

A Clock for Assemblies

Experimentation in Collective Time Measuring

SIBYLLE PETERS / THEATRE OF RESEARCH

The Art of Being Many was a temporal experiment in itself: an assembly of assemblies, lasting for four days, two of them in public, with hundreds of people all together in the same room; how can this be organized in terms of time? Timing is crucial for assemblies, and somehow it always goes wrong. And even the best of facilitators do not seem to be able to remedy this. Apparently, norm time and assemblies just do not go together.

Against this background, the Society for the Invention of Measuring Devices¹, a project based at the Theatre of Research in Hamburg, invented a special clock, the so-called interactive laser clock, which enables assemblies to take not only time keeping, but time measuring itself in their own hands. This interactive laser clock was first tested at *The Art of Being Many*.

In the following you find: 1) the speech that was given by the *Society for the Invention of Measuring Devices* to initiate the use of the clock as an experiment in collective time measuring and 2) a report on the use of the clock during the assembly.

1 The Society for the Invention of Measuring Devices is an ongoing project at the Theatre of Research in Hamburg. It was founded with the aim of developing new devices and methods that can be used by groups and collectives for a self-determined approach to measuring, evaluating and improving their well being. Many activities of the society have been documented on the blog www.gzevm.tumblr.com (cf. Peters 2016).

SPEECH BY THE SOCIETY FOR THE INVENTION OF MEASURING DEVICES

»Dear Many,

The Art of Being Many is a durational piece. And certainly we do not have time for something like that. We have more important things to do. We have always already run out of time. All assemblies take too long and are still too short to get the really important things done. We need a break from the assembly. And actually: Everything important happens in the break anyway. And then we need another break, a break from the break, in other words: a break from time itself. And maybe then we could return and have a real assembly.

At the beginning of modernity, Isaac Newton wrote the following words: »Absolute, true and mathematical time, of itself, and from its own nature flows equally without regard to anything external« (Newton 1934 [1689]: 6).

He was wrong. He was proven wrong. Time itself is a movement, it is a movement of movements of movements, time is an assembly of movements, something that happens always and only in between. The way we depict and represent time, by measuring it, is such an assembly of movements. For now, this assembly of movements is very much resembling Newton's concept. This is no epistemological default, but it is due to the fact that time measurement is meant to govern. In fact, measured time is a, if not *the*, tool of global governance. Time measurement, based on the regular frequencies of electrons in movement, is governing the stock markets, the GPS systems in our phones and drones and all of us. And, of course, the best tool for governance is always the one that appears to be natural, unchangeable, absolute and true and so ubiquitous that we do not even notice it, most of the time.

Nevertheless, the way we depict and represent time is a collective decision. A collective decision that was taken in the early times of colonialism and industrialization. It was taken by all those who got to decide important things in those days. It was a decision meant to make the war machines of globalization work as precisely as possible. And they did.

After the end of Fordism, when in postindustrial societies time became something we were all made responsible for, things could have changed. But somehow we just never found the time to reinvent our measuring of time. We might not think about it very much, but in some way or another we know

that time is nothing absolute and external but something that we have designed in a certain way to govern our actions. Only, time is always too short to bother. Time suddenly became too short for everything all of the time. We were caught up in the capitalization of time.

Let's stop this now. Let's have a break from time itself. Let's begin to reinvent time measurement and relocate the collective governance of our action in processes different from the regular frequencies of electrons in movement.

To do that, I would like to ask the assembly to declare that from now on this assembly is an autonomous temporal zone. It is in touch with other times, of course, but nevertheless it is temporally sovereign. In other words, I would like to ask the assembly to declare that this assembly is going to produce and govern itself through its own time.

The Society for the Invention of Measuring Devices, based at the Theatre of Research in Hamburg, has invented a special clock, an interactive laser clock, which allows us to do that in a simple way. How does this interactive laser clock work?²

On that wall you can see the green spot of a laser slowly moving up the wall. For now, the movement of the laser along the scale is equivalent to norm time. If we don't do anything the clock will just reproduce norm time as it is measured by any other clock. But: The movement of the laser up the wall can be manipulated, it can be slowed down or accelerated in such a way that the interactive laser clock is able to differ from norm time at a maximum of two norm time hours minus or plus.

If we all agree to use this clock as our master clock and coordinate the assembly and its different panels by using this clock instead of all the other norm time clocks, the time of the assembly will possibly be slower or faster than norm time.

To manipulate the clock, we will distribute small plastic bags with five time bullets each: five time bullets for each participant in the assembly. Throughout the whole assembly you then can feed the clock with your time bullets, slowing down or speeding up the time of the assembly according to the slot you choose to put the bullets in.

2 Comissioned by the Society for the Invention of Measuring Devices, the interactive laser clock has been constructed and operated by Boris Frentzel-Beyme/Illuminum.

Members of the society will now start to distribute the time bullets. Please make your decision by accepting or rejecting one of the small plastic bags. If more than 200 time-bullet-bags are distributed, the assembly will turn into an autonomous temporal zone. Thank you for your attention.«

REPORT ON THE USE OF THE INTERACTIVE LASER CLOCK IN THE ASSEMBLY

Remarkably, the interactive laser clock was the piece of equipment that was ready last. The time measurement mechanism almost did not get finished in time. Particularly problematic was the little mechanical finger that was meant to push the time bullets into the weighing mechanism following the metric of an algorithm. It turned out that this mechanical finger would have to be cast to work precisely, but there was no time left for that. The whole experiment was at risk. Then the Fab Lab Truck from the Netherlands arrived on the scene, the team examined the setup of the assembly and accidentally ran into the clockmaker, who was just about to despair. In this incident the art of being many worked perfectly; the team of the Fab Lab Truck rescued the clockmaker. With their 3D-printer a mechanical finger that precisely fitted the mechanism was crafted within minutes. The clock was ready to work.

After the Society for the Invention of Measuring Devices gave their speech, about 300 time-bullet-bags were successfully distributed; the autonomous temporal zone was established. Though there wasn't much reference to the clock throughout the day, many people participated in the process of bending time. During the first day the time of the assembly was slower than norm time, a difference of about 40 norm time minutes in total. Interestingly, this allowed the assembly to be *on time* all day. The delay that big conferences usually generate and that produces so much stress for the people who run a program was perfectly incorporated in time itself. The interactive laser clock proved quite relaxing.

Before the assembly there had been a few concerns that by making the choice of speeding up or slowing down time visible, the clock would become a mechanism for the evaluation of a given situation. But this did not happen. The mechanism depicted the bending of time always in relation to the total time of the assembly, and never abruptly. Therefore, it was much too subtle

to undoubtedly link a certain dynamics in the time measured by the laser clock to a specific situation.

Another concern was about potential conflicts between the time of the assembly and norm time, such as, for example, whether technicians who worked for the venue would accept the time of the assembly governing their working hours. But conflicts like these just did not occur.

During the second day participants speeded time up a little, so that at the end of the assembly the initial slowing down of time was almost neutralized, and the reconnection with norm time was surprisingly smooth.

Many things were controversial at *The Art of Being Many*. The clock was not. Throughout the whole conference people kept participating in the experiment. However, the clock was never the center of everyone's attention. Maybe that is the best you can say about an instrument of time keeping in action. Of course, people also kept navigating time with their mobile phones. Nevertheless, the clock continued to be a collective embodiment of temporal autonomy. And indeed, the experiment proved that to declare an assembly as an autonomous temporal zone made sense to most participants regardless of their differences in other matters. The experiment seemed to show that to loosen the ties to norm time and put an assembly in charge of its own time measuring not only has the potential to make time keeping in the assembly easier, but, more importantly, raises awareness of the constituent power of the assembly and thereby quite simply empowers the assembly to become one.

BIBLIOGRAPHY

Gesellschaft zur Erfindung von Messverfahren (www.gzevm.tumblr.com, accessed January 10, 2016).

Newton, Isaac (1934 [1689]): Scholium to the Definitions. In: *Philosophiae Naturalis Principia Mathematica*, Bk. 1, trans. Andrew Motte (1729), rev. Florian Cajori, Berkeley: University of California Press, pp. 6-12.

Peters, Sibylle (2016): Zur Kunst des Messens: Ein Bericht aus dem Forschungstheater. In: Kathrin Busch (2016): *Anderes Wissen: Kunstformen der Theorie*. München: Fink.

