¢) of the cell with the local coordinates of the
subeell (r, s, ) is simple and can be carried out in a similar way to Eq. (3.13)

13 Emin + Y2 (1 +7) He
&= n = QSC = |Mmin + 1/2 (1 + 5) Hn . (352)
C Cmin+l/2<1+t) HC

parent subcell

S

L,

T
sc
Ql

Qsz; , J5¢

parent cell

g Lo |

Q Q°, Je 0 13 /
| ////// k=1 k=2
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~
\;z
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gz
i

Figure 3.4: Adaptive integration scheme based on a quadtree decomposition.
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3.3 Numerical integration

Here, &nin, Mmin, and (uin define the minimum coordinates of the subcell with respect to
the local coordinates of the parent cell. Further, the length dimensions of the subcell are
given by He, H,, and H¢. As a result of the simple mapping relation, the corresponding
Jacobian matrix J*¢ is constant and diagonal

(3.53)

Thus, finally, the determinant of J*¢ only depends on the length dimensions of the subcells

1
detd* = S HeH, He . (3.54)
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4 Moment fitting quadratures

In nonstandard discretization methods — such as the generalized or extended finite element
method (GFEM/XFEM) [90-94], or fictitious domain methods [8, 11, 13, 14] like the finite
cell method (FCM) [19-22] or the CutFEM [16, 17] — particular consideration has to be
given to the numerical integration process. This is due to the fact that the computational
mesh is decoupled from the description of the geometry or geometrical features —e.g. voids,
material inclusions, or cracks — of the underlying problem, thus providing a fast and simple
mesh generation. However, this simplification in the mesh generation results in elements
that are cut by material or crack interfaces or by the physical boundary. As a consequence,
these elements exhibit integrals including weak or strong discontinuities or singularities.
Consequently, the integrals of these elements are not smooth anymore. Thus, standard
Gauss quadrature rules cannot be applied, since they show a weak performance for such
kind of integrals.

In the scope of this chapter, we focus on the numerical integration process of the finite
cell method. As mentioned in Sec. 3.3, standard Gauss quadrature formulas are applied for
the noncut cells. Here, we thus focus especially on integration methods that are employed
for the computation of the discontinuous integrals of the cut cells. These cells include
integrals of the following form

/af(X)dV . (4.1)

QC
Here, f(X) defines a continuous and sufficiently smooth function on cell domain Q¢ with
respect to the initial coordinates (X,Y, Z). Further, o represents the indicator function
which is one for points within the physical subdomain Q¢P" of the cell and zero for the
fictitious subdomain Q%fic. Consequently, the indicator function transforms the continu-
ous integrals of the cell into discontinuous ones. Several integration methods have been
proposed for the computation of these discontinuous integrals, which are discussed in the
following.

A rather simple commonly applied numerical integration approach is based on a sub-
division of a cut cell. In doing so, the discontinuous integrals are split into two separate
integrals which consider the physical QP» and the fictitious subdomain Q¢ of a cell
individually

/af(X)dV: / 1f(X)dV+/Of(X)dV: / AX)av . (42)

QOc Qe.phy Qefic Qe.phy

Since we are only interested in the computation of the integral over the physical subdomain,
the integral over the fictitious subdomain vanishes. In the context of the FCM, this is
ensured by the definition of the indicator function a. Next, in order to compute the
integral over the physical subdomain, a local integration mesh is introduced. This local
mesh is composed of elements which resolve for Q“P". In the context of the FCM, these
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elements are denoted as subcells, since an individual integration mesh is generated for each
cut cell. Consequently, the relation in Eq. (4.2) can be written as

/af(X)dV: / fx)yav =3 / f(x)av | (4.3)

0Oc Qe phy sc=1 Qsc,phy

where n. is the number of the subcells and QP defines the physical subdomain of each
subcell sc. Since the local subcell meshes are needed for integration purposes only, they are
subjected to less restrictions as compared to the computational mesh. Neighboring subcells
are not restricted to any continuity conditions. Thus, hanging nodes are allowed, for
instance. The only requirement to each subcell is that it occupies a domain where standard
quadrature rules can be applied, e.g. Gaussian quadrature formulas. There are several
possible strategies for the generation of the subcell meshes. In [19], the integration mesh is
composed of subcells applying a uniform subdivision of a cut cell. A more efficient strategy
is provided by employing spacetrees that are based on a quadtree or an octree subdivision
(20, 95-97]. Further mesh generation strategies are based on low-order tesselation utilizing
triangles or tetrahedrons [98-101]. Moreover, in [102-110] high-order subcells are employed
which allow to represent curved edges and faces, thus allowing to reduce the number of
subcells for a high resolution of complex geometry. Generally, the adaptive integration
scheme based on a quadtree or an octree subdivision is applied in the context of the FCM
— which has been explained in more detail in Sec. 3.3.2. This is due to the reason that this
integration scheme performs fully automatic considering complex geometries. Further, it
allows to control the error in integration. Furthermore, since the generation of the quadtree
or octree mesh only requires the information whether a point is inside or outside of the
integration domain, it can be applied easily to a wide variety of geometric models — such as
voxel-based models provided by quantitative computer tomography scans (qCT-scans), B-
rep models obtained from commercial CAD-programs, or level-set representation. However,
the disadvantage of this adaptive integration scheme is that it commonly results in a high
number of quadrature points, making the numerical integration process computationally
expensive.

In order to reduce the number of the quadrature points and thus to perform the com-
putation of the integrals more efficiently, Ventura and Benvenuti [111, 112] introduced
an innovative integration approach based on equivalent polynomials. In this integration
method, the discontinuous function is replaced by an equivalent polynomial. In doing so,
the discontinuous integrals are transformed into continuous ones so that standard Gauss
quadrature rules can be applied. For the construction of the equivalent polynomial, a linear
equation system has to be solved for the unknown polynomial coefficients. This integration
method for applications of the FCM was extended in [96]. Moreover, in [113], Abedian and
Diister introduced a modified variant based on equivalent Legendre polynomials (ELP). In
this method, the monomial basis used for the construction of the equivalent polynomial is
replaced by the Legendre basis. Then, by taking advantage of the orthogonality property
of the Legendre polynomials the resulting equation system becomes diagonal, thus avoid-
ing the necessity of solving an equation system. This fact is of special interest considering
equivalent polynomials of higher order where the equation system based on the monomial
basis, generally, results in high condition numbers.

Another promising integration method to perform the computation of the discontinuous
integrals in a more efficient manner is based on the moment fitting approach [114-120]
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— which is in the focus of this chapter. This integration method allows to generate in-
dividual quadrature rules for arbitrary domains by solving the moment fitting equation
system, which is generally a nonlinear system. In [121] Mousavi and Sukumar applied the
moment fitting approach together with Lasserre’s method to construct quadrature rules
to compute the integrals of polynomials on irregular convex polygonal or polyhedral ele-
ments. Thereby, the set of quadrature points is predefined in such a way that the nonlinear
moment fitting equation system turns into a linear and underdetermined system. Further,
in order to compute the integrals of elements that are cut by crack interfaces, they pro-
posed a moment fitting approach which incorporates the generalized Heaviside function.
In doing so, the numerical integration could be performed on element level, thus avoiding
the necessity of employing any subdivision scheme. A similar strategy has recently been
proposed by Diister and Allix [122], where the basis functions used for the moment fitting
are enriched by appropriate functions accounting for weak and strong discontinuities with
arbitrary shape of the interface. In the context of the enriched partition of unity methods
(EPUM), Sudhakar and Wall [123] extended the moment fitting method for the compu-
tation of integrals on arbitrary convex or concave volumes. In doing so, they followed the
approach by predefining the position of the quadrature points as suggested by Mousavi
and Sukumar [121]. However, since Lasserre’s method is restricted to convex volumes, the
integration of the basis function is performed using the divergence theorem. A further
version of the moment fitting approach has been presented by Miiller et al. [124] for cells
that are cut by implicitly described interfaces by means of level set functions. In this
method, the divergence theorem is applied together with divergence-free basis functions.
For planar interfaces, the divergence-free basis provides quadrature rules with a high ac-
curacy. However, the accuracy reduces with an increasing curvature. Further, in [125],
Thiagarajan and Shapiro presented an adaptively weighted integration method based on
moment fitting, the divergence theorem, and shape-sensitive analysis.

In this chapter, we propose different versions of the moment fitting method and study
their performance in terms of accuracy and robustness for linear and nonlinear applications
of the finite cell method [31, 33, 122, 126-130]. To this end, in the first moment fitting
method, we follow the approach suggested by Mousavi and Sukumar [121] and predefine
the position of the quadrature points a priori — which turns the nonlinear moment fitting
equation system into a linear one. Thereby, we present two different point distribution
schemes. In the first distribution scheme, the points are adaptively distributed within
the physical subdomain of the cut cell, based on a uniform subdivision. In the second
approach, we use the position of the standard Gauss-Legendre points. As a consequence,
the points may be located within the physical and the fictitious subdomain. Further, in
a second moment fitting version, we solve the nonlinear system applying an optimization
procedure. In doing so, the number of the points could be reduced further, thus resulting
in more efficient moment fitting quadratures. Moreover, to increase the robustness for
nonlinear problems of the FCM, we propose an adaptive scheme using moment fitting.
In this scheme, the moment fitting based on Gauss-Legendre points is applied on cell or
subcell level of cut cells. In order to reduce the effort of generating the quadratures, we
introduce a moment fitting version that avoids the necessity of solving the moment fitting
equation system, which is in general the most expensive part.
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4.1 Moment fitting approach

4.1 Moment fitting approach

In the following, we briefly describe the basic idea of the moment fitting approach. For
reasons of simplicity, the subsequent formulations are stated with respect to the local
coordinates, since the numerical integration is generally performed on the domain of the
parent cell. In doing so, let us consider the cut cell QF depicted in Fig. 4.1 - where Q&P
and Qéﬁc define the physical and the fictitious subdomain. Then, the goal of the moment

¢,phy
Q5

l

cfic
Q5

Figure 4.1: Cut cell.

fitting approach is to set up an individual quadrature rule in order to approximate the
integral over the physical subdomain by a weighted sum. Note that there are no restrictions
to the integration domain Qaphy, so it can be of arbitrary shape or even composed of
individual disconnected domains. In the more general form of the moment fitting formula,

the integral of a function g(&) is then replaced by an equivalent weighted integral

[ s@aas= [ f(&)w(é)dﬂgzif(&i)w(ﬁi))\i ., (4.4)

c,phy c,phy
5 Q3

where w(€) defines a weight function. In Eq. (4.4), n denotes the number of quadrature
points. Further, & and J\; define the position and the corresponding weight of the in-
tegration points, respectively. Next, in order to compute the position and the weights,
the function f(&€) is first approximated by means of a set of m linear independent basis
functions ¢;(&) as

7€) = iﬁ o) (45)

where /3; € R denote the corresponding coefficients of each basis function. Introducing the
approximation ansatz in Eq. (4.5) results in the well-known moment fitting equations

n

S w(€)p; (&) M = / w(€)p; (€)%, j=1,....m . (4.6)

i=1 ciphy
QU

Here, the left-hand side represents the weighted sum of the quadrature rule and the right-
hand side includes the integrals of the individual basis function over the integration domain,
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which are also referred to as the moments. Consequently, in order to obtain the quadrature
rule, we have to solve a nonlinear equation system for the n unknown points &; and the
corresponding n unknown weights \;

I w(&)p1(§) Ao
wé)e1(&) .. w(&n)ei(én) | [M ey
: : tl= : NN
w(é)em(€) - w(&)em(&a)] [Mn I w(€)em(§) dn
QEphy
In symbolic notation, the relation in Eq. (4.7) can be represented as
Ax=b |, (4.8)

where A is the coefficient matrix, x denotes the vector containing the unknown weights,
and b defines the vector including the individual moments. Note that the system is, in
general, nonlinear in terms of §; and linear dependent regarding the weights A;.

In the framework of this contribution, we are interested in the numerical integration of
polynomials. Thus, the weight function is considered as w(&) = 1, and the moment fitting
equation system simplifies to

/ @1(5) d)n

(&) - (&) ] [M Qg
oo H = : : (4.9)
‘Pm(&l) e 99m(€n) An f 99m(€) dQg
Qaphy

4.1.1 Basis functions

For the selection of the basis, different sets of functions may be chosen — such as monomials,
or Legendre or Chebyshev polynomials. However, the use of monomials generally results in
higher condition numbers of A as compared to the usage of the Legendre or the Chebyshev
basis. In this contribution, we apply the Legendre basis. In doing so, the set of the basis
functions for the three-dimensional case is composed of the tensor-product of the one-
dimensional Legendre polynomials as

F = {Lu(g)Lv(n)Lw(C)a u,0,w=0,... =pq} ) (4'10)

where p, defines the order of the quadrature. The one-dimensional Legendre polynomials
of order p are obtained employing a recursive formula

(p+ 1) Lpi(§) = Cp+ 1)ELL(E) —pLyp1(§) with p=1,2,... (4.11)

where Lo(§) = 1 and L(§) = £ Consequently, the number of the moment fitting basis
functions for any dimension is given as

m=(p,+1)" | (4.12)

where p, defines the quadrature order and d denotes the dimension of the problem under
consideration.
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4.1.2 Point distribution schemes

In order to simplify the setup of the moment fitting equation system, we follow the approach
suggested by Mousavi and Sukumar [121] and fix the position quadrature points a priori.
In doing so, we transform the nonlinear moment fitting equation system into a linear one
which only has to be solved for the unknown weights. Thereby, we consider two different
point distribution strategies: an adaptive point distribution scheme and a distribution
scheme using the standard Gauss-Legendre points. Both strategies are explained in the
following.

Adaptive point distribution (APD)

In the adaptive point distribution scheme (APD), first presented in [127], we follow the
strategy of distributing the moment fitting points within the physical subdomain Qaphy of
a cut cell by employing a uniform subdivision scheme. Thereby, we ensure that the number
of integration points n is greater or equal to the number of basis function m

n>m=(p,+1)* . (4.13)

Consequently, the moment fitting system turns into a linear square or linear underdeter-
mined system that has to be solved.

The basic idea of the adaptive point distribution is schematically depicted in Fig. 4.2 for
the two-dimensional case. However, its implementation for the three-dimensional case is
straightforward. In the figure, the APD is considered for a quadrature order p, = 3, which
is why at least n = (p,+1)? = 16 points are required. For the distribution of the points, the
cell is then uniformly subdivided into subcells, ensuring that sufficient number of subcells
are completely located in the interior of the physical subdomain Q&PY. For the situation
in the figure, this is true for five subcells. Next, the APD distributes the points within
the interior subcells. In doing so, the same number of points are distributed within each
subcell. Thereby, practical experience has shown that employing a random distribution
scheme on subcell level leads to better condition numbers of the resulting moment fitting
system as compared to uniform distribution schemes. Due to this reason, each subcell
includes an individual distribution scheme — as can be seen from the figure. Moreover, the
number of created points (n = 20) is bigger than the number of basis function (m = 16).

RIS

Figure 4.2: Adaptive point distribution scheme.
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Gauss-Legendre points (GLP)

Although the adaptive point distribution scheme is simple to implement it often results
in ill-conditioning problems of the moment fitting system and, thus, in badly conditioned
quadrature rules. This fact is especially pronounced if the physical subdomain of the
cut cell is relatively small, or in the case where moment fitting quadratures of higher
order are considered. Due to this reason, we choose the position of the standard Gauss-
Legendre points as the second point set, see Fig. 4.3. In doing so, the left-hand side of the
moment fitting system in Eq. (4.9) is independent in terms of the composition of the cells
— even whether the cell is cut or not. As a result, the coefficient matrix A is always the
same and well-conditioned, thus leading to well-conditioned quadratures ensuring a high
accuracy. Moreover, using the Gauss-Legendre points transforms the nonlinear moment
fitting equations into a linear square system and, thus, the relation between the number of
points and the number of basis functions holds n = m. Although applying the position of
the Gauss-Legendre points implies that points are located within the physical as well as in
the fictitious domain, we can show that this approach is well suited considering applications
of the finite cell method to linear problems.

Figure 4.3: Gauss-Legendre points.

4.1.3 Computation of the moments

In order to compute the individual integrals of the right-hand side in Eq. (4.9), also referred
to as moments, different approaches can be applied, see [127, 129]. One possibility is
to perform the computation of the volume integrals by employing adaptive integration
methods based on a subdivision of the cut cells. In doing so, a fine integration mesh can
be used, since the computation of the moments is cheap as compared to the computation
of the stiffness matrix, for instance. Moreover, in simple situations, the computations of
the moment may be also performed symbolically.

Another possibility is to perform the computation of the moments on the surface of the
physical subdomain. To this end, the volume integrals are transformed into surface ones
by applying the divergence theorem. Thus, the right-hand side can be rewritten as

i€ d0n= [ divh(©)don= [ (&) n@drn , (419
Qéphy ﬂéphy Féphy
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where TEPY represents the closed surface of the physical subdomain Q5P . Further, n(€)

denotes the normal of the surface pointing in outward direction and h;(§) defines the anti-
derivatives of the basis function ¢;(&). For the three-dimensional case, the vector of the
anti-derivatives can be computed as

h;(€) =3 [[ws&)dn| . (4.15)
Ie;(8)d¢

Note that, due to the standard matrix notation, we use an upright letter for the vector
containing the individual anti-derivatives. Finally, in order to compute the integrals, we
need a surface discretization. To this end, a rather simple approach is to discretize the
surface using triangles and then to apply a standard Gauss quadrature on each triangle.
Thereby, in order to improve the performance of the surface integration applying a fine
discretization, reduced quadrature rules can be used.

4.1.4 Computation of the weights

After determining the coefficient matrix of the moment fitting equation system and com-
puting the moments, we finally have to solve the resulting linear system for the unknown
weights. In doing so, we have to distinguish between the two different point sets based on
the APD and the GLP.

Applying the APD, in general, we ensure that the number of points exceeds the number
of basis functions (n > m). As a consequence, the number of moment fitting equations is
greater than the number of the unknown weights, so we obtain a linear underdetermined
system. Then, assuming that this system is consistent, there exist an infinite number of
solutions. In order to find an appropriate solution, we apply an optimization problem
based on linear least squares

min ||x||, subjectedto Ax=Db . (4.16)

Summarizing, we find a solution based on the minimum Euclidean norm that solves the
moment fitting equations system. In order to solve the optimization problem in Eq. (4.16),
we employ the open-source linear algebra package LAPACK [131]. Thereby, different rou-
tines can be used — such as DGELSY, which computes the minimized norm solution based
on a complete orthogonal factorization, or DGELSS, which computes the minimized norm
solution based on a singular value decomposition.

Solving the moment fitting equation system using the GLP, on the other hand, is simple.
Here, we just have to solve a linear square system which is well-conditioned for any situation
of the cut cell and any order of the quadrature. Thus, there is always a unique solution
that can be applied using common solvers.

4.1.5 Optimized points and weights

As mentioned at the beginning of this chapter, choosing the position of the moment fitting
points a priori does not lead to optimal quadrature rules for cut cells. In this section,
we therefore aim to provide an approach of how to solve the nonlinear moment fitting
equation system, thus leading to optimized points and weights (OP). To this end, let us
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recall the discussion about optimal quadratures. In Sec. 3.3.1, we showed that Gaussian
quadratures are optimal for the one-dimensional case — in the sense that the integrals of
any polynomial of order p < 2n — 1 can be computed exactly if n points and weights are
used. However, applying the moment fitting based on preselected points commonly leads
to nonoptimal quadrature rules of cut cells. In general, the integrals of polynomials of
order p < n — 1 can be computed exactly if n points are used. Consequently, to increase
the order of the quadrature and, thus, to obtain more optimal points and weights, one has
to solve the nonlinear moment fitting equation system, the number of points is therefore
lower than the number of basis functions (n < m) — which means that we have to solve an
overdetermined system of nonlinear equations. A general approach to solve such a system
is based on an optimization problem that minimizes the Euclidean norm of the residual of
the system

min - [lr (&, € AL (4.17)

&1yenn A An

where the definition of the residual is given as

T

= [ e©a0% - Y eE)n . i=1..m (4.18)
i=1

c,phy
o
or, in standard matrix notation, as

/ 991(5) dQn

" Qs e1(€) - eil&a) | [M
= : - : . : : : (4.19)
T'm j Lrom(g) dQD Wm(gl) e ‘r/ﬂm(gn) )\n
QE})hy

In order to find an approximate solution for the optimization problem in Eq. (4.17),
which defines a nonlinear least squares problem, several well-established iterative methods
exist. In this thesis, we employ the MATLAB function Isqnonlin [132] using the Levenberg-
Marquardt algorithm that, essentially, is based on a combination of the Gauss-Newton
method and the gradient descent method. Another frequently used method is the Sequen-
tial Quadratic Programming.

Before starting to solve the optimization problem, we have to set up a set of n initial
points and weights. Therefore, we first have to estimate the minimal number of points
that is not known a priori. To this end, let us define the lower and upper bound for n.
From the structure of the problem, it is obvious that the lower bound is defined by one.
Further, assuming that there exist a set of n = m distinct points such that the moment
fitting system results into a linear and square system of full rank, the upper bound is then
defined by m — 1 where m denotes the number of the basis functions. Next, in order to
find an estimation for n, we apply a binary search method based on the lower and upper
bound. Having defined a value for n within the predefined bounds, in the next step, we
have to initialize the position of the points. Here, it turns out that a random distribution
within the domain of the parent cell performs more robust in the context of the applied
optimization procedure. Based on the position of the points the corresponding initial
weights are computed by means of linear least squares. Further, the performance of the
optimization method is very sensitive with respect to the initial points — meaning that it
may result in a slow decrease of the residual and, thus, in a high number of iterations.

44

216.73.216.36, am 18.01.2026, 21:46:07. gaschlitzter Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186355188

4.1 Moment fitting approach

Due to this reason, we abort the procedure after a certain number of iterations has been
reached. Finally, the iterative binary search algorithm is performed until the optimization
procedure finds a set of optimized points and weights such that the Euclidean norm of the
residual is zero within machine precision. Consequently, several runs have to be performed
until an optimized moment fitting quadrature is found.

4.1.6 Numerical examples

In this section, we discuss the performance of the proposed moment fitting quadratures.
To this end, we investigate the influence of the different point distribution schemes in
terms of the condition number and the residual of the moment fitting system for different
orders of the quadrature. Further, we study the condition number of the moment fitting
quadratures as well as the accuracy in the numerical integration of polynomial functions.

4.1.6.1 Cell cut by a sphere

The first example is intended to provide a detailed investigation of the presented moment
fitting methods in terms of accuracy and efficiency. To this end, we consider a cell that is
cut by a sphere, see Fig. 4.4. Thereby, the geometry of the cell is described by a regular
hexahedron of the domain

Q=101 . (4.20)
Further, the sphere is defined by a level set function
p@)=(r—2)+W—y) +(z—2)-R (4.21)

for which the geometry parameters are listed in Tab. 4.1. Consequently, the sphere cuts
the cell in such a way that the integration domain is given by an eighth of the sphere.

Figure 4.4: Cell cut by a sphere.
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Table 4.1: Sphere. Geometry parameters.

parameter variable value
x center coordinate Te 0.0
y center coordinate Ye 0.0
z center coordinate Ze 0.0
radius R 1.0

Moment fitting based on APD and GLP

In order to study the performance of the moment fitting quadratures, we start off by
considering the approach based on the two distinct strategies for the predefinition of the
position of the points: the adaptive point distribution scheme (APD) and the Gauss-
Legendre points (GLP). Thereby, in order to obtain exact moment fitting quadratures for
the eighth of the sphere, essentially, two conditions have to be satisfied. The first condition
is linked to the issue that the chosen point distribution strategy has to provide a point
set that results into a well-conditioned system of full rank. Thus, the solvability of the
moment fitting equation system within machine precision can be ensured. The second
condition concerns to the exact computation of the integrals of the moments. In order to
compute these integrals, neither an adaptive integration based on an octree subdivision nor
a surface integration based on a triangulation are exact. Due to this reason, we compute
the integrals of the moments symbolically using Wolfram Mathematica [133].

To study the performance of the point distribution strategies, we start off by investigating
the influence of the different point sets on the condition number & of the coefficient matrix
A. Therefore, we employ the LAPACK routine DGELLSS to solve the moment fitting system
which provides the computation of the singular values. Thus, we compute the condition
number & of the coefficient matrix A based on the following definition

jo= T (4.22)

Omin

where 0y, denotes the maximum and o,,;, the minimum singular value, respectively.

The values of the condition number applying the APD and the GLP are plotted in
Fig. 4.5. Here, we consider the evolution of the condition number x for different orders of
the moment fitting quadratures (p, = 0,...,16) since, in the context of the FCM, we are
interested in the numerical integration of high-order shape functions. From the figure, it
can be seen that the moment fitting based on GLP results in a much better conditioning of
the coefficient matrix as compared to the APD. This fact becomes especially evident when
quadratures of higher order are considered. For p, > 8, we could improve the condition
number by more than 12 orders of magnitude. Moreover, note that applying the GLP yields
the same condition number for any arbitrary topology of Qf by, However, employing the
APD has a strong dependence on the composition of Q&phy and, thus, has a considerable
influence on «, on the other hand. Especially for cases where the integration domain QFP"
is relatively small, the APD results in high condition numbers.

From the results in Fig. 4.5, we can conclude that applying the GLP improves the
solvability of the moment fitting equations system, which is due to the much better con-
ditioning of the coefficient matrix. In order to demonstrate this fact, in the following,
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we study the performance of the different point distribution schemes with respect to the
residual r of the moment fitting equations — where the definition of r is given in Eq. (4.18)
and (4.19), respectively. To this end, we consider the Euclidean norm of the residual ||r[|,
for different quadrature orders (p, = 2,...,16), see Fig. 4.6. If the GLP is applied, the
norm of the residual is close to zero, i.e. within machine precision — as can be seen from
the figure. On the other hand, ||r||, increases when the points provided by the APD are
used. This is especially true for the quadratures of higher order. For p, > 9, we could thus
reduce ||r||, by 4 to 5 orders of magnitude by employing the GLP.
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Figure 4.5: Condition number of the coefficient matrix for different orders of the moment
fitting quadratures.
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Figure 4.6: Euclidean norm of the residual of the moment fitting equation system for different
orders of the quadrature.

Next, we study the conditioning of the generated quadrature rules based on moment
fitting. To this end, the most frequently used measurement to evaluate the quality of a
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quadrature is provided by the sum of the absolute values of the n weights [134]

Ke=_|N| - (4.23)
i=1

In Eq. (4.23), Kk, is also known as the condition number of a quadrature rule. In order to
facilitate the investigation of the quality of the quadratures, we consider &,
Ry=—2_ 424
0= (4.24)
which normalizes , by the volume of the integration domain Q™. In doing so, &, =
1 represents an optimally conditioned quadrature — which implies that all weights are
nonnegative. Consequently, the appearance of negative weights results in higher values
for K, and, thus, in less well-conditioned quadrature rules. Next, in order to study the
influence of the GLP and the APD on the conditioning of moment fitting quadratures,
Fig. 4.7 shows the normalized condition number &, for different orders of p,. As it can
be seen from the figure, the moment fitting quadratures based on the APD results in
high condition numbers. This applies in particular for the quadratures of higher order.
Here, K, deviates by several orders of magnitude from the optimal value, which is one.
The deviations from the optimal condition number can be deduced from the fact that
the quadratures include negative weights. Further, the greater the absolute values of the
negative weights the higher the condition number and, thus, the stronger the deviation
from the optimal value. On the other hand, considering the condition numbers of the
moment fitting quadrature based on the GLP results in much lower values even for the
high order quadratures. Here, K, oscillates between 1 and 1.54, thus resulting in much
better conditioned quadratures. For &, > 1 the quadratures still imply the occurrence of
negative weights, but the absolute value of these weights is much smaller than compared
to the APD.

L e - _®
ap- I h

e Y
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Figure 4.7: Normalized condition number of the moment fitting quadratures for different or-
ders of the quadrature.

Next, we study the accuracy of the two distinct moment fitting approaches by computing
the integrals of polynomial functions. To this end, we consider four different orders of
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the moment fitting quadratures p, = 4,7,11,16. For the integrands, we further choose
polynomials of order p; = 0,...,17. Due to the fact that the moments in Eq. (4.9) are
computed symbolically using Wolfram Mathematica [133], the generated quadratures have
to compute the integrals of the polynomials exactly for all cases where the polynomial
order is less or equal to the quadrature order (p; < p,). In order to capture the accuracy
of the quadratures, we compute the relative error

I — 1,

4.2
T (42

e, =

In Eq. (4.25), I, defines the value of the integral provided by the moment fitting quadrature
and I, represents the ezact value obtained by means of a symbolic integration using
Wolfram Mathematica. Fig. 4.8 and 4.9 illustrate the relative error in integration applying
the APD and the GLP, respectively. Considering the results, we can see that within the
order of the quadrature the relative error in integration fluctuates around a certain error
level p, < p;. Further, a large jump for e, arises if the polynomial order of the integrand
exceeds the quadrature order (p; > p,). Moreover, if the APD is applied, the error level
increases with increasing order of the quadrature. While e, for p, = 4 is close to zero,
it increases by orders of magnitude for p, = 7,11,16. This behavior originates from the
high condition number of the coefficient matrix, which adversely affects the solvability of
the moment fitting system and, thus, results in weights of lower accuracy. If the GLP is
applied, on the other hand, the error in integration remains zero within machine precision.
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Figure 4.8: Relative error in integrating polynomials applying the moment fitting method based
on the APD.

Finally, the total number of integration points ng is plotted in Fig. 4.10 for the different
orders of the moment fitting quadratures. As it can be seen from the figure, the difference
in ng for the APD and the GLP is not high. Moreover, to give an impression of the position
of the integration points provided by the distinct distribution strategies, Fig. 4.11a and
4.11b show the points based on the APD and the GLP using a quadrature order p, = 4,
respectively.
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Figure 4.9: Relative error in integrating polynomials applying the moment fitting method based

on the GLP.
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Figure 4.10: Total number of integration points applying different order of the moment fitting
quadrature.
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ey

(a) (b)

Figure 4.11: Moment fitting points for a quadrature of order p, = 4. (a) Employing the
adaptive point distribution (APD). (b) Based on the position of Gauss-Legendre
points (GLP).

Moment fitting based on OP

Next, we investigate the performance of the moment fitting approach based on the opti-
mization problem given in Sec. 4.1.5. For this purpose, we consider quadratures of order
Dg = 2,...,7 since the optimization procedure becomes severely time-consuming for higher
orders. In doing so, we compare the results of the optimized points (OP) with the results
obtained by the GLP. To this end, we start off by studying the Euclidean norm of the
residual [|r||,, which is depicted in Fig. 4.12. Here, it can be seen that the values of [|r[|,
computed by the optimization procedure are slightly higher than those obtained by the
GLP. However, it can be seen from the figure that the optimization procedure solves the
moment fitting equations with a high level of precision. As the next quantity, we measure
the quality of the optimized weights by considering the normalized condition number &,
— for which the definition of &, is given in Eq. (4.24). The values of &, are plotted in
Fig. 4.13. A comparison between the results of the OP and those of the GLP shows that
the GLP results in better conditioned quadrature rules. Here, applying the moment fitting
based on the OP, &, increases with increasing order of the quadratures — while &, oscillates
between 1 and 1.54 if the GLP is used. From the results, we can therefore conclude that
the moment fitting based on the OP leads to negative weights with a higher absolute value
than the negative weights of the GLP.

Next, in Fig. 4.14 we study the accuracy of the OP by integrating polynomial functions
of different order p; by regarding the relative error e, defined in Eq. (4.25). Therefore, we
consider the quadrature rules of order p, = 4,5,6,7. As it can be seen from the figure,
the OP results in quadratures with a high accuracy. Here, the relative error e, is zero
within machine precision for all polynomial integrands having a order smaller or less than
the order of the quadrature (p; < p,). Further, a large jump in e, arises if the polynomial
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order exceeds the quadrature order (p; > p,).

Finally, Fig. 4.15 shows the number of the integration points n, for the different moment
fitting quadratures. Here, it can be seen that the moment fitting based on the OP results
in a lower number of integration points as compared to the GLP. However, the difference
in the number of integration points is not high. Thus, considering the expenditure of time
to solve the optimization problem, the benefit regarding the number of points does not
pay off.

Finally, in order to provide an impression of the position of the points, Fig. 4.16 shows
the OP points for a quadrature of order p, = 4. Here, Fig. 4.16a shows the initial location
of the points and Fig. 4.16b depicts the final position determined by the optimization
procedure.
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Figure 4.12: Euclidean norm of the residual of the moment fitting equation system for different
orders of the quadrature.
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Figure 4.13: Normalized condition number of the moment fitting quadratures for different
orders of the quadrature.
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Figure 4.14: Relative error in integrating polynomials applying the moment fitting method
based on optimized points.
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Figure 4.15: Total number of integration points applying different orders of the moment fitting
quadrature.
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4

(a) (b)

Figure 4.16: Moment fitting points for a quadrature of order p, = 4 based on the optimization
procedure. (a) Initial points based on a random distribution. (b) Optimized
points.

4.1.6.2 Recovery of the Gauss-Legendre quadrature

In the second example, we study the influence of the moment fitting based on the GLP for
the special case where the fictitious domain vanishes. Consequently, this means that the
integration domain coincides with the domain of the cell, see Fig. 4.17 depicting a noncut
finite cell with 125 Gauss-Legendre points. Since the integration domain is described by a
regular hexahedron, the computation of the moments can be performed exactly applying
standard Gauss-Legendre quadrature rules. Further, since standard Gauss-Legendre points
are chosen for the position of the moment fitting points, this example is intended to study
the deviation in the weights obtained by the moment fitting with the standard Gauss-
Legendre weights. In doing so, we compute the relative error e, in the weights by the

following definition
1 |2 GL _ , MF\ 2
Cw=— Z(i“’l = ) : (4.26)

GL
Mg \ =1 wy

Here, wS" denotes the standard Gauss-Legendre weight at point x; and wMF is the corre-
sponding moment fitting weight at point x;. Fig. 4.18 shows the relative error in weights
considering different orders of the moment fitting quadratures p, = 0,1,...,16. As it
can be seen from the results, the values of the moment fitting weights are almost the
same as those of the standard Gauss-Legendre weights. Consequently, this implies that
the resulting moment fitting quadratures have the same accuracy as the standard Gauss-
Legendre quadrature rules. This means that, for the one-dimensional case, the moment
fitting quadratures are able to integrate any polynomial integrand within order 2n, —1 ex-
actly. Moreover, a mathematical explanation showing that moment fitting weights exactly
result in the Gauss-Legendre weights — for the special case of a noncut integration domain
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— is provided in Sec. 4.2.1.

Figure 4.17: Cell by an infinitesimal fictitious domain including 125 Gauss-Legendre points.
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Figure 4.18: Relative error in weights applying different orders of the moment fitting quadra-
tures.

4.2 Adaptive moment fitting

The moment fitting approach based on the GLP shows an excellent performance for linear
applications in structural mechanics, see [128]. Considering nonlinear applications, how-
ever, there exist only a few examples in which the moment fitting performs as robust as the
adaptive Gaussian quadrature scheme — where the numerical integration is performed on
a quadtree (2D) or an octree (3D) mesh. In [33], it was shown that the Newton-Raphson
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method fails more often if the the moment fitting is applied. This reduction in the ro-
bustness of the Newton-Raphson procedure for nonlinear applications appears especially
in cases where cut cells occur that include a small volume fraction of the physical domain.
In this section, we present an adaptive integration scheme based on moment fitting in order
to overcome the problem. In the following, this moment fitting approach is referred to as
adaptive moment fitting. Further, to reduce the overhead in the generation of the moment
fitting quadratures, in [31, 33], we introduced an approach that avoids the necessity to
solve the moment fitting equations. This moment fitting approach is explained in more
detail in Sec. 4.2.1.

In order to explain the basic idea of the adaptive moment fitting method, let us consider
the situation depicted in Fig. 4.19 — which describes the same problem depicted in Fig. 4.1.
In doing so, Fig. 4.19a shows the quadrature points of the adaptive moment fitting and
Fig. 4.19b illustrates the quadrature points of the adaptive Gaussian method, respectively.
For both quadrature methods we assume a geometry resolution based on a quadtree using
a refinement level of k& = 4. Here, however, as can be seen from Fig. 4.19a, the quadtree
differs from the quadtree in Fig. 4.19b. While cut subcells occur only on the finest tree
depth level & = 4 when using the adaptive Gaussian method, the adaptive moment fitting
leads to cut subcells also on coarser levels & < 4. Further, the maximum tree depth level
of the adaptive moment fitting is limited by 3 levels of refinement. Consequently, the
quadtree of the adaptive moment fitting is based on another subdivision scheme than the
standard quadtree. In order to distinguish between both quadtrees, we denote the tree
depth level of the adaptive moment fitting as k, and the tree depth level of the standard
quadtree as k, respectively.

In the following, we explain the basic procedure of the adaptive moment fitting which

s unm|. -

(a) (b)

Figure 4.19: Quadrature points of adaptive integration methods with p, = 3. (a) Adaptive
moment fitting method with k, = 1,2,3. (b) Adaptive Gaussian method based
on a quadtree using a refinement level k = 4.
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is based on a criterion measuring the volume fraction of the integration domain. To this
end, let us again consider the situation depicted in Fig. 4.19a. At first, we approximate
the volume of the integration (or physical) domain Q"™ of the cell. To this end, we
employ an adaptive Gaussian integration using a quadtree with a refinement level k& = 2
and a quadrature order of p, = 5 — where points within the fictitious domain are neglected.
Next, we check whether the volume fraction of the cell (k, = 0) is greater or equal than a
predefined threshold. If this is true, we apply the moment fitting on cell level — otherwise,
we subdivide the cell into subcells, as depicted in the figure. Then, we check the volume
fraction of the integration domain on each cut subcell on level k, = 1. In doing so, cut
subcells with a volume fraction smaller than a given threshold are further subdivided.
Otherwise, we apply the moment fitting — as it is the case for the subcell on the upper
left corner. This subdivision scheme is repeated until there is no remaining subcell with a
smaller volume fraction than the predefined threshold, or until we reach the maximum tree
depth level k, = 3. Finally, for all cut cells that are left on level k, = 3 we apply the moment
fitting, as sketched in the figure. Moreover, on noncut subcells, we perform the numerical
integration using standard Gaussian quadrature rules. In order to distinguish between the
points provided by the two different quadrature rules, moment fitting quadrature points
are marked by red dots and standard Gaussian quadrature points are denoted by black
dots. Moreover, we employ different threshold values in order to decide whether a cell or
a subcell has to be subdivided further. We choose a threshold of 0.85 for tree depth level
k, = 0, and we use 0.7 as the threshold for the volume fraction for k, = 1,2. These values
are determined based on numerical experiments. Note that, in order to approximate the
integration (or physical) domain of cut subcells, we again employ an adaptive Gaussian
integration scheme with & = 2 and p, = 5. Further, considering the performance of the
different quadrature methods, we can see that the adaptive moment fitting leads to more
efficient quadratures as compared to the adaptive Gaussian scheme. This is due to the
fact that the adaptive moment fitting results in a lower number of subcells and, thus, in a
lower number of integration points — which is in particular the case for the subcell on the
top left where the moment fitting is applied on tree depth level k, = 1, for instance.

4.2.1 Moment fitting without solving an equation system

In this section, we present a moment fitting approach that circumvents having to solve
an equation system which is, in general, the most expensive part in the generation of the
moment fitting quadratures of higher order. The main idea of this approach, which was
first introduced in [33], is based on replacing the Legendre basis given in Eq. (4.10) by an
equivalent basis composed of Lagrange polynomials. Thereby, the Lagrange polynomials
are constructed using the standard Gauss-Legendre points (GLP) as the supporting points.

In the following, the usage of the Lagrange basis in combination with the Gauss-Legendre
points (GLP) as the preselected position of the moment fitting points is described in more
detail. For this purpose, the approach is explained on cell level (k, = 0) with the integration
(or physical) domain QEP™ and for the one-dimensional case (d = 1) in order to simplify
the notation. Its extension to the two- and three-dimensional case (d = 2 and d = 3),
however, as well as its application on subcell level (k, > 0) is straightforward. In doing so,
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the corresponding basis functions for the 1D case are defined as

) Pat1 € — gL
0 (&) =1;(6) with 1;(&) =[] zor—2ar
R

(4.27)

where [; (§) are the p, + 1 distinct Lagrange polynomials and £]GL as well as 7% denote
the position of the p, 4 1 distinct Gauss-Legendre points. Inserting the Lagrange basis in
Eq. (4.6) and using w(¢) = 1, the moment fitting equations then read

pqt1
Y L(E) A= [ L@@ with j=1..p+1 (4.28)
i=1

c.phy
5

Since we use the Gauss-Legendre points as the supporting points of the Lagrange poly-
nomials, we can take advantage of the Kronecker delta property, so that the coefficient
matrix A results in the identity matrix

Aji=1; (65%) =650 (4.29)

Consequently, the corresponding p, + 1 moment fitting weights A; may be obtained directly
by computing the integrals of the individual Lagrange polynomials as

N AGL (4.30)

c,phy
25

or in standard matrix notation as

1 (€) dg
A Qg
= : . (4.31)
Apg+1 I lpir (§) d€
Qaphy

Thus, the moment fitting approach avoids the necessity to solve a linear equation system,
which allows to reduce the overhead in the generation of the quadrature rules significantly
— since the solution of the system of equations, generally, represents the most expensive
part.

For the special case where the cell is not cut, note that Eq. (4.30) reads

/\,;:/l,; (€) de | (4.32)

which is exactly the same expression as in Eq. (3.42) used for the computation of the
Gauss-Legendre weights on interval (—1,1) with the positive weight function w(¢) = 1.
Consequently, in this particular case, the moment fitting quadrature achieves the optimal
quadrature order p, = 2n, — 1. Thus, the proposed moment fitting method can be inter-
preted as a general form of the Gaussian quadrature where the integration domain within
the interval (—1, 1) may take any arbitrary shape. For cut cells, however, the orthogonality
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property of the Legendre polynomials does not hold anymore and, thus, the quadrature
order of the moment fitting is generally limited by p, = n, — 1.

As mentioned before, extending the proposed moment fitting approach to the multi-
dimensional case is simple. For this purpose, the basis functions ¢; (§) are constructed
applying a tensor product of the p,+1 one-dimensional Lagrange polynomials, and the cor-
responding points &; are obtained by the tensor product grid of the p, + 1 one-dimensional
Gauss-Legendre points. For the 3D case (d = 3), the basis thus is given as

F= {lu(f)lv(n)lw(c)v w,v,w=1,... s Pg + 1} ) (433)

and the position of the moment fitting points as

X:{(SSLJ]SL, SL), u,v,urzl,...,pq+1} . (4.34)

4.2.2 Computation of the moment fitting weights

Using the aforementioned moment fitting approach, the final step missing is the computa-
tion of the moment fitting weights. In this contribution, we employ an adaptive Gaussian
scheme based on a quadtree (2D) or an octree subdivision (3D) in order to perform the
numerical integration of the moments — which corresponds to the weights, see Eq. (4.30).
Consequently, an individual integration mesh is utilized for each cut subcell. Thereby, the
tree depth level is chosen such that the total refinement level never exceeds a predefined
resolution.

In the following, the computation of the moment fitting weights are explained considering
the subcell on the upper right corner of the problem depicted in Fig. 4.19a. Here, the level
of subcell is defined by k, = 2 while the predefined resolution of the quadtree is given by
4 levels of refinement, see Fig. 4.19b. Then, for the computation of the moment fitting
weights, we employ an adaptive Gaussian quadrature using a quadtree with 2 refinement
levels. Consequently, the total refinement level corresponds to the predefined resolution (4
refinement levels). Further, since the maximal polynomial order of the basis functions is
given by p = 3, we compute the moments applying a standard Gaussian quadrature using
4 Gauss-Legendre quadrature points on each subcell — where points within the fictitious
domain are neglected. The moment fitting quadrature and the related adaptive Gaussian
quadrature used for the computation of the weights are illustrated in Fig. 4.20a and 4.20b,
respectively.

59

216.73.216.36, am 18.01.2026, 21:46:07. gaschlitzter Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186355188

4 Moment fitting quadratures

.X/.——.\

(a) (b)

Figure 4.20: Computation of the moment fitting weights of a subcell with p, = 3. (a)
Moment fitting points of the subcell. (b) Corresponding quadrature points of
the adaptive Gaussian methods used for the computation of the moment fitting
weights.

4.3 Applications to the finite cell method

In this section, we employ the presented moment fitting methods for various applications
of the finite cell method considering three-dimensional problems. Thereby, we study the
accuracy and efficiency as well as the robustness of the quadratures and compare the perfor-
mance of the different moment fitting approaches to the adaptive Gaussian method based
on an octree subdivision scheme — which is commonly applied to perform the numerical
integration in the FCM.

4.3.1 Hydrostatic sphere

In the first example, we consider a sphere under hydrostatic stress state [20, 135]. The
problem under investigation is depicted in Fig. 4.21a. For the analysis, the sphere is
loaded on its surface by a uniform traction #,, = 1.0 MPa acting in normal direction, and
the material behavior is assumed to be isotropic and linear elastic — where the Young’s
modulus is given as £ = 1.0 MPa and Poisson’s ratio is ¥ = 0.3. The geometry of the
sphere is defined by the following level set function

6@ = (@~ 2 + (y )+ (z — 2)° — B (4.35)

with radius R = 5.0mm and fixed center coordinates z. = y. = z. = 0.0mm. Thanks to
the simple setup of the problem, the analytical solution is defined by a linear displacement
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field
Cz

u=|Cy| with C= L (I—2v) . (4.36)
C E
z

For the FCM analysis, we only have to consider one eighth of the sphere, which is due
to the symmetry of the problem. Fig. 4.21b shows the FCM model and the discretization.
Here, one finite cell is used for the discretization that is subjected to symmetry boundary
conditions — fixing the back face of the cell in a-direction, the left face in y-direction, and
the bottom face z-direction. Note that for the FCM only, in contrast to the standard
finite element method, one finite cell with an ansatz order p = 1 is sufficient to solve
the problem, provided that the numerical integration is carried out accurately enough.
Further, in order to account for the inhomogeneous Neumann boundary conditions acting
on the curved surface of the eighth of the sphere, we use the same procedure as proposed
in [20]. In doing so, we employ a parametric description based on a triangulation. Then,
the computation of the load vector is carried out applying a numerical integration on every
triangle. We use the triangulation depicted in Fig. 4.22a by only taking the triangles of
the curved surface into account.

(b)

Figure 4.21: Sphere under hydrostatic stress. Geometry and boundary conditions.

For the numerical integration of the stiffness matrix, we employ the presented moment
fitting methods and compare their performance with the adaptive Gaussian integration,
which is usually used within the context of the FCM. In order to apply the moment
fitting a geometric parameterization of the physical domain is needed to compute the
moments. Here, we compute the moments by employing a triangulated surface mesh using
525, 718 triangles. Fig. 4.22a shows the utilized surface mesh, which is composed of a coarse
triangulation for the planar faces and fine triangulation to capture the curved surface of
the sphere. The triangular mesh results in a relative error in volume of about 1076, For the
adaptive Gaussian integration based on an octree subdivision, we apply a quadrature order
of p; = 2 on each subcell. Further, in order to achieve the same error level as provided by
the triangulation, we study the relative error in volume for different refinement levels of k —
see Fig. 4.23. Here, each black dot represents a refinement level k starting from k& = 1. As
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it can be seen from the figure, employing an octree with £ = 8 refinement levels results in
the same error level where the total number of integration points is 2,061, 424. Fig. 4.22b
shows the corresponding subcell mesh of the octree subdivision based on 8 refinements.

(a) (b)

Figure 4.22: Geometry approximation of the eighth of the sphere used for the numerical in-
tegration. (a) Triangulated surface using 525, 718 triangles. (b) Octree mesh
with 8 refinement levels.

In order to demonstrate the accuracy of the different quadratures, we study the error in
von Mises stress o,;. Due to the setup of the problem, the sphere experiences a hydrostatic
stress state. Consequently, the deviatoric part of the Cauchy stress o vanishes. As a result,
the von Mises stress o, vanishes as well. Fig. 4.24a and 4.24b show the contour plots of
oy applying the different moment fitting methods and the adaptive Gaussian integration,
respectively. In order to distinguish the different moment fitting approaches from each
other, APD denotes the moment fitting employing the adaptive point distribution scheme,
GLP is based on the standard Gauss-Legendre points, and OP represents the optimized
points and weights. As it can be seen from the figures, the moment fitting quadratures
lead to more accurate results in the von Mises stress as compared to the adaptive Gaussian
quadrature.

In order to study the accuracy of the different integration methods in more detail, we
next consider the relative error in the von Mises stress

OuvM
EoM = |77 (437)
123
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Figure 4.23: Relative error in volume, applying the adaptive Gaussian integration based on
an octree subdivision considering different refinement levels k& and a quadrature
order of p, =2

along a diagonal cut line of the cell. The definition of the cutline is given as

R
r=y=z=r with 0.0mm<r< 75 (4.38)
The values of the relative error in the von Mises stress are plotted in Fig. 4.25. The figure
shows that the error obtained by the moment fitting integration methods is almost zero,
reaching a maximum error level of about 107'2. The error achieved by the adaptive Gaus-
sian integration, on the other hand, is higher by several orders of magnitude. Consequently,
the moment fitting provides more accurate results.

To demonstrate the efficiency of the integration methods, let us take a look at the total
number of integration points which are listed in Tab. 4.2. From the table, we can see
that the moment fitting methods allows to reduce the number of integration points by 5
orders of magnitude, thus resulting in much more efficient quadrature rules. Moreover,
the moment fitting based on optimized points and weights allows to further reduce the
number of points. In order to provide a figurative imagination, the points of the different
integration methods are illustrated in Fig. 4.26.

Table 4.2: Number of integration points

oty or ,,OT APD GLP OP
ansatz order p ng ny n, ng
1 2,061,424 27 27 8
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Figure 4.24: Contour plots of the von Mises stress. (@) Moment fitting for the triangulated
surface mesh using APD, GLP, and OP. (b) Adaptive Gaussian integration using
an octree mesh based on 8 refinement levels.
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Figure 4.25: Relative error in the von Mises stress along the diagonal cutline.
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(c) (d)

Figure 4.26: Integration points of the different quadratures. (a) Moment fitting using APD.
(b) Moment fitting using GLP. (c) Moment fitting using OP. (d) Adaptive
Gaussian integration using an octree mesh based on 8 refinement levels.
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4.3.2 Porous material

In the next example, we study the performance and robustness of the moment fitting
quadratures considering a more complex problem. To this end, we consider a porous
material [127, 129, 136]. Fig. 4.27 shows the geometry of the problem under investigation.
Here, we consider a cube including 27 ellipsoidal holes. The cube is described by a size of
10 x 10 x 10mm?® and the ellipsoidal holes are randomly distributed in the interior. For the
investigation, we consider two cases. In the first test case, we employ an isotropic linear
elastic material model, and an elastoplastic material behavior considering small strains is
applied in the second test case.

Figure 4.27: Porous material.

4.3.2.1 Linear elasticity

Fig. 4.28a shows the FCM model and the discretization of the first test case. Here, we
employ a Cartesian grid using 512 finite cells of which 175 are intersected by the pores.
For the material behavior of the porous domain, a linear elastic and isotropic material
with Young’s modulus £ = 5.0 GPa and Poisson’s ratio v = 0.3 is assumed. Further, the
domain is subjected to symmetry boundary conditions — fixing the back face of the cube
in z-direction, the right face in y-direction, and the bottom face in z-direction. A uniform
pressure of £, = 100.0 MPa is applied at the top surface of the cube, acting in negative
z-direction.

For the numerical integration of the stiffness matrix, we employ the moment fitting and
the adaptive Gaussian integration using an octree with & = 4 refinement levels. Fig. 4.28b
shows the corresponding octree mesh for a cut through the porous domain. The compu-
tation of the moments is carried out using the same adaptive Gaussian integration. Then,
provided that the moment fitting weights can be computed with sufficient precision, both
quadratures achieve the same accuracy.

Next, in order to investigate the performance of the various integration methods, we
study the relative error in strain energy considering different orders of the ansatz. The
reference value 1.065820653 J of the strain energy is obtained from an overkill solution.
Fig. 4.29 shows the results of the various integration methods. Here, the error is plotted
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t

N

(a) (b)

Figure 4.28: Porous material. (@) FCM model and discretization. (@) Octree mesh with 4
refinement levels.

regarding the number of degrees of freedom in a double logarithmic diagram. As it can be
seen from the figure, the results of the moment fitting methods and the adaptive Gaussian
scheme are in good agreement. However, the moment fitting based on the optimized
points and weights (OP) is only studied for p = 1,...,4. This is because the optimization
procedure becomes more and more expensive with increasing order of the ansatz. Further,
the moment fitting based on the APD is only studied for p = 1,...,8. This is due to the
fact that for cut cells including a small physical domain the points provided by the APD
results in a bad condition number of the coefficient matrix, which is why the system cannot
be solved with sufficient accuracy anymore. Consequently, the moment fitting based on
the GLP is the preferable choice. Moreover, note that the moment fitting weights can
be computed directly if the GLP is used together with the Lagrange basis. Thus, we
circumvent having to solve the moment fitting equation system.

Finally, we investigate the efficiency of the different integration methods. To this end,
the total number of quadrature points is plotted in Fig. 4.30. Here, it can be seen that the
moment fitting allows to reduce the number of points by one order of magnitude.
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Figure 4.29: Relative error in strain energy applying different orders of the ansatz.
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Figure 4.30: Total number of integration points applying different orders of the ansatz.
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4.3.2.2 Small strain elastoplasticity

In the second test case, we study the performance of the moment fitting considering a
nonlinear material behavior. The FCM model and the discretization depicted in Fig. 4.31a.
For the spatial discretization, we again employ the Cartesian grid utilizing 512 finite cells of
which 175 are cut. Concerning the material behavior, we assume an elastoplastic material
model based on the .J; flow theory for small strains with nonlinear isotropic hardening. A
brief description of the material model is provided in Sec. 2.3.3. The elastoplastic material
parameters are listed in Tab. 4.3. For the boundary conditions, we fix the back face of
the cube in z-direction, the right face in y-direction, and the bottom face in z-direction.
Further, a prescribed displacement u, = 0.5 mm is applied on the top surface of the cube,
acting in positive z-direction.

Uy

(a) (b)

Figure 4.31: Porous material. (@) FCM model and discretization. (@) Octree mesh with 3
refinement levels.

Table 4.3: Elastoplastic material parameters.

parameter variable value unit
bulk modulus K 164.206 GPa
shear modulus I 80.194 GPa
initial yield strength 0o 450.0 MPa
saturation strength 0o 715.0 MPa
linear hardening parameter h 129.24 MPa
hardening exponent w 16.93 -

For the computation of the stiffness matrix, we employ the moment fitting approach
based on the GLP and the Lagrange basis as well as the adaptive Gaussian integration.
Thereby, we utilize an octree with £ = 3 refinement levels in order to reduce the compu-
tational effort of the adaptive Gaussian scheme. Fig. 4.31 shows the corresponding octree
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mesh for a cut through the porous domain. For the computation of the moments, we use
the same adaptive Gaussian integration. Considering the efficiency of both quadrature
methods, Fig. 4.32 shows the total number of integration points applying different orders
p = 3,...,8 of the ansatz quadratures. As it can be seen from the figure, the moment
fitting allows to reduce the number of points by a factor of about 10 for each order of the
ansatz. Moreover, note that, in contrast to the adaptive Gaussian scheme, the number of
the moment fitting points is maintained with increasing refinement level of the octree.

108
:tn
1]
c 7
5 10 s
g VR
8 LoeexT T
® - -%T
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810 . Y S
= P -
° 5 _e—"
ém &
2 adaptive Gaussian - x- -
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104 A ]
3 4 5 6 7 8

ansatz order p

Figure 4.32: Total number of integration points applying different orders of the ansatz.

The following investigation addresses the aspect of choosing the material model for the
moment fitting points that are located within the fictitious domain. For this, we consider
two different versions of the moment fitting. In the first version, we assume exactly the
same elastoplastic material model that is utilized for the points within the physical domain.
In the second version, we simply assume a linear elastic material behavior for the moment
fitting points in the fictitious domain. To this end, however, we take the same material
model and assume an infinite yield stress.

Fig. 4.33 shows the load-displacement curves applying an ansatz of p = 8. As it can
be inferred from the figure, the moment fitting of the first version (without asterisk) —
assuming the same material model for the physical and the fictitious points — shows a
good agreement with the results obtained by the adaptive Gaussian scheme. However, the
results of the second moment fitting version (with asterisk) — assuming a simple linear
elastic material behavior for the moment fitting points within the fictitious domain —
deviate from the load values of the adaptive Gaussian scheme after plastic deformation
arises.

Next, we investigate the effect of the different moment fitting versions on the stress
behavior. For this, we consider the von Mises stress o,); of the final displacement u, =
0.5mm along a diagonal cutline through the cube. In doing so, the definition of the cutline
is given as

r=y=z=r with Omm<r <I10mm . (4.39)

Fig. 4.34 shows the von Mises stress of the different integration methods. In the figure,
the physical domain is highlighted by the cyan boxes and the fictitious one by the white
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Figure 4.33: Load-displacement curves applying an ansatz of order p = 8.

boxes. It can be seen that the results of the first moment fitting version (without asterisk),
assuming the same material behavior for all moment fitting points, are in a good agree-
ment with the results obtained by the adaptive Gaussian scheme. Moreover, the results of
the second moment versions again lead to less accurate results. Consequently, the inves-
tigations confirm that it is preferable to assume the same material model of the physical
domain for the moment fitting points which are located within the fictitious domain.
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Figure 4.34: The von Mises stress o, along a diagonal cutline for u, = 0.5mm and an
ansatz of order p = 8.

Finally, the contour plots of the von Mises stress o,y and the equivalent plastic strain
a for u, = 0.5mm and an ansatz order p = 8 are illustrated in Fig. 4.35a and 4.35b,
respectively. Here, it can be seen that the applied load results in a plastic zone that
spreads out over the entire domain where the maximum values of the von Mises stress are
located within the vicinity of the pores.
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Figure 4.35: Contour plots of the porous material for 4, = 0.5mm and an ansatz of order
p = 8. (a) The von Mises stress o,,;. (@) The equivalent plastic strain .

4.3.3 Cube with a cylindrical hole

In the previous example, the moment fitting shows the same robustness behavior for non-
linear problems as the adaptive Gaussian scheme. However, this is not generally the case.
To this end, the following example serves to point out the necessity of an adaptive moment
fitting scheme. We consider a simple problem: a cube that is cut by a cylindrical hole.
The size of the cube is given as 10 x 10 x 10mm?®, and the cylindrical hole is defined by
the level set function

¢(@)=(y—y)" +(z—2) = R* . (4.40)

The center coordinates and the radius of the cylinder read
Yo =100mm , 2z, =100mm , and R=9.0mm . (4.41)

Fig. 4.36a shows the FCM model and the discretization. Here, we employ one finite cell.
Further, the cube is subjected to symmetry boundary conditions: fixing the back face of
the cube in z-direction, the left face in y-direction, and the bottom face in z-direction.
On the top surface, we apply a prescribed displacement of u, = 0.5 mm acting in positive
z-direction. For the material behavior, we apply an elastoplastic material model based on
the Jy flow theory for small strains, see Sec. 2.3.3. The elastoplastic material parameters
are listed in Tab. 4.3.

For the numerical integration of the stiffness matrix, we apply the moment fitting and the
adaptive moment fitting using the approach based on the GLP and Lagrange polynomials.
In doing so, we study the performance of the two moment fitting schemes and compare
it with the performance of the adaptive Gaussian integration. Further, for the resolution
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4.3 Applications to the finite cell method

of the physical domain, we utilize an octree mesh based on k = 5 refinement levels. This
octree mesh is also the starting point for the computation of the moments in order to
achieve quadratures of the same accuracy. The subcell mesh of the corresponding octree
is illustrated in Fig. 4.36b.

Uz

(a) (b)

Figure 4.36: Cube with a cylindrical hole. (@) FCM model and discretization. (a) Octree
mesh with 5 refinement levels.

Next, we study the robustness of the different integration methods. To this end, let us
take a look at Fig. 4.37 where the load-displacement curves are plotted applying an ansatz
of order p = 8. As it can be inferred from the figure, the moment fitting method performs
less robust. Here, we have to use @ = 1077 with parameter ¢ = 2 in order to increase
the robustness of the FCM analysis and, thus, to reach the final load step. However,
the adaptive moment fitting as well as the adaptive Gaussian integration show a much
better behavior. Here, a parameter ¢ = 12 is sufficient to achieve the final load step. The
difference in the « value has an effect on the results of the analyses. As it can be seen
from the figure, the moment fitting leads to higher load values — which is due to the fact
that the higher o value increases the stiffness of the cut cell significantly.

Next, we study the von Mises stress o,); along a diagonal cutline of the final load step.
The definition of the cutline is given as

r=y=z=r with Omm<r <10mm . (4.42)

Fig. 4.38 shows the values of the von Mises stress. Thereby, the cyan boxes represent
the physical domain and the white box characterizes the fictitious one. Considering the
transition from the fictitious to the physical domain on the right side of the figure, it can
be seen the results of the moment fitting applying a high o = 1072 value shows a notable
difference in the von Mises stress while the values obtained by the adaptive moment fitting
and the adaptive Gaussian integration are in excellent agreement.

In order to study the efficiency of the different integration methods, let us have a look at
Fig. 4.39. Here, the total number of the integration points n, is plotted applying various
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load F, (kN)
o = N W H OO N OO O

adaptive Gaussian, p=8, k=5, g=12 —%— |
moment fitting, p=8, k=5, g=2 - &- - ]
adaptive moment fitting, p=8, k=5, g=12 -- & --

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 0.5
displacement u, (mm)

Figure 4.37: Load-displacement curves applying an ansatz of order p = 8.
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Figure 4.38: The von Mises stress o, along a diagonal cutline for @, = 0.5mm and an
ansatz of order p = 8.
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4.3 Applications to the finite cell method

orders of the ansatz p = 1,...,8. Thereby, we consider two different resolutions of the
octree k = 5,6 in order to resolve for the physical domain. From the figure, it can be seen
that the number of the points applying the moment fitting as well as the adaptive moment
fitting does not increase with increasing tree depth level k of the octree, since the octree
mesh is only used to compute the moment fitting weights.

-
o
N

-
- IF
> __.|g--- {1,
2 //
g
c
Qo
© A—
£ 107 e
5 %" adaptive Gaussian, k=5 —%—
5 102 b adaptive Gaussian, k=6 - - -
o . moment fitting, k=5 —x—
£ 10! b moment fitting, k=6 ]
c adaptive moment fitting, k=5 —%—
109 ‘ _ adaptive moment fitting, k=6 - - -
1 2 3 4 5 6 7 8

ansatz order p

Figure 4.39: Total number of integration points applying different ansatz orders p.

Consequently, considering the performance of the different integration methods in terms
of robustness, accuracy, and efficiency, we can conclude that the adaptive moment fitting
is the preferred numerical integration method for nonlinear applications of the FCM.

4.3.4 Thick-walled plate with a circular hole

In the last example, we study the performance of the adaptive moment fitting investigating
a square thick-walled plate with a circular hole that was also defined as a benchmark in
[80]. In the context of the FCM, this problem has been studied in more detail by Abedian
et al. in [28, 29].

The FCM model and the discretization are depicted in Fig. 4.40. Taking advantage of
the symmetry of the problem, only one eighth has to be considered. The length of the
square plate is given as a = 100.0 mm and it has a thickness of ¢ = 10.0 mm. The circular
inclusion is defined by the level set function

o(@) = (r— 2+ (y— ) — B> (4.43)

where the radius is R = 10.0mm and the center coordinates are given as x. = 100.0 mm
and y, = 0.0mm. Further, the plate is subjected to symmetry boundary conditions by
fixing the back face of the plate in z-direction, the right face in z-direction, and the bottom
face in y-direction. A uniform pressure load ¢, = 100.0 MPa is applied to the top face of the
plate, acting in negative y-direction. For the analysis the pressure is monotonously raised
up to a load factor of A = 4.15 using 61 load steps. Further, for the spatial discretization,
we employ a structured mesh using 399 finite cells of which 3 are cut by the physical
boundary, see Fig. 4.40.
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Y
%ﬂc K
I a |

z F 1

Figure 4.40: Plate with a circular hole. Geometry and boundary conditions.

For the numerical integration of the stiffness matrix, we employ the adaptive moment
fitting as well as the adaptive Gaussian scheme — since the moment fitting performs less
robust, as demonstrated in the previous example. Both quadratures are based on an octree
resolution using k& = 5 refinement levels. Further, to increase the robustness of the FCM
analysis, we use v = 1079 where the parameter is chosen as g = 5.

At first, we study the efficiency of both integration methods. For this, the total number
of the integration points is plotted in Fig. 4.41 applying various ansatz orders p = 3,...,8.
From the figure, we can see that the adaptive moment fitting allows to reduce the number
of integration points by approximately one order of magnitude.

107
>
® o .-|
£ -\
] -8~
210° -
2 e _A
g - A
E i e
£ 5 -
= —
° 10 s
3 A/'/
E
c adaptive Gaussian, k=5 - - -
4 adaptive moment fitting, k=5 —a—
10 ! ! ;
3 4 5 6 7 8

ansatz order p

Figure 4.41: Total number of integration points applying different ansatz orders p.
In order to study the accuracy, we investigate the displacement u, and the stress o, at
point A. The coordinates of A are given as (89.98 mm, 0.01 mm, 0.13mm). The results of

the displacement and the stress are plotted in Fig. 4.42 and 4.43 for each load step applying
an ansatz order p = 8. The reference solution is obtained by Wieners [80]. Comparing the
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results, we can see that the FCM solutions obtained by both integration methods are in a
good agreement with the reference solution. Here, only small deviations occur. Moreover,
the values achieved by the adaptive moment fitting and the adaptive Gaussian scheme
show an excellent agreement.

0.012
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}(

/

/

adaptive Gaussian, p=8, k=5, g=5 - - - |
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Figure 4.42: Displacement u, at point A.
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Figure 4.43: Stress o, at point A.

Finally, Fig. 4.44a and 4.44b illustrate the contour plots of the von Mises stress and the
equivalent plastic strain of the final load factor A = 4.15, respectively. The figures show
that the plastic region spreads over a large area of the plate.
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o, (MPa) a
350 375 400 425 450 )0 2.5e-5 5.0e-5 7.5e-5 1.0e-4
(a) (b)

Figure 4.44: Contour plots of the porous material for u, = 0.5mm and an ansatz of order
p = 8. (a) The von Mises stress o,,. (a) The equivalent plastic strain a.
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5 Basis function removal for the FCM

Nonstandard discretization methods such as fictitious domain methods, the generalized or
extended finite element method (GFEM/XFEM), or the B-Spline finite element method
suffer from ill-conditioning of the resulting global stiffness matrix. The cause of this ill-
conditioning behavior originates from cut finite elements/cells with a small volume fraction.
As a result, these cut elements/cells lead to small entries of the stiffness matrix and,
thus, to high condition numbers. Further, cut elements/cells may lead to nearly linearly
dependent basis functions — which means that the global stiffness matrix does not have a
positive definite character anymore. To overcome this problem of ill-conditioning, several
approaches have been proposed to improve the robustness of these discretization methods.

In the context of the finite cell method (FCM) [19, 20] — which combines the fictitious
domain technique with high order shape functions — a simple approach has been suggested
that is based on a modification of the weak form. In this approach, the authors assigned
a fictitious material model to the fictitious domain. In doing so, the conditioning behavior
of the global stiffness matrix is improved by introducing artificial stiffness. Thereby, the
introduction of the artificial stiffness is performed on cell level manipulating the local
stiffness matrix of cut cells. In order to avoid modifying the initial boundary value problem
significantly, the parameters of the fictitious material model have to be scaled properly. For
linear elastic problems of the FCM, this scaling process is applied by assigning small values
to the indicator function ov = 1077 and, then, using the reduced Young’s modulus aF for
the fictitious material. In doing so, moderate values have to be chosen for parameter q.
Thereby, practical experience has shown that values within the range ¢ = 5, ..., 12, usually,
ensure reasonable results. For a detailed investigation of the influence of this approach on
the solution the reader is referred to Dauge et al. [21]. A major advantage of the fictitious
material approach is its simple implementation — since it is sufficient to add a new set
of Gaussian points to the fictitious domain. Another benefit is that problem-dependent
material models can be assigned in order to control the solution of the fictitious domain.
This is especially of interest for nonlinear problems — e.g. considering elastoplasticity for
small and large deformations [28-30].

Further, Burman et al. [16, 17, 137] presented the ghost penalty technique in order to
overcome the problem in ill-conditioning of fictitious domain methods. The idea of this
approach is to introduce ghost penalty terms into the weak form that penalize the jumps
of normal derivatives between cut and neighboring noncut elements within the boundary
zone of the physical domain. In doing so, the ghost penalty stabilization weakly enforces
a higher continuity between the basis functions of these elements. Consequently, the basis
functions of cut elements with small support are related to the basis functions of interior
noncut elements. Summarizing, the solution of cut elements is controlled via the gradients
of the neighboring noncut elements.

Another approach to improve the conditioning behavior is based on the usage of pre-
conditioning techniques. Here, the system is manipulated in an algebraic sense, and the
modified problem thus results in a well-conditioned system without modifying the solu-
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tion. In the context of the extended finite element method, Béchet et al. [138] proposed
a special preconditioner for enriched finite elements. In this preconditioner technique, the
regular and enriched shape functions are orthogonalized by applying a Cholesky decompo-
sition of the submatrices. Thus, the presented preconditioner can be interpreted as a local
preconditioning approach. Further, the preconditioner is complemented by an optional
scaling scheme applied to the diagonal terms of the submatrices. However, Menk and
Bordas [139] figured out that there exist situations in which the preconditioner presented
by Béchet et al. [138] does not perform well. Such situations are, for instance, if a node is
exactly intersected by a crack or if a node is located at the boundary of an element. Due
to this reason, Menk and Bordas [139] proposed a robust preconditioning technique based
on a domain decomposition together with additional continuity constraints. The approach
is similar to the finite element tearing and interconnecting method (FETI) presented by
Farhat and Roux [140]. Finally, ill-conditioning is avoided by applying several Cholesky
decompositions and an LQ decomposition. In [141], Lehrenfeld and Reusken presented an
additive subspace preconditioner based on the theory of subspace correction methods [142].
In this preconditioning technique, a standard multigrid preconditioner is applied within
the subspace of the standard basis functions, and a simple Jacobi diagonal scaling is used
for the discontinuous enriched basis functions. Thereby, they were able to show that the
proposed preconditioner is optimal in the sense that the resulting condition number is in-
dependent in terms of the mesh size and the location of the interface. In the context of the
finite cell method, de Prenter et al. [69] proposed a preconditioning technique referred to as
Symmetric Incomplete Permuted Inverse Cholesky (SIPIC). In this approach, a diagonal
scaling technique is combined with an orthonormalization process. Thereby, the diago-
nal scaling avoids ill-conditioning induced by cut finite cells that possess a small volume
fraction. Further, to prevent nearly linear dependency behavior for the basis functions of
cut cells, the preconditioning technique is complemented by an orthonormalization scheme
based on the Gram-Schmidt procedure.

In the context of the generalized finite element method, Babuska and Banerjee [143]
presented a stabilization approach — referred to as the stable generalized finite element
method (SGFEM) — for the one-dimensional case. This stabilization approach is based on a
simple local modification of the enrichment functions, thus improving the condition number
of the system significantly. Thereby, the enrichment basis is modified in such a way that
the modified basis ensures the same convergence behavior as the standard GFEM basis.
Gupta et al. presented in [144] an extension of the SGFEM for two-dimensional problems
in elastic fracture mechanics, thereby giving a detailed investigation of the SGFEM and
studying the condition number of the system and the convergence behavior of global and
local quantities. In [145], Gupta et al. further developed the approach of the SGFEM
for three-dimensional problems in fracture mechanics. However, in [144, 145], the authors
stated that the extension of the one-dimensional SGFEM, presented in [143], to problems
in higher dimensions is not trivial.

Another stabilization approach within the scope of the extended finite element method
was presented by Loehnert in [146]. The stabilization technique for singular extended finite
elements proposed in this work is performed on element level. Thereby, an eigenvalue
decomposition of the local stiffness matrix of enriched elements is applied. In doing so, the
method distinguishes between physically meaningful zero eigenmodes and eigenmodes that
are numerically close to zero due to the position of the crack interface. The last-mentioned
eigenmodes, which cause ill-conditioning, are stabilized in a consistent way. To this end,
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a fictitious stiffness is added to the affected modes of the local stiffness matrix. In order
to be consistent, a correction term is added to the right-hand side of the corresponding
element.

In the context of the B-spline finite element method, Hollig et al. [107, 147, 148] pro-
posed an approach based on weighted extended B-splines, also referred to as web-splines
or web-method. In this approach, a modification of the basis is introduced in order to avoid
ill-conditioning of the global stiffness matrix. Thereby, intersected B-splines with a small
support within the physical domain are extrapolated by the inner B-splines. In doing so,
the related coefficients of the extrapolation are computed by Lagrange polynomials which
are evaluated at the corresponding knots of the B-spline basis. Further, the Lagrange
polynomials must have the same degree as the B-spline basis to preserve the same conver-
gence behavior. Finally, the modified basis is used for the discretization of the problem.
Moreover, B-splines which have no physical support are neglected. In [149], Sanches et
al. developed an alternative approach referred to as the immersed B-spline (i-spline) finite
element method. Here, basis functions that are completely outside of the physical domain
as well as basis functions with a small support within the physical domain are removed.
Then, the remaining basis functions are modified applying a scaling technique based on a
normalization procedure. In doing so, the basis functions have a function value of one at
the boundary and form a partition of unity.

The cell aggregation (or agglomeration) technique describes an approach similar to the
one proposed by Hollig et al. in [107, 147, 148]. In the context of discontinuous Galerkin
methods, Johansson and Larson [150] developed a cell aggregation technique in which cut
cells with a small volume fraction are associated with neighboring cells consisting of a
sufficiently high volume fraction. In doing so, shape functions of cut cells with a small
support are constrained by linear combinations of the shape functions of neighboring cells
with a sufficiently higher support. Consequently, the underlying idea is similar to the
stabilization approach presented by Héllig et al. [107, 147, 148]. Further, in [151] Badia
et al. proposed an aggregation technique, referred to as aggregated unfitted finite element
method, that can be applied to both continuous and discontinuous formulations.

Another promising and simple approach to improve the conditioning behavior is based
on removing critical basis function from the ansatz. In [152], Reusken presented a basis
function removal strategy, referred to as modified XFEM space, in which two-phase in-
compressible flow problems are investigated. For this strategy, a criterion was developed
to eliminate basis functions with a 'small support’. Depending on the choice of the criti-
cal parameter of the criterion, Reusken showed that the modified XFEM space improves
the conditioning of the system, whereas the convergence behavior is only reduced slightly.
Embar et al. [153] as well as Sehlhorst [154] suggested a criterion based on the volume frac-
tion. Here, cut cells with a volume fraction less than 1079 are eliminated from the ansatz.
In [155], Verhoosel et al. studied the influence of the volume fraction in terms of the
condition number of the global system. To improve the condition number, they suggested
a strategy similar to [153] in which basis functions with a volume fraction smaller than a
specified threshold are removed from the ansatz. Elfverson et al. [18] further developed
the basis function removal approach — in the scope of which they proposed the strategy
of introducing a criterion based on the error in the energy norm. Thereby, basis functions
with a sufficiently small value in the energy norm are removed from the ansatz. To this
end, the energy norm of the functions is estimated by considering the diagonal elements
of the global stiffness matrix.
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In this chapter, we present a basis function removal scheme applied to the hierarchical
basis of the finite cell method (FCM), which can be easily combined with the fictitious
material approach. In doing so, we introduce a criterion considering the diagonal elements
of the global stiffness matrix, similar to Elfverson et al. [18]. Thereby, in order to obtain
a criterion that is independent in terms of the utilized material model, we estimate the
stiffness contribution of the shape functions based on the discrete gradient operator. Fur-
ther, the basis is modified in such a way that the rigid body modes are maintained. This
is especially of interest when considering problems in large deformations. Thanks to the
structure of the hierarchical basis, the rigid body modes can be easily preserved by only
removing basis functions of higher order. By considering FCM problems of different com-
plexity, we demonstrate that the modified basis allows to improve the conditioning of the
global stiffness matrix significantly, thus increasing the robustness of the FCM analyses.
Furthermore, we show that the basis function removal strategy can be easily combined
with the approach based on a fictitious material model — which is commonly used within
the framework of the FCM. This combination of the basis function removal and the ficti-
tious material model is especially of interest considering problems for large deformations.
Moreover, the approach based on the basis function removal and the fictitious material
model enables to improve the performance of the remeshing strategy that is introduced in
Chap. 6.

5.1 A simple function removal strategy for the
hierarchical basis

In this section, we present a function removal strategy applied to the hierarchical basis
of the finite cell method. Before we start to explain the basic idea of the proposed basis
function removal strategy, let us briefly recall that the ill-conditioning in the FCM origi-
nates from the cut cells. To this end, Fig. 5.1 shows three representative hierarchical shape
functions — nodal, edge, and internal mode — for two different cuts of one quadrilateral cell,
where the cyan colored and rectangular areas characterize the physical domain and, thus,
the support of the shape functions. From the figure, it can be seen that the basis functions
of the cut cell in the upper row have a better support than the cut cell in the lower row.

Now, a rather simple approach would be to remove basis functions with a small support
from the ansatz. However, such a criterion has two important shortcomings:

o firstly, it is performed only locally on cell level and
e secondly, it does not differentiate between the individual shape functions.

In this thesis, we consequently provide a basis function removal strategy that is based on
a global criterion considering each shape function individually. Further, we ensure that
the basis is modified in such a way that the shape functions representing the rigid body
modes are preserved. In a first step, we thus categorize the shape functions into two
groups: affected and nonaffected modes. The first group contains functions that have to
be preserved (nonaffected), and the second group includes those functions (affected) that
may be removed from the ansatz. In the second step, we remove those affected modes that
do not satisfy the predefined criterion.
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5.1 A simple function removal strategy for the hierarchical basis

(a) Nodal mode (b) Edge mode (c) Internal mode

Figure 5.1: Support of hierarchical shape functions for two different cuts of a finite cell.

5.1.1 Affected and nonaffected modes of the hierarchical basis

In the following, we describe which modes of the hierarchical shape functions are affected
and which modes are nonaffected. Thanks to the structure of the hierarchical basis, the
rigid body modes are represented by the nodal modes (linear shape functions). This means
that the nodal modes are labeled as nonaffected modes from the beginning. Although this
implies that we have to preserve nodal modes of cut cells with a small volume fraction, we

Q @ nonaffected nodal mode
m] A 0 A ] A (]

4 O * O ¢ ? O nonaffected edge mode
m ] A (| A (] A (1] @ affected edge mode
@ 3 4 3 . 4 . .

A nonaffected internal mode

A affected internal mode

o—T—@ = ® = ®

Figure 5.2: Affected and nonaffected shape functions of the hierarchical basis.
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show that the presented basis function removal strategy still results in a good condition
number since ill-conditioning is primarily caused by the higher order modes. For the two-
dimensional case of the hierarchical basis, this means that ill-conditioning is mainly induced
by the edge and internal modes of cut cells. Consequently, we have to distinguish between
edge and internal modes that may be affected (removed) or not. To categorize edge and
internal modes, let us consider the two-dimensional FCM problem depicted in Fig. 5.2,
where the physical domain is characterized by the cyan colored area and the fictitious
domain by the white area. In the figure, nodal modes are marked by dots, edge modes
by squares, and internal modes by triangles. Since ill-conditioning is primarily induced by
the higher order modes of cut cells, the edge and internal shape functions of these cells are
labeled as affected modes. In the figure the affected modes are represented by red squares
and red triangles. The remaining edge and internal modes — represented by white squares
and white triangles — are labeled as nonaffected modes. Having categorized all affected
shape functions, finally, we have to define a criterion that determines which of these basis
functions have to be removed from the ansatz.

5.1.2 Removal criterion of affected modes

Next, we introduce a criterion that defines which of the affected shape functions have
to be removed from the ansatz. Since some high order shape functions — edge modes
(edge and face modes) for the two-dimensional (three-dimensional) case — may be shared
by neighboring cells, we propose a criterion that eliminates affected shape functions in a
global sense. The necessity of a global criterion can be explained by considering the two
neighboring cut cells at the bottom of the problem depicted in Fig. 5.2, for instance. The
shared edge mode is supported by one finite cell with a high volume fraction (high support)
and a cell with a small volume fraction (small support). Thus, applying a local criterion
based on the volume fraction would remove the edge mode from the ansatz although this
edge mode may be well supported by the neighboring cell. Another reason against the
usage of a volume fraction based criterion can be given by considering the cut cell on the
top right of the problem. A criterion based on the volume fraction would not distinguish
between the edge mode of the left and the right hand-side. For a certain threshold value,
all edge modes would thus be eliminated, although the left edge mode is obviously well
supported by the physical domain in a global sense.

In this thesis — due to the aforementioned reasons — we propose a global criterion by
considering the diagonal elements of the global stiffness matrix, similar to Elfverson et al.
[18]. To this end, let us recall the definition of the global stiffness K& in Eq. (3.22), which
is obtained during the assembly process of the local stiffness matrices k. Thereby, the
integrals of the local stiffness matrices are based on a product aGTAG where a is the
indicator function, G defines the discrete gradient operator, and A denotes the tangential
stiffness matrix of the material model. Since we are interested in the contribution of the
shape functions to the stiffness global matrix, we develop a criterion that is based on the
discrete gradient operator and the indicator function «. To this end, we set up a local
auxiliary cell vector q° estimating the stiffness contribution of the affected shape functions
with respect to the physical domain

a=ld @ & . @ @ @ (5.1)
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where the entries of q¢ are computed as

; : ; ON; ON; ~ ON; ON;  ON; ON;
T B ’ Ut Kt} L) detJedQy . 5.2
h=R= / “ (8X1 0X, | 0X,0X, | 0X; ax3> e (5:2)
Further, we compute a local auxiliary cell vector h®
he=[ht By hh . By by g (5.3)

estimating the stiffness contribution of the affected shape functions with respect to the
extended domain. Thus, the entries of h¢ are calculated as

i i i ON; ON; ON; ON; ON; ON;
h1:h2:h3:/<

A0y . (54
0X, 0X, T 0X,0X, | 0X, 3X3>de“ Ao (5:4)

Qf

Next, we introduce the corresponding two global auxiliary vectors q and h which are
obtained during the assembly process by the local ones

Ne Ne

a=Adq° and h= Ah° . (5.5)
c=1 c=1

Finally, we compute the ratio between the estimated stiffness contribution of the physical
domain with respect to the extended domain
ar
o= where 0<pu; <1 . (5.6)
1
In Eq. (5.6), I characterizes the index of the global degree of freedom. Finally, we remove
those affected basis functions that have a ratio which is smaller than a predefined threshold
23
up <y with 0<p <1 . (5.7)

Note that the integrand in Eq. (5.2) and (5.4) defines a nonnegative function. Conse-
quently, the value of the integral in Eq. (5.2) and (5.4) increases with increasing volume
fraction of a cut cell and reaches its maximum value if a cell is completely composed of
physical domain. Therefore, the introduced criterion is based on a nonnegative measure-
ment.

5.1.3 Implementation scheme

The implementation of the proposed basis function removal strategy is simple and can be
considered as an additional step during the pre-processing that can be applied after the
mesh generation and the setup of the basis functions, the mapping relation between local
and global degrees of freedom, and the required quadrature rules. An implementation
scheme is given in Alg. 1. For each finite cell, compute the entries of the local auxiliary
vector h® of the extended domain. If the cell is cut compute the entries of the local
auxiliary vector q¢ of the physical domain. Then, override the local entries related to the
nodal shape functions of vector qf, with the entries of vector hf, . If the cell is not cut, the
physical domain corresponds with the cell domain and, thus, the local vectors q¢ and h¢
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are equal. The related global vectors q and h are obtained applying the assembly process.
For each global degree of freedom I, we finally compute the ratio u; of the physical and
the extended domain. If the ratio is smaller than a given threshold s, the global degree is
removed by applying the general penalty method. Given the definition of the interval of
iy in Eq. (5.7), preservation of the nodal modes is ensured by setting the vector containing
the values of the nodal modes of the physical domain qf, to the vector containing the
values of the embedded domain hg,. Moreover, note that qy, and hg; represent a subset
of the vectors q° and h°.

Algorithm 1 Basis function removal strategy

1: for Each finite cell ¢ do

2 Compute local auxiliary cell vector h® of the extended domain

3: if Cell ¢ is cut then

4 Compute local auxiliary cell vector qc of the physical domain

5: Set qf, = h§,

6: else '

T: Set q° = h*

8: end if

9: end for . .
10: Assemble global auxiliary vectors q = A q“ and h= A h°
11: for Each global degree of freedom [ do ' !
12: Compute ratio gy = qr/hr

13: if Ratio py <y then

14: Remove all global degrees of freedom related to the shape function I
15: end if

16: end for

5.2 Benchmark problem

To study the performance of the proposed basis function removal strategy, let us introduce
a simple benchmark problem. To this end, we consider a square thick-walled plate with
a circular hole under uniform pressure. Due to the symmetry, it is sufficient to model
only one eighth of the problem under investigation. The setup of the benchmark problem
is given in Fig. 5.3. As it can be seen from the figure, the plate is loaded by a uniform
pressure load #, acting on top of the surface in y-direction. Further, symmetric boundary
conditions are applied fixing the back face of the plate in z-direction, the right face in
z-direction, and the bottom face in y-direction. The parameters describing the geometry
comprising the side length a, the radius r of the circular inclusion, and the thickness ¢ are
listed in Tab. 5.1.

As the reference solution of the benchmark problem, we employ an overkill p-FEM
solution based on a fine mesh using 3,200 elements and an ansatz of order p = 5. The
p-FEM discretization is given in Fig. 5.4a. For the elements along the curved boundary, we
thereby apply the blending function method [156, 157] for the mapping of the curved edges
and faces. To study the performance of the basis function removal, we consider a coarse
and a fine discretization for the FCM analysis. In doing so, the plate is discretized by 78
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4

xr

% g :

Figure 5.3: Plate with a circular hole. Geometry and boundary conditions.

Table 5.1: Geometric parameters

parameter variable value unit

side length a 100.0 mm
radius r 60.0 mm
thickness t 10.0 mm

finite cells for the coarse mesh and by 302 finite cells for the fine one. The discretizations
of the FCM are depicted in Fig. 5.4b and 5.4c, respectively.

(a) p-FEM discretization (b) FCM discretization (c) FCM discretization
using 3,200 elements. using 78 cells. using 302 cells.

Figure 5.4: Plate with a circular hole. Discretization used for p-FEM reference solution and
FCM discretizations.
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5.2.1 Linear elasticity

At first, we study the accuracy and the influence on the convergence behavior of the basis
function removal assuming a linear elastic and isotropic material behavior. In doing so,
the Young’s modulus is given as E = 50.0 MPa, Poisson’s ratio v = 0.3, and the value of
the pressure load is ¢, = 0.1 MPa.

Now, to study the influence of the basis function removal, we consider different values for
the criterion p; given in Eq. (5.7). In doing so, the number of degrees of freedom applying
the coarse and the fine FCM discretization is plotted in Fig. 5.5a and 5.5b for different
orders of the ansatz p, respectively. Since only high order basis functions are allowed to be
removed from the ansatz, the number of degrees using p = 1 is not plotted. As it can be
seen from the figures, the number of degrees of freedom decreases slightly with increasing
values of the threshold /.

6000 T 25000
c 4=0.0  — €
S 1=0.01 s S
D 5000 [11=0.05 mmmmm 3 20000 f
j,__b u=0.1  coveem g u,
5 4000 [MF05  memmm 5
§ § 15000
g 3000 5
3 € 10000
5 2000 5
] o}
£ 1000 | £ 5000 ¢
=] =]
< <

0 0
2 3 4
ansatz p ansatz p
(a) FCM discretization using 78 cells. (b) FCM discretization using 302 cells.

Figure 5.5: Plate with a circular hole. Number of degrees of freedom.

In the following, we study the influence of the basis function removal regarding the
condition number k of the global equation system for different orders of the ansatz p.
For this, we first consider the case without basis function removal (g; = 0). Thus, the
conditioning behavior is improved by employing the approach based on a fictitious material
only — where the Young’s modulus of the fictitious domain £ is scaled by the indicator
function a with @« = 1079, To this end, Fig. 5.6a and 5.6b show the evolution of the
condition number for different orders of the ansatz p using ¢ = 12,9,7,5. As it can be
seen from the figures, ill-conditioning is mainly induced by the high-order shape functions.
Thus, if a low Young’s modulus (¢ = 12) is used for the material of the fictitious domain,
the condition number of the global stiffness matrix increases significantly with increasing
order of the ansatz p. Moreover, by comparing the condition number for p = 1 of the
coarse mesh in Fig. 5.6a with the one of the fine mesh in 5.6b, it can be seen that the
conditioning of the fine mesh is worse. Here, the difference in the condition number is
given by a factor between 102 and 10%. This is due to the fact that more cut finite cells
are present in the fine discretization. Now, in order to improve the condition number,
the parameter ¢ of the indicator function @ = 1077 is decreased systematically. Note
that practical experience has shown that choosing ¢ = 7, ..., 5, usually, leads to reasonable
results for the FCM computations. From the figures, it can be seen that the condition
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(a) FCM discretization using 78 cells. (b) FCM discretization using 302 cells.

Figure 5.6: Plate with a circular hole. Condition number of the global stiffness matrix for
different values of parameter ¢ without using basis function removal (1 = 0.0).

number of the global stiffness matrix using an ansatz of higher order could be reduced
considerably with decreasing values for the parameter q.

Next, we study the effect of the basis function removal on the condition number of the
global stiffness matrix. To this end, we consider different combinations of the parameter ¢
used to scale the material parameters of the fictitious domain with different values of the
basis function removal criterion p;. Fig. 5.7a and 5.7b show the evolution of the condition
number using the coarse and the fine discretization for the problem under investigation,
respectively. Thereby, the parameter ¢ = 12 assumes a fictitious material domain with a
stiffness close to zero. Thus, the stiffness of the fictitious material is neglected. Further,
parameter values ¢ = 5 and ¢ = 7 characterize typical values employed for the analysis of
FCM problems. As it can be deduced from the figures, the basis function removal allows to
improve the condition number of the global stiffness matrix significantly. Here, using the
basis function removal could reduce the condition number of the system by several orders
of magnitude as compared to the condition number without applying the basis function
removal p; = 0.0.

As next, we study the influence of the basis function removal on the FCM solution
in terms of the accuracy and the convergence behavior. In doing so, we consider the
relative error in strain energy where the reference solution is obtained by an overkill p-
FEM computation applying an ansatz of order p = 5. The discretization of the p-FEM
is given in Fig. 5.4a using 3,200 elements and the blending function method to describe
the curved edges and faces along the circular boundary of the plate. Further, to avoid the
occurrence of error due to numerical integration, we employ the moment fitting method
given in Sec. 4.2.1. For the computation of the moment fitting weights, we thereby apply
an octree integration of tree depth level £ = 10 for the coarse mesh and an octree of tree
depth level & =9 for the fine mesh. Fig. 5.8a and 5.8b show the relative error in strain
energy employing a coarse and a fine FCM discretization using 78 and 302 finite cells,
respectively. From the figures, it can be seen that using a high value for the basis function
removal criterion (y; = 0.5) decreases the accuracy employing an ansatz of higher order
deteriorating the convergence behavior. For moderate values of y, = 0.01, ..., 0.1, however,
the convergence is only reduced slightly.
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(a) FCM discretization using 78 cells. (b) FCM discretization using 302 cells.

Figure 5.7: Plate with a circular hole. Condition number of the global stiffness matrix com-
bining different values of parameter ¢ together with different values of the basis
function removal criterion /.
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Figure 5.8: Plate with a circular hole
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Finally, Fig. 5.9a and 5.9b show the contour plots of the von Mises stress o, of the
p-FEM solution and the FCM solution discretized by 302 finite cells utilizing an ansatz of
order p = 4. Further, the parameter ¢ reads ¢ = 5 and the basis function removal criterion
is gy = 0.1. Comparing both contour plots of the von Mises stress with each other, no
visible difference could be observed between the FCM and the p-FEM solution.

o, (MPa) o, (MPa)
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
_— e _— e
(a) p-FEM discretization using 3,200 elements. (b) FCM discretization using 302 cells.

Figure 5.9: Plate with a circular hole. Contour plots of the von Mises stress 7,5, of the p-FEM
and the FCM solution.

5.2.2 Small strain elastoplasticity

As the next test case for the benchmark problem, we study the influence of the basis
function removal assuming an elastoplastic material behavior. In doing so, the material
model is based on .J, flow theory of plasticity for small strains with nonlinear isotropic
hardening. The theory of the constitutive model is briefly described in Sec. 2.3.3. Tab. 4.3
lists the values of the material parameters comprising the bulk modulus K, the shear
modulus g, the initial yield strength og, the saturation strength o, the linear hardening
parameter h, and the hardening exponent w. Further, the plate is subjected to a pressure
load of fy = 100.0 MPa which is applied incrementally in 30 load steps using a load factor
of 0.05 for each load increment.

As the reference solution, we again employ an overkill p-FEM solution using 3,200 finite
elements and an ansatz of order p = 5, see Fig. 5.4a. Thereby, curved edges and faces of
the elements along the circular boundary of the plate are described applying the blending
function method. For the FCM computation, we again consider the coarse and fine mesh
discretized by 78 and 302 finite cells, respectively. The FCM discretizations are depicted

92

am 18.01.2026, 21:46:07. gaschlitzter Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186355188

5.2 Benchmark problem

in Fig. 5.4b and 5.4c, respectively. Further since the standard moment fitting does not
perform well for nonlinear problems of the FCM, we employ the adaptive moment fitting
— presented in Sec. 4.2 — in order to reduce the error induced by the numerical integration.
For the resolution of the geometry, we thereby apply a refinement level of k£ = 10 for the
coarse mesh and a refinement level of £ = 9 for the fine one.

In the following, we study the influence of the basis function removal regarding the
accuracy of the solution at a single point. To this end, we consider point A, which is located
in the vicinity of the bottom, and the circular inclusion of the plate, see Fig. 5.3. The
global coordinates of point A are given as x4 = 39.0mm, y4 = 1.0mm, and z4 = 1.0 mm.

At first, we study the accuracy regarding the displacement u, at point A. To this end,
Fig. 5.10a and 5.10b show the relative error of displacement u, for the coarse FCM mesh
discretized by 78 finite cells and the fine one discretized by 302 finite cells using different
orders of the ansatz p. For @ = 1077, we choose ¢ = 5. Further, to investigate the effect of
the basis function removal strategy, we consider different thresholds p; = 0.0 and p; = 0.1.
Comparing the results of the coarse FCM discretization in Fig. 5.10a, it can be seen that for
p = 4 the relative error during the elastic load steps is higher if the basis function removal
is employed. For the plastic load steps, however, the relative error with and without basis
function removal is within the same range. Comparing the results based on the fine FCM
discretization in Fig. 5.10b with the coarse one in Fig. 5.10a, we can conclude that the
effect of the basis function removal decreases if the number of finite cells is increased. This
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(a) FCM discretization using 78 cells. (b) FCM discretization using 302 cells.

Figure 5.10: Plate with a circular hole. Error of displacement w, at point 6.
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behavior can be deduced from the fact that the finer the mesh, the smaller the support of
the basis functions which are removed from the ansatz. Thus, the smaller the support of
the removed basis functions, the smaller is the influence of the basis function removal on
the solution. Finally, Fig. 5.11a and 5.11 show the displacement u, of each load step for
the coarse and the fine mesh using ¢ = 5, iy = 0.1, and p = 4. From the figures, it can
be seen that the results obtained by the FCM solutions show a good agreement with the
results of the p-FEM solution.
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n
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=

displacement u, (mm) at point A

(a) FCM discretization using 78 cells. (b) FCM discretization using 302 cells.

Figure 5.11: Plate with a circular hole. Displacement u, at point A.

Next, we study the influence of the basis function removal regarding the accuracy of the
Cauchy stress which characterizes a more sensitive quantity as compared to the displace-
ment. To this end, we consider the stress component o, at point A. In doing so, the
relative error of o, is plotted in Fig. 5.12a and 5.12b employing the coarse and the fine
FCM discretization, respectively. As it can be deduced from the figures, the basis function
removal leads to lower values of the relative error of o, applying an ansatz of order p = 4.
This behavior is clearly visible within the elastic load steps. Here, the relative error of o,
could be reduced by approximately one order of magnitude.

Fig. 5.13a and 5.13b show the solutions of the stress o, of both FCM discretizations and
the p-FEM solution for each load step. For the FCM computations, we use an o = 1079
with parameter ¢ = 5, y; = 0.1 as the threshold of the basis function removal criterion,
and an ansatz of order p = 4. As it can be seen from the figures, the FCM solutions are
in good agreement with the reference solution of the p-FEM computation.

Finally, the evolution of the plastic region of the p-FEM solution and the FCM solution
based on 302 finite cells is visualized by the contour plots in Fig. 5.14a and 5.14b, respec-
tively. Here, we consider the von Mises stress o,y and the equivalent plastic strain a of
the final load step A = 1.5. As it can be seen from the figures, two plastic regions on the
right and on the bottom of the plate have developed significantly. Moreover, the contour
plots of the FCM solution show a good agreement with the contour plots obtained by the
p-FEM reference solution.
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Figure 5.12: Plate with a circular hole. Error of stress component o, at point 6.
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Figure 5.13: Plate with a circular hole. Stress component o, at point A.
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TuM TuM
250.0 300.0 350.0 400.0 450.0 250.0 300.0 350.0 400.0 450.0

— — — —

a a
00 50e-4 10e-3 156-3 20e-3 2563 00 50e-4 1.0e-3 1.56-3 2.0e-3 2.5-3

(a) p-FEM discretization using 3,200 elements. (b) FCM discretization using 302 cells.

Figure 5.14: Plate with a circular hole. Contour plots of the von Mises stress o,,; and the
equivalent plastic strain a of the p-FEM and FCM solution of the last load step
A=1.5.
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5.3 Finite strain problems

In this section, we study the effect of the basis function removal for finite strain problems.
In general, FCM computations considering problems in large deformations fail due to
severely distorted cut finite cells, causing the Newton-Raphson method to not converge
anymore. This problem is especially pronounced when employing an ansatz p of high
order. In this section, we therefore investigate the influence of the basis function removal
— which only removes basis functions of higher order — in terms of the robustness of the
FCM computations. To this end, we consider several problems of various complexity, based
on two different material models. The first model is related to an isotropic hyperelastic
material behavior based on a polyconvex strain energy density function. A brief description
of the constitutive model is provided in Sec. 2.3.2. Further, the material parameters
used for the subsequent analyses are given in Tab. 5.2. The second material model is
related to the J, flow theory of plasticity for finite strains accounting for nonlinear isotropic
hardening. A brief explanation describing the underlying equations of the constitutive
model is given in Sec. 2.3.4. Further, for the material parameters of all subsequent analyses,
we use the values that are listed in Tab. 4.3.

Table 5.2: Elastic material parameters

parameter variable  value unit
Lamé’s first parameter A 28.846 MPa
shear modulus iz 19.231 MPa

Before investigating the different examples, we would like to make an important remark
on the quadrature of the fictitious domain used for the stabilization of the FCM. In the
context of the FCM, various quadrature methods for the fictitious domain have been pro-
posed. To this end, several authors [20, 25, 96] suggested a composed integration based on
spacetrees where (p + 1)d quadrature points are distributed within each subcell of spatial
dimension d. This adaptive integration scheme is depicted in Fig. 5.15a considering a FCM
problem of ansatz order p = 4 applying a quadtree of refinement level & = 2 and using
ng = (p+ 1)2 = 25 quadrature points for each subcell. Thereby, the physical quadrature
points are represented by red dots and the fictitious quadrature points are marked by blue
dots. Since the fictitious quadrature points are only used for stabilization purposes, in [29]
Abedian et al. proposed to use a refinement level of & = 0 for the quadrature employed for
the fictitious domain, see Fig. 5.15b. In doing so, the number of integration points could be
reduced significantly, thus, reducing the effort of the numerical integration process. In this
thesis, we propose an additional quadrature scheme for the fictitious domain, depicted in
Fig. 5.15¢, that can be used for FCM analyses applying the basis function removal. Here,
a reduced Gaussian quadrature is used for the fictitious domain applying a refinement
level of k£ = 0. In doing so, ny = 3¢ Gaussian points are distributed. Then, points that
are located within the fictitious domain are taken into account. This reduced quadrature
scheme can be used since high order basis functions with a small contribution to the global
stiffness matrix are removed from the ansatz.
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5 Basis function removal for the FCM

Figure 5.15: Different quadrature schemes used for the fictitious domain of the FCM employ-
ing an ansatz of order p = 4.

5.3.1 Single cube connector under pressure

As the first example, we consider a single cube connector under pressure. The geometry
of the cube connector is given in Fig. 5.16, where its surface is described by means of a
level set function [85] as

o(@) = [(@ — 2o + (y— 9)* ~ B’
+ -5 + (e — 2~ B
+ @2+ (z— )~ R’
T S A [RTA CI) E [CRN e L B G

Further, the cube connector is limited by the boundary of a cube with size 30 x 30 x 30mm?.
Furthermore, the values of the geometry parameters in Eq. (5.8) are listed in Tab. 5.3.
Thereby, (., y., z.) represent the center coordinates, R is the outer radius, r denotes the
inner radius, and d denotes an additional design parameter.

Due to the symmetry, it is sufficient to model only one eighth of the problem under
investigation. In doing so, the setup of the FCM model is given in Fig. 5.17a. As it can
be seen from the figure, a uniform displacement u, is applied on the top surface acting
in negative z-direction. Further, the left face is fixed in a-direction, the front face in y-
direction, and the bottom face in z-direction. Finally, for the spatial discretization, we
employ a FCM mesh using 129 finite cells. The spatial discretization of the problem is
depicted in Fig. 5.17b.

For the computation of the integrals over the physical domain, we employ the adaptive
moment fitting presented in Sec. 4.2 based on an octree refinement of tree depth level k& = 3
to resolve for the physical domain. Further, for the volume fraction tolerances of the octree
utilized by the adaptive moment fitting, we choose values of 0.85 on cell level k, = 0, 0.7
for k, = 1, and 0.9 for k, = 2. For the integrals of the fictitious domain, we further choose
the quadratures based on the fictitious integration points, denoted by the blue dots, given
in Fig. 5.15b and 5.15c. Thereby, the quadrature points in Fig. 5.15¢ are used employing
the basis function removal and the quadrature points in Fig. 5.15b are used without basis
function removal.
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Figure 5.16: Single cube connector. Geometry.

Table 5.3: Single cube connector. Geometry parameters.

parameter variable value unit
x center coordinate T 0.0 mm
y center coordinate Ye 0.0 mm
z center coordinate Ze 0.0 mm
outer radius R 15.0 mm
inner radius r 11.25 mm
design parameter d 46000.0 mm*

(b)

Figure 5.17: Single cube connector. FCM model and spatial discretization.
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Finite strain hyperelasticity

For the first test case, we assume an isotropic hyperelastic material behavior, see Sec. 2.3.2,
where the material parameters are given in Tab. 5.2. Further, for the fictitious material
model, we choose the same model applied to the physical domain. In doing so, we use
a = 1077 with ¢ = 5 in order to scale the material parameters aX and au of the ficti-
tious material model. Moreover, for the uniform prescribed displacement u., we choose
a displacement increment of 0.05 mm for each load step. Thereby, the displacement w, is
increased incrementally until the Newton-Raphson method (and, thus, the entire analysis)
fails.

To study the effect of the basis function removal on the robustness of the FCM analysis,
we consider different values for the basis function removal threshold p; where p, = 0.0
means that no basis functions are removed from the ansatz. Based on the results in
Sec. 5.2.1, we choose 0.1, 0.3, and 0.5 as the values of the basis function removal criterion.
Moreover, we study the influence of the basis function removal considering different orders
of the ansatz p.

In doing so, Fig. 5.18a, 5.18b, 5.18¢, and 5.18d show the energy-displacement curves of
the physical domain for the different values of p; applying an ansatz order p = 2,3,4. As
it can be seen from the figures, the basis function removal helps to improve the robustness
of the FCM analyses. Moreover, employing a high value for the basis function removal
criterion p; = 0.5 also improves the robustness of the analyses using a higher order of the
ansatz, see Fig. 5.18d.

To study the influence on the solution, in Fig. 5.19a, 5.19b, and 5.19¢ the energy-
displacement curves are plotted employing the different values of p; for each order of
the ansatz p in an individual figure, respectively. From the figures, it can be deduced
that applying values of 0.1 and 0.3 for y,; leads to almost no deviations from the solution
obtained without basis function removal (y; = 0.0). Further, only small deviations may
be observed using p; = 0.5 and an ansatz of order p = 2 and p = 3.

Finally, Fig. 5.20 shows the evolution of the von Mises stress o,y using an ansatz of
p = 2 and a basis function removal criterion p; = 0.3. To this end, the contour plots of
oym are depicted for different values of the prescribed displacement ..
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Figure 5.18: Single cube connector. Energy-displacement curves.
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strain energy (J)
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Figure 5.19: Single cube connector. Energy-displacement curves.

216.73.216.36, am 18.01.2026, 21:46:07. gaschlitzter Inhalt.
tersagt, m mit, flir oder in Ki-Syster

25


https://doi.org/10.51202/9783186355188

5.3 Finite strain problems
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Figure 5.20: Single cube connector. Contour plots of the von Mises stress o, for different
load steps.
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Finite strain elastoplasticity

For the second test case of the single cube connector, we assume a material model based on
the Jy flow theory of plasticity for finite strains with nonlinear and isotropic hardening, see
Sec. 2.3.4. The material parameters are listed in Tab. 4.3. To improve the robustness of
the FCM analysis, we assign the same nonlinear material model of the physical domain to
the fictitious one, but assuming an infinite yield stress. Thus, the fictitious material model
is based only on the elastic strain energy density function of the elastoplastic material
model. For o = 1077, we thereby choose ¢ = 5 in order to scale the material parameters
of the fictitious domain. Further, analogous to the previous test case, the prescribed
displacement u, is increased incrementally until the Newton-Raphson method (and, thus,
the entire analysis) fails. Thereby, a displacement increment of 0.025mm is applied for
each load step.

Next, to study the influence of the basis function removal on the robustness of the FCM
analyses, Fig. 5.21a, 5.21b, 5.21c, and 5.21d show the load-displacement curves for fixed
values of p; and different orders of the ansatz p. As it can be seen from Fig. 5.21a, where
no basis functions are removed from the ansatz (g, = 0.0), the robustness of the FCM
depends on the choice of the ansatz order. Here, applying higher orders of the ansatz
p =3 and p = 4 results in more robust analyses than using p = 2, especially in the case of
p = 3. Similar behavior appears when utilizing the basis function removal, see Fig. 5.21b,
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Figure 5.21: Single cube connector. Load-displacement curves.
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5.21c, and 5.21d. Moreover, it can be seen from the figures that the robustness of the
FCM analyses could be improved significantly as compared to the analyses without basis
function removal, similar as in the previous test case in which we assumed a hyperelastic
material model.

Next, we study the influence of basis function removal on the solution. To this end, we
consider the different values of the basis function removal criterion p; for a fixed ansatz
order p. In doing so, the load-displacement curves are plotted in Fig. 5.22a, 5.22b, and
5.22c. As it can be deduced from the figures, employing a high value of the basis function
removal criterion p; = 0.5 increases the load values significantly as compared to the results
obtained without basis function removal (u; = 0.0). However, the analyses based on
e = 0.1 and gy = 0.3 lead to reasonable results and a significant improvement in the
robustness of the FCM analyses.

Finally, the evolution of the equivalent plastic strain & during the loading is depicted in
Fig. 5.23. To this end, contour plots of & are given for different load steps using a basis
function removal criterion of y; = 0.3 and an ansatz of order p = 4.
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Figure 5.22: Single cube connector. Load-displacement curves.
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Figure 5.23: Single cube connector. Contour plots of the equivalent plastic strain & for dif-
ferent load steps.
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5.3.2 Complex cube connector under pressure

As the second example, we consider a cube connector with a more complex structure.
Fig. 5.24a shows the model of the problem under investigation. As it can be seen from
the figure, the structure of the complex cube connector is composed of eight individual
single cube connectors. Thereby, each individual cube connector is defined by the level set

(b)

Figure 5.24: Complex cube connector. Geometry, boundary conditions, and discretization.

function given in Eq. (5.8) and a bounding box of dimensions 30 x 30 x 30mm?® where the
parameters defining the surface of every cube connector are given in Tab. 5.4. As depicted
in Fig. 5.24a, the complex cube connector is fixed at the bottom face. Further, a prescribed
displacement u, is applied at the top surface acting in negative z-direction. Furthermore,
the top surface is fixed in z- and y-direction. Moreover, the spatial discretization used for
the analysis is given in Fig. 5.24b. Here, we employ a FCM mesh using 2,912 finite cells.

Table 5.4: Complex cube connector. Geometry parameters.

cube id . Ye Ze R r d
min min mim mm mim mm4
1 15.0 15.0 15.0 15.0 11.25 53000.0
2 45.0 15.0 15.0 15.0 11.25 49000.0
3 15.0 45.0 15.0 15.0 11.25 51000.0
4 45.0 45.0 15.0 15.0 11.25 47000.0
5 15.0 15.0 45.0 15.0 11.25 52000.0
6 45.0 15.0 45.0 15.0 11.25 48000.0
7 15.0 45.0 45.0 15.0 11.25 50000.0
8 45.0 45.0 45.0 15.0 11.25 46000.0
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Finite strain hyperelasticity

As the first test case of the complex cube connector, we assume an isotropic hyperelastic
material behavior, see Sec. 2.3.2. The material parameters are listed in 5.2. To study the
robustness of the FCM analyses the prescribed displacement ,, is increased incrementally
until the Newton-Raphson method (and, thus, the entire analysis) fails. Thereby, a load
increment of 0.2mm is applied for each load step. Further, for the computation of the
integrals over the physical domain, we employ the adaptive moment fitting using an octree
of refinement level & = 3 for the resolution of the geometry. For the volume fraction
tolerances of the octree utilized by the adaptive moment fitting, we thereby choose a
value of 0.85 at tree depth level k, = 0, 0.7 at level k, = 1, and 0.9 at level k, = 2.
Furthermore, for the computation of the integrals over the fictitious domain, we use the
fictitious integration points depicted in Fig. 5.15b and 5.15¢ where the first point set
is utilized without and the second one with the basis function removal. Moreover, for
a = 1077 we utilize a parameter of ¢ = 5.

In Fig. 5.25a, 5.25a, 5.25a, and 5.25a, the energy-displacement curves are plotted for a
fixed value of the basis function criterion p; and different orders of the ansatz p. As it
can be deduced from the figures, the basis function removal improves the robustness of the
FCM significantly. Applying u; = 0.3 enables to increase the prescribed displacement u,
by a factor bigger than 2 for all orders of the ansatz p as compared to the values of the
analyses without basis function removal 1, = 0.0.

To study the effect of the basis function removal on the solution in Fig. 5.26a, 5.26b,
and 5.26¢, the energy-displacement curves are plotted for a fixed order of the ansatz p
and different values of the basis function removal criterion ;. As it can be seen from the
figures, the results applying the basis function removal show a good agreement with the
results using p; = 0.0. Even the results utilizing a higher removal criterion p; = 0.5 do not
show a significant influence on the solution.

Finally, Fig. 5.27 shows the evolution of the von Mises stress o, during the loading.
Here, the contour plots of the von Mises stress are plotted for different load steps applying
a basis function removal criterion of y; = 0.3 and an ansatz of order p = 2.
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Figure 5.25: Complex cube connector. Energy-displacement curves.
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Figure 5.26: Complex cube connector. Energy-displacement curves.
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Figure 5.27: Complex cube connector. Contour plots of the von Mises stress o, for different
load steps.
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Finite strain elastoplasticity

As the second test case of the complex cube connector, we study the influence of the basis
function removal assuming a material model based on the J; flow theory of plasticity, see
Sec. 2.3.4. The material parameters are listed in Tab. 4.3. To improve the robustness of the
FCM analysis, we employ the same material model for the fictitious domain using o = 1079
with ¢ = 5 in order to scale the material parameters of the fictitious material model appro-
priately. Moreover, we assume an infinite yield stress. Thus, the material behavior of the
fictitious domain is defined by the hyperelastic strain energy density function of the con-
stitutive model. For the numerical integration, we further employ the same quadratures as
in the previous test case. Furthermore, analogous to the previous test case, the prescribed
displacement w, is increased incrementally until the analysis fails. To this end, for the
first 5 displacement increments, we apply values of 0.01 mm, 0.02 mm, 0.02 mm, 0.05 mm,
and 0.1 mm. For each load step bigger than 5, we then use a displacement increment of
0.2mm.

To show the influence of the basis function removal, Fig. 5.28a, 5.28b, 5.28¢, and 5.28d
show the load-displacement curves for a fixed value of the basis function removal criterion
1 and different orders of the ansatz p. As it can be seen from the figures, the basis function
removal increases the robustness of the FCM analyses significantly. By using p, = 0.3, the
value of the prescribed displacement wu, could thus be increased by a factor of about 2
employing an ansatz of p = 2 and p = 3. Moreover, a high removal criterion p; = 0.5
allows to increase the robustness of the analysis by applying an ansatz of order p = 4.
Here, the prescribed displacement could be increased by a factor of about 5.

Next, to study the effect of the basis function removal on the solution, Fig. 5.29a, 5.29b,
and 5.29¢ show the load-displacement curves for a fixed order of the ansatz p and different
values of j;. As it can be seen from the figures, higher values of the basis function removal
criterion g = 0.3 and g = 0.5 increase the deviation in the load values as compared to
the results obtained without basis function removal (p; = 0.0). When employing p; = 0.1,
however, the deviations in the load values are negligible.

Finally, the evolution of the equivalent plastic strain during the loading is given in
Fig. 5.30. Here, the contour plots of a are depicted for different load steps applying an
ansatz of p = 2 and a basis function removal criterion of p; = 0.3.
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Figure 5.28: Complex cube connector. Load-displacement curves.
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Figure 5.29: Complex cube connector. Load-displacement curves.

216.73.216.36, am 18.01.2026, 21:46:07.
m

‘i, f0r oder In Kk

geschitzter Inhalt.
tor



https://doi.org/10.51202/9783186355188

5.3 Finite strain problems
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Figure 5.30: Complex cube connector. Contour plots of the equivalent plastic strain a for
different load steps.
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5 Basis function removal for the FCM

5.3.3 Single pore of a foam-like structure under pressure

As the final example, we consider a single pore of a foam-like structure. The geometry
and the boundary conditions of the problem are depicted in Fig. 5.31a. Here, the pore is
embedded in a bounding box of dimensions 6.327 x 6.424 x 6.688mm?®. Further, for the
analysis, the pore is fixed at the bottom face and a prescribed displacement 1, is applied
on its top surface acting in negative y-direction. Furthermore, the top face is fixed in
z- and y-direction. Fig. 5.31b shows the spatial discretization of the problem. Here, we
employ a Cartesian grid using 4,678 finite cells.

(b)

Figure 5.31: Single pore of a foam-like structure. Geometry, boundary conditions, and dis-
cretization.

Finite strain hyperelasticity

For the first test case, we assume an isotropic hyperelastic material behavior, see Sec. 2.3.2.
The material parameters are given in Tab. 5.2. To study the effect of the basis function
removal, we increase the prescribed displacement #, incrementally until the analysis fails.
In doing so, we apply an increment of 0.001 mm for the first load step, an increment of
0.002mm for the second and the third load step, and an increment of 0.005mm for the
fourth load step. For all load steps greater than 4, we apply a displacement increment
of 0.0l mm. Further, for the computation of the integrals over the physical domain, we
apply the adaptive moment fitting. In doing so, we employ an octree of tree depth level
k = 3 for the resolution of the geometry. For the volume fraction tolerances of the octree
utilized by the adaptive moment fitting, we thereby choose a value of 0.85 on cell level
k, =0, 0.7 at level k; = 1, and 0.9 at level k, = 2. Furthermore, for the computation of
the integrals of the fictitious domain, we apply the fictitious integration points depicted in
Fig. 5.15b and 5.15¢ where the first point set is utilized without and the second one with
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5.3 Finite strain problems

the basis function removal. Moreover, to improve the robustness of the FCM analysis, we
use o = 1079 with ¢ = 5.

In order to study the influence of the basis function removal, Fig. 5.32a, 5.32b, 5.32c,
and 5.32d show the energy-displacement curves for a fixed value of y; and different orders
of the ansatz p. As it can be deduced from the figures, the analyses utilizing the basis
function removal perform more robust than the analyses without (1, = 0.0). This behavior
is especially pronounced for the analyses applying an ansatz of order p = 4. By employing
a criterion of j;, = 0.3, the prescribed displacement @, could be increased by a factor
greater than 4.

Further, to investigate the influence of the basis function removal on the solution,
Fig. 5.33a, 5.33b, and 5.33b show the energy-displacement curves for a fixed ansatz order
p and different values of the criterion j;. As it can be seen from the figures, the deviations
in the energy values are negligibly small even when employing a high value for the basis
function removal criterion (p, = 0.5).

Finally, 5.34 shows the evolution of the von Mises stress o, during the loading of the
single pore. Here, the contour plots of o, are depicted for different load values of the
prescribed displacement u,. It can be seen from the figures that high values of the von
Mises stress arise at the struts of the pore.
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Figure 5.32: Single pore of a foam-like structure. Energy-displacement curves.
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Figure 5.33: Single pore of a foam-like structure. Energy-displacement curves.
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Figure 5.34: Single pore of a foam-like structure. Contour plots of the von Mises stress o;.
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Finite strain elastoplasticity

As the second test case, we investigate the performance of the basis function removal
assuming a material behavior based on the J; flow theory of plasticity, see Sec. 2.3.4. The
material parameters are given in Tab. 4.3. Further, for the material model of the fictitious
domain we assign the same model used for the physical domain. However, as we assume
an infinite yield stress, the fictitious material is defined by the hyperelastic strain energy
function only. To improve the robustness of the FCM analysis, we use @ = 1077 with
q = 5. For the numerical integration, we employ the same quadratures as in the previous
test case. Moreover, analogous to the previous test case the prescribed displacement 1, is
increased incrementally until the analysis fails. For the first load step, we thereby choose
a displacement increment of 0.001 mm, an increment of 0.002 mm for the second and the
third load step, an increment of 0.005 mm from load step 4 to 9, and an increment of
0.01 mm for all following load steps.

To study the effect of the basis function removal on the robustness of the FCM analyses,
Fig. 5.35a, 5.35b, 5.35¢, and 5.35d show the load-displacement curves applying a fixed
value of the criterion p, and different orders of the ansatz p. As it can be deduced from
the figures, the analyses employing the basis function removal behave much more robust
than the ones without (i, = 0.0). Here, the prescribed displacement could be increased
by factors between 2 and 3.

Further, in order to study the influence of the basis function removal on the solution,
Fig. 5.36a, 5.36a, and 5.36a show the load-displacement curves applying a fixed ansatz order
p and different values of the criterion p;. As it can be inferred from the figures, applying
high values of the basis function removal criterion (p; = 0.5) results in large deviations of
the load values. However, employing p; = 0.1 and j; = 0.3 leads to reasonable results.
This relation is especially pronounced if an ansatz order of p = 4 is applied.

Finally, 5.37 shows the evolution of the plastic region during the loading for the analyses
using an ansatz order p = 2 and a basis function removal criterion pu; = 0.3. To this end,
the contour plots of the equivalent plastic strain @ are depicted for different load steps.
As it can be seen from the figures, plastic regions develop at the struts of the single pore,
reaching high values for the equivalent plastic strain.
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Figure 5.35: Single pore of a foam-like structure. Load-displacement curves.
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Figure 5.36: Single pore of a foam-like structure. Load-displacement curves.
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Figure 5.37: Single pore of a foam-like structure. Contour plots of the equivalent plastic strain
a.
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6 A remeshing strategy for the FCM

For linear and nonlinear problems in small deformations the robustness of the FCM can
be improved by employing a fictitious material model or by simply removing critical shape
functions from the ansatz, as shown in the previous chapter. When considering problems
in finite deformations, however, the robustness of the FCM suffers from degenerated cells.
Due to the large deformation of the fictitious domain, badly cut finite cells get distorted
severely during the deformation process, thus resulting in a bad parametric description of
the deformation. Usually, the degenerated cells decrease the accuracy of the analysis and
affect the convergence behavior of the Newton-Raphson procedure. In general, the analysis
fails due to self-penetration of the cut cells.

The subject of degenerated elements when considering problems in large deformations,
however, is a well-known issue in the standard finite element method as well. A promising
approach to overcome this problem is based on remeshing [158-160]. The basic idea of
the remeshing approach is simple. Whenever a finite element violates certain criteria, the
simulation is stopped and a new mesh is generated, which captures the deformed structure.
Next, essential field variables — needed to proceed the analysis — are transferred from the
old to the new mesh. Such field variables are problem-dependent and may be stresses,
history variables, or variables describing the current deformation of the body, for instance.

To overcome the problem of severely distorted cells in the FCM for structures undergoing
large deformations, this chapter serves to present a remeshing strategy with respect to the
total Lagrangian formulation [161]. The main idea of the proposed remeshing strategy is
based on a decomposition of the deformation gradient. Moreover, the mesh generation
during the remeshing procedure can be carried out by simply employing Cartesian grids
or structured meshes, thanks to the fictitious domain approach. This is a main advantage
compared to the standard FEM where we have to invest more effort to discretize the
deformed geometry utilizing boundary-fitted elements. Finally, in order to transfer the field
variables — like the deformation gradient or history variables in the case of a elastoplasticity

from the old to the new mesh, we introduce a local radial basis function interpolation
scheme.

6.1 Kinematic relations

Before we present the remeshing procedure, let us start with the description of the essential
kinematic relations. To this end, we consider the deformation process of a deformable body
at various points in time, as depicted in Fig. 6.1. Thereby, a configuration of the body at
time ¢ is described by the mapping

% () = {p: (X)X € Q} (6.1)

where g () = Q characterizes the initial configuration. Consequently, following the
motion of a specific material point its position with respect to the configuration at time ¢
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o

Figure 6.1: The motion and deformation of a body .
is given as
z,=¢ (X) with t=0,1,2,...,n—1,n . (6.2)

Thereby, the distance covered by the material point from one configuration to the next
one is defined by the displacement

Uy =Ty — Ty_1 . (6.3)
Thus, the total displacement of the material point at time ¢t = n reads
n
Uy =T+ Us+ . A U1+ Uy = Y Uy . (6.4)
t=1
Next, we consider the deformation process of the body. In doing so, the deformation

gradient at time ¢ = n is given as a multiplicative decomposition

_ 81% o 81% 81:71 awnfl %% _ ﬁ E):E?‘H»lfl (6 [-)
"TOX  Ome 0wy 0, 0w Ome it Omn, ?

With the introduction of F} defining the deformation gradient from one configuration to
the next one

~ 8513t
F = 6.6
L~ (6.6)

the relation in Eq. (6.5) can be rewritten as
Fn = Fnﬁn—l -~--F~12-F~11 = HEH»lft . (67)
=1
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6 A remeshing strategy for the FCM

Consequently, for the special case at time ¢ = 1, the relations
u, =1u; and F,=F, (6.8)

hold for the displacement and the deformation gradient.

6.2 Remeshing procedure

In the following, we present a remeshing strategy suited for the FCM [161]. The motivation
for this remeshing strategy is to improve the robustness of the FCM considering problems
in finite strain. In general, the FCM analysis for such kind of problems suffers from large
deformations of the fictitious domain, thus leading to severely distorted cut finite cells.
These degenerated cells, in turn, have a negative effect on the convergence behavior of the
Newton-Raphson scheme. Thereby, in most of the cases, the FCM analysis is aborted due
to self-penetration of cut cells. In order to overcome this problem, we develop a remeshing
strategy which takes advantage of the simple mesh generation process that is inherent to
discretization methods based on the fictitious domain approach.

The basic procedure of the remeshing strategy is sketched in Fig. 6.2. In the figure,
o () defines the initial configuration of the undeformed body and ¢ (2) denotes the
current configuration of the deformed body after reaching the final load step. Further, the
figure shows that the computational mesh at configuration ¢; () gets distorted severely
during the loading which is due to large deformations of the cut finite cells. As a result
of the mesh distortions, the analysis may be aborted, so that we cannot reach the desired
final load anymore. In order to achieve the final load step, we remesh the deformed body
at configuration ¢; (Q) and continue the simulation. Therefore, the mesh generation of
the new mesh can be carried out in an efficient manner by employing Cartesian grids or
structure meshes, for instance, thanks to the fictitious domain approach. Next, the essential
field variables are transferred from the old mesh to the new one and, then, the simulation

WL' a1, j1=FJo Q1,1 WL
3

Qo , Jo Qg ¢ H} =1(Hy) / Qn

—

T T

o) /] e@ )
a2, jo=Fa2J1
12
I _
Q=00(2) o

o o

Figure 6.2: Remeshing procedure.
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6.2 Remeshing procedure

is continued until the final load is achieved at configuration ¢, (). Note that, due to the
rectangular shape after remeshing, a good mesh quality is ensured at the beginning of each
analysis.

In order to explain the general procedure of the remeshing strategy in more detail, let
us take a look at the scheme provided in Algo. 2. At first, the initial mesh is created,
together with further pre-processing steps required to run the analysis, e.g. boundary
conditions, loads, etc. Next, the nonlinear global equation system in Eq. (3.21) has to be
solved. To this end, the load is applied in an increment-wise manner starting from k& = 1
and ending for the final load at k = keq. For each load step k, we thereby employ the
Newton-Raphson method in order to find a solution for the nonlinear problem. In doing
so, in each Newton-Raphson iteration, the system in Eq. (3.21) is solved for the unknown
displacement increment AU and, then, the displacement is updated

Ut = U + AU . (6.9)

Note that, since the displacement is computed for different meshes in the case of the
remeshing, we use a tilde to distinguish it from the total displacement vector U. Further,
keep in mind that standard vector or matrix quantities are represented by upright and
bold symbols in order to distinguish them from tensor quantities. Next, we evaluate the
remeshing criteria based on the updated solution INJ};“. If all criteria are satisfied, we
simply proceed with the standard Newton-Raphson procedure — meaning that we first
check whether the solution of the Newton-Raphson iteration has converged and, if so, we
continue with the next load step. If, however, one of the remeshing criteria fails, we go
back to the converged solution of the previous load step Uj_;. In doing so, we take the
solution data and the geometric description of the deformed body of this load step as the
starting point for the next analysis. Then, we create a new mesh for the deformed body.

Algorithm 2 Remeshing procedure scheme

1: Create initial mesh
2: for k=1 to k = kepnq do > Start load increment loop
3 for i =1 to i =iy, do > Start Newton-Raphson iteration
4 Solve system (3.21)
5: Update solution (6.9)
6 Check remeshing criteria
7 if Check failed then
8 Go back to the previous load step
9: Create new mesh of the deformed body > Use last converged solution
10: Transfer data from the old to the new mesh
11: Set k=k—2 > Enforce equilibrium step
12: break > Redo previous load step
13: end if
14: Check convergence of Newton-Raphson iteration
15: if converged then
16: break > Proceed with next load step
17: end if
18: end for
19: end for
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6 A remeshing strategy for the FCM

As the next step, we provide a data transfer from the old mesh to the new one. This data
transfer step involves all essential field variables defining the deformed configuration of
the body, history variables if history-dependent material models are employed, as well as
boundary conditions and external loads such as tractions. After the data transfer, we reset
the load increment to k = k — 2, break the loop of the Newton-Raphson iteration, and
proceed with the loop of the load incrementation. In doing so, the new analysis is repeated
for the last converged load step of the previous analysis. Consequently, the first load step
of every new analysis can be considered as a balance step to recover the equilibrium, which
might be violated due to the data transfer. This procedure is repeated until the final load
step is achieved. In the subsequent section, we describe the remeshing criteria, the mesh
generation of the deformed body, and the data transfer in more detail.

6.2.1 Remeshing criteria

In order to decide when the analysis has to be aborted and, thus, the remeshing has to
be initiated, we consider several remeshing criteria. For this, the most obvious choice is
to consider the convergence behavior of the Newton-Raphson procedure, meaning that the
analysis is aborted if the Newton-Raphson iteration exceeds its maximum value. In the
context of the FCM, this is mainly induced by cut finite cells — since these cells, usually,
are susceptible to self-penetration (detF < 0) due to large deformations of the fictitious
domain. However, in some cases it is of advantage to abort the analysis before the Newton-
Raphson method fails. Consequently, specific criteria are needed to evaluate the quality
of the deformed finite cells. Keep in mind that the undeformed mesh of each analysis
ensures a good mesh quality since Cartesian grids or structured meshes are utilized. In
the following, as a means to evaluate the quality of the deformed mesh, we propose three
additional criteria to decide whether remeshing has to be initiated or not. Further, all
criteria are based on the Jacobi matrix. For an analysis from configuration ¢ to ¢ + 1, the
Jacobi matrix of the deformed mesh is consequently given as

Tpe Ty Ty
Ji = Yte Yt Yig :[Gl G, Ga] (6~10)

¢ Rtm o Rt

and the corresponding Jacobi matrix of the deformed mesh is defines as

5 L1 Ti4ln Ti41c
Jrn =Fdi = (Ve Y Yiric| = [g1 22 g3} . (6.11)
2416 At4ln RAt41¢

Here, G; and g; are the columns of the Jacobi matrix and denote the tangential vectors.
Keep in mind that, here, we use bold and upright symbols for the vector and matrix
quantities in order to distinguish them from tensor ones. Finally, the criteria may be
evaluated for different point sets — whereby, in this thesis, we choose the quadrature points
X, as the evaluation points. Further, in order to ease the subsequent formulations, we
introduce the following abbreviations for the Jacobi matrices

IV =T, (xp) and §F =je (xp) (6.12)
the tangential vectors
G;‘" =G;(x;) and gf =g (xx) (6.13)
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and the deformation gradient B B
FC=F . (x) . (6.14)

6.2.1.1 Ratio of Jacobians

In the first case we employ a criterion based on the ratio of Jacobians [162-164]. To
this end, for each finite cell ¢, we determine the minimum and maximum values of the
determinant of the Jacobi matrix of the deformed mesh and compute the ratio

mkin detj*
= —— 6.15
max detj! (6.15)

Consequently, the ratio of Jacobians evaluates the ratio of volumetric deformations con-
sidering its extreme values of a predefined point set. Since the condition detj® > 0 has to
be satisfied for each point within the cell, the range of R is given as

0<R<1 . (6.16)

Thereby, R = 1 defines the optimal case and values close to zero characterize cells of a
poor quality. Finally, note that employing Cartesian grids or structured meshes — which
is generally the case when applying the FCM — the ratio of Jacobians simplifies to

mkin detFFdetJ* IIlkill detF*

R= _ - _ (6.17)
max detFldetJ! max detF!

since, with regard to the rectangular cells, the following condition holds for the ratio of
Jacobians of the undeformed mesh
detJ* _

detJt (6.18)

6.2.1.2 Orthogonality

In the second criterion, we introduce a measurement evaluating the mesh quality by con-
sidering the orthogonality property of each finite cell. Thereby, the cells of the undeformed
mesh are optimal in this sense since they include a rectangular shape. Consequently, the
criterion has to be developed for the cells of the deformed mesh. Therefore, we proceed as
suggested in [165]. In doing so, we introduce the following orthogonality criterion

Vet eh) (g ) — (g8t

0= I‘Il‘iil . (6.19)
o (gF- &) (g - gh)

which is based on the tangential vectors of the deformed Jacobi matrix, see Eq. (6.11).
Since the condition detj®* > 0 holds at each point — which implies that the tangential
vectors gF are linearly independent — the range of the orthogonality criterion is defined as

0<0<1 . (6.20)

Thereby, O = 1 defines the optimal case and values close to zero indicate cells of a poor
quality.
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6.2.1.3 Inverse aspect ratio

As the third criterion, we consider a measurement based on the aspect ratio of the tangen-
tial vectors. To this end, we introduce a criterion relating the aspect ratio of the deformed
cell with the inverse aspect ratio of the undeformed one. In doing so, the definition of the

criterion is given as
k
], |
A =min 2 2

g, [

E

S

(6.21)

S

2

Since the tangential vectors are linearly independent — due to condition detj® > 0 — the
range of A is defined as
0<A<1 . (6.22)

6.2.1.4 Performance of the suggested remeshing criteria

Finally, let us have a look at the performance of the presented remeshing criteria. There-
fore, we consider a single cube that is subjected to different load cases: uniaxial pressure,
shear, and compression. For the investigations, the cube is discretized by one finite cell.
Further, a hyperelastic and isotropic material behavior based on a polyconvex strain en-
ergy density function is assumed. A brief description of the material model is provided in
Sec. 2.3.2. Further, the material parameters are listed in Tab. 5.2.

The values of the remeshing criteria of the different cases are plotted in Fig. 6.3, 6.4, and
6.5, respectively. Fig. 6.3 shows the values of the remeshing criteria considering the cube
subjected to uniaxial pressure. From the figure it can be seen that due to the deformation
of the cell the ratio of Jacobians (R = 1) and the orthogonality (O = 1) do not change
during the loading. This is because the deformed cell has a rectangular shape and the
determinant of the deformation gradient has the same value at each quadrature point.
However, the inverse aspect ratio changes during the loading. Further, the values of the
remeshing criteria for the cube under shear loading are plotted in Fig. 6.4. Here, the values
of the orthogonality and the inverse aspect ratio change during loading, while the ratio
of the Jacobians (R = 1) does not. Finally, Fig. 6.5 shows the results of the cube under
compression. In this special case, all remeshing criteria are not changed during the loading.
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Figure 6.3: Remeshing criteria for a single cube under uniaxial pressure.
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Figure 6.4: Remeshing criteria for a single cube under shear loading.
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Figure 6.5: Remeshing criteria for a single cube under compression.
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6.2.2 Mesh generation

After one of the remeshing criteria is activated and, thus, the analysis is aborted, the next
step is to remesh the deformed body. Consequently, a geometry description of the body is
needed during the simulation. Therefore, the geometric description of the body is taken
into account by employing a surface triangulation. This strategy is illustrated in Fig. 6.6 for
the two-dimensional case. Here, the boundary of the body is discretized by line segments
forming a closed polygonal chain. In the figure, the boundary mesh is represented by
purple lines and dots. Then, the mesh generation for each analysis is performed as follows
during the simulation. Starting from the configuration ¢ () of the undeformed body we
create a bounding box enclosing the line segment mesh used to describe the body. Then,
the bounding box is discretized by utilizing a structured mesh. Further, cells that are
located completely within the fictitious domain are discarded. Next, the nodes of the line
segments are mapped as post-grid points into the mesh. Thanks to the rectangular shape
of the finite cells, the inverse mapping required to map the global position of the points X,
to the local position r, of the corresponding cell is simple. Following Eq. (3.13), the inverse
mapping for the three-dimensional case can be obtained in a straightforward manner as

2y (X — Xpin) — 1
r= Q71 = 2/HY (Y - Ymin) —1 . (623)
Yty (L — L) — 1

During the simulation, the node displacement values of the boundary mesh are evaluated
by the element shape functions. Next, by adding the node displacement values to the
node position, a geometric description of the deformed body is ensured during the analy-
sis. Then, after remeshing is initiated, the deformed boundary mesh builds the basis for
generating of the next mesh. In the figure this is illustrated for the deformed body at
configuration ¢; (©). At this configuration, remeshing is initiated and a new FCM mesh
is generated by discretizing the boundary box of the deformed boundary mesh. Moreover,
note that the boundary mesh builds the basis for the numerical integration of the cut cells.
Here, it is used to check whether a quadrature point is within the physical domain or not
[166].
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Figure 6.6: Mesh generation.
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6.2.3 Data transfer

In order to proceed with the analysis, as the final step of the remeshing procedure, we
have to transfer the necessary data from the old to the new mesh, e.g. displacement-based
variables or history variables if nonlinear material models are involved. In this thesis, we
introduce a local radial basis function (RBF) interpolation scheme [167-169] to perform
the data transfer. Thereby, we consider the quadrature points of the old mesh as the source
points and the quadrature points of the new mesh as the target points. Fig. 6.7 shows
the graphical interpretation with Z denoting the interpolation operator. Note that the
fictitious quadrature points of the old mesh are excluded from the set of the source points,
while the set of target points include the fictitious quadrature points. In the following, a
source point is denoted as x® and a target point as x’.

TIL' Q1,1 WT_'

14 Qg
Q.n/ 22 ar.hi=Fudo Hi=Z(H))
? —

X=xg

o o

Figure 6.7: Data transfer between old and new mesh where the fictitious quadrature points
of the old mesh are excluded from the set of the source points.

Next, we briefly describe the basic idea of the local RBF interpolation scheme. In order
to compute the values of a target point x‘, we start off by searching for the n" nearest
source points of &' and deposit their indices in a set N. So as to find the nearest neighbor,
we thereby employ a k-d tree [169, 170] in order to reduce the effort during the searching
procedure. For the target point x!, we then set up an interpolation scheme that is based
on the source points of set N. In the same way, we proceed with the remaining target
points. Consequently, for each target point an individual interpolation is generated which
can be applied in parallel. Further, in order to distinguish this variant from its global one
— where only one global interpolation scheme is generated considering all source points at
the same time — we call it local RBF interpolation.
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Then, given the set N including the n" nearest source points, an individual value v of
a target point is computed by a weighted sum as

Ut = Z )\1 0 (th - x,f
i€eN

) (6.24)

In Eq. (6.24) A; denotes the weight and 6(r) defines the related scalar-valued radial basis
function where the argument is the Euclidean norm of the distance between the target
point &' and the source point @$. Consequently, in order to compute v', we first have to
determine the unknown weights A;. To this end, the n™ unknown weights \; are computed
by solving a linear system of equations

Vi = Z)\Zﬁ(‘

i€EN

S S
x; — T}

2) . jJEN (6.25)

that is obtained by incorporating the interpolation conditions of the source points — where
v; denotes the related value of source point ;. Further, as the choice for 6(r), commonly
used radial basis functions, for instance, are

o the Gaussian function (GF):

O(r)=e" (6.26)

o the multiquadric (MQ):

O(r)=vV1+r2 | (6.27)

o the inverse multiquadric (IMQ):

1
0(r) = — 6.28
"= (6.28)
e or the thin plate spline (TPS):
O(r) =r?In(r) . (6.29)

These RBFs are plotted in Fig. 6.8.

The choice of the RBF is problem-dependent. In the presented remeshing strategy, an
important variable for the data transfer is given by the deformation gradient. At each
remeshing step, we have to transfer the total deformation gradient of the old mesh to the
new one in order to proceed with the simulation. In this thesis, the transfer of the defor-
mation gradient is carried out by taking advantage of its relation with the displacement
gradient (F = H + I). Consequently, for the remeshing step illustrated in Fig. 6.7, the
displacement gradient is interpolated as

H; =T (H)) (6.30)

where the superscript * is introduced in order to distinguish the approximated variable from
its original one. In doing so, an approximation of the deformation gradient is obtained as

Fy=H+I=T(H)+1 . (6.31)
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Figure 6.8: Commonly used radial basis functions.

The reason for interpolating the displacement gradient instead of the deformation gradient
is that they have different characteristics. In the case of an undeformed body, the defor-
mation gradient corresponds to the identity (F' = I), while the displacement gradient,
on the other hand, equals zero (H = 0). Having recalled the characteristics of F and
H , next, let us again consider the case depicted in Fig. 6.7. As already mentioned, the
fictitious quadrature points of the old mesh are excluded from the set of source points
while the fictitious quadrature points in the new mesh are included in the set of target
points. Consequently, the data transfer based on the local RBF can be differentiated in an
interpolation phase (from physical source to physical target points) and an extrapolation
phase (from physical source to fictitious target points). For the interpolation of the physi-
cal points, we aim to achieve target values that are close to the source values. During the
extrapolation phase, on the other hand, we intend to obtain a smooth transition of the
displacement gradient from the physical into the fictitious domain. In doing so, the goal
is to achieve a zero displacement gradient (H = 0) for fictitious target points that are
placed far away from the physical source points. A radial basis function that complies well
with the interpolation and extrapolation requirements of the displacement gradient is the
inverse multiquadric RBF given in Eq. (6.28). In this thesis, we utilize a modification of
the inverse multiquadric RBF in which the input argument is scaled for each source point
individually as follows

a0 =¢(s2) (6.32)

In Eq. (6.32), 3 denotes a scaling factor and 7; defines the mean distance of source point
x; with respect to its n” nearest neighbors. These additional parameters allow to further
tune the RBF interpolation.

Summarizing, we set up an individual interpolation scheme for each target point @!,
based on a modification of the inverse multiquadric RBF @; (r). To this end, we have to
define the following parameters:

e the number of source points per target point n" whose indices are deposited in set
N

)
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e the number of nearest neighbors n” per source point in order to compute the mean
distance 7;, and

e the scaling factor (.

Thereby, practical experience has shown that n" = 50, n” = 3, and § = 1,...,2 are a good
choice.

6.3 Finite strain problems

In this section, we investigate the performance of the remeshing strategy considering prob-
lems that undergo large deformations. For all examples, we assume a hyperelastic and
isotropic material behavior based on a polyconvex strain energy density function. A brief
explanation of the underlying equations of the constitutive model is provided in Sec. 2.3.2.
Further, the material parameters used for all examples are listed in Tab. 5.2.

6.3.1 Plate with a circular hole

In the first example, we again consider the plate with a circular hole from Sec. 5.2. This
time, however, the plate undergoes large deformations assuming a hyperelastic material
behavior. For the investigation, the plate is subjected to symmetry boundary conditions
and a prescribed displacement of %, = 15.25mm is applied at the top surface. The FCM
model as well as the discretization are depicted in Fig. 6.9a. Here, we employ a structured
mesh using 78 finite cells. Further descriptions of the geometry are provided in Fig. 5.3 and
Sec. 5.2. Moreover, the triangulated surface mesh in Fig. 6.9b represents the undeformed
geometry that is the starting point for the mesh generation during the remeshing procedure.

The purpose of this example is to study the performance of the presented remeshing
strategy in terms of accuracy. To this end, the prescribed displacement u, = 15.25mm is
applied utilizing 61 equal load steps. Thereby, every analysis is aborted after 10 load steps,
meaning that a total number of 6 analyses are required to achieve the final displacement.
Next, in order to study the effect of the remeshing strategy, the solutions of the FCM
analyses are compared to a reference that is obtained by employing an overkill pFEM
analysis. The pFEM discretization is illustrated in Fig. 5.4a. Here, we use 3,200 elements
and an ansatz order of p = 5. Further, the blending function method is applied in order
to represent the curved boundary more accurately. Moreover, to increase the robustness
of the FCM analyses, we use an ov = 1077 value with parameter ¢ = 5 and u; = 0.1 as the
threshold for the basis function removal criterion.

To study the effect of the remeshing, let us take a look at Fig. 6.10. Here, the strain
energy is plotted versus the displacement applying different values of the scaling parameter
£ = 1,2 — where each vertical black and dashed line represents a remeshing process. From
the figure, we can see that the results of the FCM are in a good agreement with the
reference solution. Next, in order to study the effect of the remeshing process in more
detail, Fig. 6.11 shows the relative error in strain energy. Here, the green curve in the
figure represents the FCM solution without remeshing. The FCM solution applying the
remeshing, on the other hand, leads to a jump in the error — achieving a maximum error of
about 1072, while the FCM solution without remeshing results in a maximum error value
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(b)

Figure 6.9: Plate with a circular hole. (a) FCM model and initial mesh. (b) Triangulated
surface mesh of the undeformed plate.

of about 10, However, considering the strain energy curves in Fig. 6.10, the error of the
remeshing is negligibly small.
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Figure 6.10: Energy-displacement curves.

Next, let us investigate the influence of the remeshing on the stress. To this end, we
consider the stress component oy, at point A with coordinates (39.0 mm, 1.0 mm, 1.0 mm).
The stress values of 0, at point A are illustrated in Fig. 6.12. Considering the curves, we
can see that the FCM results are in a good agreement with the reference solution. In order
to obtain a better overview in terms of the accuracy, the relative error in oy, at point
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Figure 6.11: Relative error in strain energy.

A is plotted in Fig. 6.13. Again, the green curve represents the FCM solution without
remeshing. As it can be seen from the figure, the relative error in the stress applying the
remeshing is, in most of the cases, higher than without remeshing. Further, comparing
the local error in the stress with the global error in the energy, we can see that the error
in the stress is higher by approximately one order of magnitude. Moreover, the effect of
the parameter [ used for the interpolation is negligible. In the subsequent examples, we
therefore choose = 1 since — based on experiments — this choice shows a more robust
behavior.

0.\-\

stress 6, (MPa) at point A

[ PFEM - :referenc:e
p=4. =5, 1;=0.1, =1
p=4, g=5, =0.1, B=2

0 2 4 6 8 10 12 14 16

displacement uy (mm)
Figure 6.12: Stress-displacement curves at point A.

The contour plots of the pFEM solution and the FCM applying the remeshing are
illustrated in Fig. 6.14a and 6.14b for the final displacement %, = 15.25 mm, respectively.
From the figures, it can be inferred that a combination of the FCM and the presented
remeshing strategy provides accurate results.
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Figure 6.13: Relative error in 0, at point A.
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Figure 6.14: Contour plots of the von Mises stress o,); at the final displacement u, =
15.25 mm. (a) pFEM solution. (b) FCM solution applying the remeshing.

140

am 18.01.2026, 21:46:07. gaschlitzter Inhalt.
m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186355188

6.3 Finite strain problems

6.3.2 Single cube connector

In the next example, we again study the single cube connector from Sect. 5.3.1, subjected
to symmetric boundary conditions. The setup of the problem is depicted in Fig. 5.17a.
At the top surface, we apply a prescribed displacement of #, = 7.0 mm acting in negative
z-direction. Since the geometry is approximated by a triangulated surface, the problem
is changed slightly as compared to the analysis in Sec. 5.3.1 where we consider the level
set function. For the remeshing procedure, the bounding box of the single cube connector
is discretized employing a structured mesh with 6 finite cells in each spatial direction.
This meshing strategy is applied at every remeshing step. The initial mesh as well as the
triangulated surface of the undeformed body are depicted in Fig. 6.18a. Moreover, for the
numerical integration, we employ the adaptive Gaussian scheme utilizing an octree based
on k = 3 refinement levels.

In order to study the performance of the presented remeshing strategy, we apply various
ansatz orders p = 2, 3,4 for different thresholds p; = 0.1, 0.3 of the basis function removal
criterion. For each analysis, we employ an o = 1079 value with parameter ¢ = 5. In
this example for the initiation of the remeshing, we furthermore set the thresholds of all
remeshing criteria — ratio of Jacobians (R), orthogonality (O), and inverse aspect ratio
(A) — to zero. Fig. 6.15a, 6.15b, and 6.15¢ show the energy-displacement curves of the
different analyses for a fixed ansatz order — where each vertical and dashed line represents
a remeshing process. As it can be seen from the figures, the remeshing improves the
robustness of the FCM significantly. For p = 2, the remeshing allows to increase the
value of the prescribed displacement by a factor greater than 2. This behavior is even
more pronounced for the analyses employing an ansatz of higher order p = 3,4. Here,
we can increase the value of the prescribed displacement by factors of about 3.3 and 4.5,
respectively. Considering the influence of the basis function removal, we can see that
applying a higher threshold value y; = 0.3 improves the robustness in such a way that less
remeshing steps are required. Although the higher threshold of the basis function removal
criterion leads to small deviations in the results of the final load steps, we can see that
the energy values are still in a good agreement as compared to the values applying a lower
threshold p;, = 0.1, however.

Next, we study the influence of the ansatz order on the solution. To this end, the energy-
displacement curves applying p = 2, 3,4 and a fixed threshold for the basis function removal
criterion p; are plotted in Fig. 6.16a and 6.16b, respectively. The figures show that the
higher ansatz orders provide a more accurate solution of the problem, especially at the
final load steps.

In order to measure the quality of the computational mesh during the deformation
process, Fig. 6.17 shows the values of all remeshing criteria. For each analysis, we thereby
employ a basis function removal threshold of j; = 0.3 an ansatz order of p = 3. Moreover,
in addition to the remeshing criteria (R, O, and A), the figure also shows the determinant
of the total as well as the current deformation gradient — denoted by detF and detF,
respectively. In most of the cases, the analysis apparently fails due to the fact that detF' <
0 or detF < 0 — thus initiating a new remeshing step. Further, we can see that the
remeshing leads to a significant improvement in the quality of the new computational
mesh, especially in terms of the orthogonality property.

Fig. 6.18 shows the four different computational meshes that are required to achieve the
final displacement. For each analysis, we thereby employ a basis function removal thresh-
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Figure 6.15: Energy-displacement curves applying different thresholds for the basis function
removal criterion and a fixed ansatz order.
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Figure 6.16: Energy-displacement curves applying different ansatz orders and a fixed threshold
for the basis function removal criterion.

142

216.73.216.36, am 18.01.2026, 21:46:07. gaschlitzter Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186355188

6.3 Finite strain problems
"
Qv \\\ "\ ~
3 AN
| N \\
A

\
N Ny

3

S

~

detF ®

detF

€
Frs

44444444
uy]
L]

i

17

4 5
displacement u,

6

~

Figure 6.17: Remeshing criteria applying a basis function removal threshold of 1, = 0.3 and
an ansatz of order p = 3.

old of p; = 0.3 and an ansatz order of p = 2. Moreover, in addition to the computational
Us.

meshes, also the corresponding surface triangulation of the undeformed or deformed geom-
etry is illustrated. Finally, in order to obtain a visual representation of the deformation,

Fig. 6.19 shows the von Mises stress o, for different values of the prescribed displacement
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6 A remeshing strategy for the FCM

(a) 129 finite cells. (b) 151 finite cells.

(c) 148 finite cells. (d) 156 finite cells.

Figure 6.18: Computational meshes and corresponding surface triangulation of the unde-
formed or deformed geometry applying a basis function threshold of p; = 0.3
and an ansatz order of p = 2.
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Figure 6.19: Contour plots of the von Mises stress o, for different values of the prescribed

displacement .
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6 A remeshing strategy for the FCM

6.3.3 Complex cube connector

In the last example, we again consider the complex cube connector from Sec. 5.3.2, which
is composed of eight individual cube connectors. The setup of the problem is depicted in
Fig. 5.24a and the geometry parameters are listed in Tab. 5.4. As illustrated in the figure,
the complex cube connector is fixed at the bottom, and a prescribed displacement of
u, = 18.0mm is applied at its top surface, acting in negative z-direction. Further, the top
surface is fixed in 2- and y-direction. The initial mesh as well as the surface triangulation of
the undeformed geometry are depicted in Fig. 6.22a. For the discretization of the bounding
box of the triangulated surface mesh, we apply a structured mesh utilizing 16 finite cells
in each spatial direction resulting in 2,968 finite cells. For the analysis, we further apply
a = 1077 with ¢ = 5 and an order of p = 2 for the ansatz. Furthermore, the numerical
integration is carried out by the adaptive Gaussian scheme utilizing an octree with & =3
refinement levels. During the simulation, the thresholds of all remeshing criteria — ratio of
Jacobians (R), orthogonality (O), and inverse aspect ratio (A) — are set to zero.

Fig. 6.20 shows the energy-displacement curves for different thresholds p; = 0.1,0.4 of
the basis function removal criterion. As it can be seen from the figure, the results are in a
good agreement. However, the higher value of the basis function removal criterion allows
to reduce the number of remeshing steps. Here, we only require two remeshing steps to
apply the final value of the prescribed displacement u, while 6 remeshing steps are needed
employing a lower threshold for the basis function removal criterion (p; = 0.1).
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Figure 6.20: Energy-displacement curves.

For the simulation applying p = 2, i = 0.4, and ¢ = 5, Fig. 6.21 shows the corresponding
values of the remeshing criteria as well as the determinant of the total and the current
deformation gradient (detF and detF). From the figure, it can be inferred that remeshing
is initiated due to self-penetration of the mesh (detF < 0 and detF < 0). Moreover,
considering the values of the criteria after remeshing it is interesting to see that the quality
of the mesh improves during some of the load steps.

The different meshes applying p; = 0.4 as well as the corresponding surface triangulation
of the undeformed or the deformed structure are illustrated in Fig. 6.22. Moreover, in order
to obtain an impression of the deformation, Fig. 6.23 shows the contour plots of the von
Mises stress o, for different values of the prescribed displacement .
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detF ®
detF e

displacement u,

Figure 6.21: Remeshing criteria applying a basis function removal threshold of 1, = 0.4 and
an ansatz of order p = 2.
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6 A remeshing strategy for the FCM

(c) 3,329 finite cells.

Figure 6.22: Computational meshes and corresponding surface triangulation of the unde-
formed or deformed geometry applying a basis function threshold of p; = 0.4
and an ansatz order of p = 2.
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6.3 Finite strain problems
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Figure 6.23: Contour plots of the von Mises stress ), for different values of the prescribed
displacement u,.
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7

Summary and outlook

In the present thesis, the finite cell method, which is a powerful simulation tool for consid-
ering problems with complex geometries, was successfully extended by novel approaches
in order to improve its efficiency and robustness, in particular for nonlinear applications.

To

this end, we focused on three essential difficulties which are typically inherent to non-

standard discretization methods based on the fictitious domain approach. In the following,
these three important problematic aspects are briefly summarized.

150

e In the first topic this thesis, we discussed the numerical integration of finite cells.
In the FCM, it is common to apply adaptive Gaussian schemes — which results in
a large number of quadrature points, thus leading to computationally expensive nu-
merical integration processes. To perform the numerical integration more efficiently,
we proposed novel quadrature methods based on the moment fitting approach.
In our first investigations, we thus studied a moment fitting version in which the
positions of the points are defined a priori. In doing so, the nonlinear moment fitting
equations turn into linear ones, thus simplifying the solution process considerably.
Following this approach, we studied two distinct point distribution schemes. In the
first scheme, the points are distributed within the physical domain of cut finite cells.
To this end, we developed an adaptive point distribution scheme based on a uni-
form subdivision. Applying a random scheme, the points are then distributed in
those subcells that are completely located within the physical domain. In the second
distribution scheme, we chose the position of the standard Gauss-Legendre points.
Moreover, we developed another moment fitting version based on an optimization
procedure in order to solve the nonlinear moment fitting equation system. Compar-
ing all moment fitting versions with each other in terms of accuracy as well as the
conditioning of the resulting quadrature rules, the moment fitting method using the
Gauss-Legendre points turned out to be the most promising approach. Considering
the performance of the different moment fitting version regarding several applica-
tions of the FCM revealed the same findings. Further, comparing the efficiency of
the moment fitting methods concerning the adaptive Gaussian scheme, which is com-
monly used within the context of the FCM, we were able to show that the number
of quadrature points could be reduced significantly. However, for nonlinear problems
of the FCM, the moment fitting quadratures proved to be less robust in cases where
cut finite cells with a small physical domain appeared. Due to this reason, we pro-
posed an adaptive moment fitting method. In this method, cut cells are subdivided
using a spacetree if the volume fraction of the physical domain is below a predefined
threshold. Consequently, the moment fitting is employed on cell or subcell level. In
doing so, we demonstrated that the adaptive moment fitting results in more efficient
quadrature rules than the adaptive Gaussian scheme, but achieving the same accu-
racy and robustness. Further, in order to reduce the effort in the generation of the
moment fitting quadratures, we introduced an efficient approach based on Lagrange
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polynomials and standard Gauss-Legendre points. Following this approach, the Kro-
necker delta property enables to compute the weights immediately, thus avoiding the
necessity of having to solve the moment fitting equation system which is, usually,
the most expensive part. Furthermore, we discussed the treatment of the material
behavior for moment fitting points that are located within the fictitious domain re-
garding FCM applications in plasticity. Here, it turned out that using the same
nonlinear material model and material parameters as utilized for the physical points
leads to more accurate results.

The second topic of this thesis was the ill-conditioning of the global system
matrix — a well-known problem which is inherent to fictitious domain methods.
Within the context of the FCM, in general, an approach based on a fictitious material
model is applied in order to improve the conditioning behavior. To further improve
the conditioning behavior of the global system matrix, we proposed a novel basis
function removal strategy applied to the hierarchical shape functions, which can
be easily combined with the fictitious material approach. The essential idea of this
strategy is to remove shape functions with a small support to the solution from
the ansatz. To this end, we categorized the global shape functions into affected
and nonaffected modes. In doing so, modes that are related to cut finite cells are
labeled as affected ones. Further, the remaining modes were assigned as nonaffected
modes. Furthermore, shape functions related to the rigid body modes were also
labeled as nonaffected. In doing so, we ensure that the modified basis maintains
the representation of the rigid body modes, which is an important issue, especially
considering applications in finite strain problems. Thanks to the structure of the
hierarchical shape functions, this can be easily assured by preserving the linear nodal
modes. Next, in order to decide which of the affected modes have to be removed from
the ansatz, we proposed a global criterion estimating the contribution of the shape
functions regarding the diagonal entries of global system matrix. In doing so, the
introduced criterion defines a nonnegative measurement that is based on the discrete
gradient operator and, thus, is independent in terms of the applied material model.
Then, basis functions with a value smaller than a specified threshold of the criterion
were removed from the ansatz. The performance of the proposed basis function
removal strategy was studied in detail considering linear and nonlinear benchmarks
in structural mechanics. Here, it was proven that the conditioning behavior of the
global stiffness matrix could be improved significantly while still ensuring highly
accurate results. Moreover, considering several finite strain applications in elasticity
as well as in plasticity, we could show that the presented basis function removal
improves the robustness of the FCM for analyses including large strains.

In the third and last topic of this thesis, we discussed the issue of severely dis-
torted finite cells for applications in finite strain, which is caused by large
deformations of the fictitious domain. In order to overcome this problem and, thus,
to further improve the robustness of the FCM considering analyses in large strains,
we developed a new remeshing strategy. To this end, we proposed a remeshing
approach within the framework of a total Lagrangian formulation that is based on
a multiplicative decomposition of the deformation gradient. The essential idea of
the presented strategy is that to create a new mesh whenever an analysis fails be-
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7 Summary and outlook

cause of strong distortions — and then to continue the simulation. Further, the mesh
generation could be carried out easily thanks to the fictitious domain approach. To
this end, the deformed shape of the body is taken into account by employing a tri-
angulated surface as a post-grid mesh. In doing so, whenever the analysis fails, the
bounding box of the triangulated post-grid mesh is spatially discretized by utilizing
a structured mesh. Furthermore, the numerical integration is carried out using the
same surface triangulation. Moreover, for the data transfer from the old mesh to
the new one, we introduced a local radial basis function interpolation scheme. The
performance of the presented remeshing strategy was demonstrated by considering
several finite strain problems in elasticity. Here, it could be shown that the remesh-
ing approach allows to improve the robustness of the FCM significantly, especially
in combination with the presented basis function removal.

Finally, let us close the thesis by giving an outlook into further research topics regarding

the

152

finite cell method.

e In this thesis, we demonstrated that the presented moment fitting quadratures im-
proves the numerical integration of finite cells significantly in terms of efficiency.
Further, it was shown that the moment fitting approach based on Gauss-Legendre
points performs robust for linear elastic applications of the FCM. For nonlinear prob-
lems, however, an adaptive moment fitting scheme is required in order to provide the
same robustness behavior as the adaptive Gaussian scheme. The decrease in the
robustness behavior of the moment fitting is attributed to the negative weights.
Consequently, to further improve the numerical integration process within the FCM,
future works should focus on moment fitting quadratures that ensure nonnegative
weights. From the author’s point of view, a promising approach could be oriented
closely to the moment fitting version based on Gauss-Legendre points and Lagrange
shape functions. Assuming one can construct a basis composed of nonnegative func-
tions that ensure the Kronecker delta property, this basis would then result into
nonnegative weights. The simplest implementation to construct such a basis would
be to take the absolute value of the Lagrange polynomials. However, this approach
results in a basis with bad interpolation properties and, thus, in quadrature rules of
low accuracy. Another approach could be oriented to the essential idea of the stan-
dard Gaussian approach which is based on a nonnegative weight function in order to
ensure an orthogonality property of the applied basis functions within the domain
of interest. For simple shapes, the implementation of this approach is easy. In the
context of cut finite cells, this would mean that one has to construct a nonnegative
weight function that ensures an orthogonality property of the basis functions with
respect to the physical domain of the cut cell. The constructed weight function can
then be incorporated in a similar way as suggested in the approach presented in [122].
A further promising research issue in order to provide nonnegative weights could be
to develop of moment fitting approaches based on point distribution schemes in com-
bination with nonnegative least squares. In doing so, different distribution schemes
can be developed to distribute the points within the physical as well as the fictitious
domain. Moreover, another interesting research topic regarding the numerical inte-
gration could be oriented towards the approach based on equivalent Legendre poly-
nomials [113]. Here, one could think about the construction of a nonnegative and
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smooth function for the replacement of the discontinuity. In doing so, a modification
of the standard Gaussian weights would result to nonnegative modified weights.

The basis function removal approach proposed in this thesis allows to improve the
ill-conditioning of the resulting global system matrix significantly. Thereby,
we introduced a material-independent criterion based on the discrete gradient op-
erator that considers the contribution of the individual shape functions regarding
the diagonal entries of the global stiffness matrix. Consequently, future works could
focus on the development of new criteria which may also account for the constitutive
models. Moreover, we combined the basis function removal together with the ficti-
tious material approach to further improve the robustness of the FCM for nonlinear
applications. In order to further improve the conditioning behavior and thus the
robustness of the FCM regarding nonlinear problems, one could focus on combining
the basis function removal and the fictitious material method with additional ap-
proaches, e.g. the ghost-penalty method [137] or a technique based on a singular
value decomposition of the local system matrices [146]. Moreover, one could study
the effect of preconditioning techniques as suggested in [69] in terms of the robustness
behavior of the FCM considering nonlinear applications.

Moreover, we proposed a promising remeshing strategy in order to overcome the
problem of severely distorted finite cells for applications in finite strain. To
this end, several examples assuming a hyperelastic material behavior were studied
— showing that the presented strategy leads to a significant improvement in the
robustness of the FCM for simulations involving large deformations. Consequently,
future works could focus on the application of the presented remeshing strategy to
account for finite strain plasticity models. Further, new interpolations schemes and
criteria could be developed and studied in more detail.
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