The p-Value Debate and Statistical (Mal)practice – Implications for the Agricultural and Food Economics Community
Inhaltsverzeichnis
Bibliographische Infos

Kein Zugriff
GJAE - German Journal of Agricultural Economics
Jahrgang 72 (2023), Heft 01
- Autor:innen:
- , , , , , , , ,
- Verlag
- dfv Mediengruppe, Frankfurt am Main
- Erscheinungsjahr
- 2023
- ISSN-Online
- 2191-4028
- ISSN-Print
- 2191-4028
Kapitelinformationen
Kein Zugriff
Jahrgang 72 (2023), Heft 01
The p-Value Debate and Statistical (Mal)practice – Implications for the Agricultural and Food Economics Community
- Autor:innen:
- , , ,
- ISSN-Print
- 2191-4028
- ISSN-Online
- 2191-4028
- Kapitelvorschau:
Literaturverzeichnis
Es wurden keine Treffer gefunden. Versuchen Sie einen anderen Begriff.
- AAEA (Agricultural & Applied Association) (2021): Call for Papers for a Special Issue on ‘Replications in Agricultural Economics’ in Applied Economic Perspectives and Policy. http://blog.aaea.org/2020/09/call-for-papers-for-special-issue-on.html. Call: 28.10.2021. Google Scholar öffnen
- ACZEL, B., R. HOEKSTRA, A. GELMAN, E.-J. WAGENMAKERS, I.G. KLUGKIST, J.N. ROUDER, J. VANDEKERCKHOVE, M.D. LEE, R.D. MOREY, W. VANPAEMEL, Z. DIENES and D. VAN RAVENZWAAIJ (2020): Discussion points for Bayesian inference. In: Nature Human Behaviour 4 (6): 561-563. Google Scholar öffnen
- ALBERS, C. (2019): The problem with unadjusted multiple and sequential statistical testing. In: Nature Communications 10 (1): 1921. Google Scholar öffnen
- ALTMAN, D.G. and J.M. BLAND (1995): Absence of evidence is not evidence of absence. In: BMJ 311 (7003): 485. Google Scholar öffnen
- AMRHEIN, V., S. GREENLAND and B. MCSHANE (2019): Scientists rise up against statistical significance. In: Nature 567 (7748): 305-307. Google Scholar öffnen
- AMRHEIN, V., F. KORNER-NIEVERGELT and T. ROTH (2017): The earth is flat (p 0.05): significance thresholds and the crisis of unreplicable research. In: PeerJ 5: e3544. Google Scholar öffnen
- ANGRIST, J. and J.-S. PISCHKE (2008): Mostly Harmless Econometrics: An Empiricist's Companion. Princeton University Press, Princeton. Google Scholar öffnen
- ARPINON, T. and R. ESPINOSA (2022): A Practical Guide to Registered Reports for Economists. Working Paper. https://papers.ssrn.com/sol3/papers.cfm?abstract_id= Google Scholar öffnen
- ASKAROV, Z., A. DOUCOULIAGOS, H. DOUCOULIAGOS and T.D. STANLEY (2022): The Significance of Data-Sharing Policy. In: Journal of the European Economic Association. Google Scholar öffnen
- BAKKER, M., C.L.S. VELDKAMP, M.A.L.M. VAN ASSEN, E.A.V. CROMPVOETS, H.H. ONG, B.A. NOSEK, C.K. SODERBERG, D. MELLOR and J.M. WICHERTS (2020): Ensuring the quality and specificity of preregistrations. In: PLOS Biology 18 (12): e3000937. Google Scholar öffnen
- BANERJEE, A., E. DUFLO, A. FINKELSTEIN, L. KATZ, B. OLKEN and A. SAUTMANN (2020): In Praise of Moderation: Suggestions for the Scope and Use of Pre-Analysis Plans for RCTs in Economics. Working Paper 26993. National Bureau of Economic Researc. Google Scholar öffnen
- BARKASZI, L., S. KESZTHELYI, E. K. CSATÁRI and C. PESTI (2009): FADN Accountancy Framework and Cost Definitions. FACEPA Deliverable No. D1.1.1 - July 2009. In: http://facepa.slu.se/documents/Deliverable_D1-1-1_ Google Scholar öffnen
- LEI.pdf. Call: 9.3.2020. Google Scholar öffnen
- BARREIRO-HURLÉ, J. (2021): Spanish Journal of Agricultural Research Editorial Policy Update: Pre-registration of submissions based on primary data. In: Spanish Journal of Agricultural Research 19 (4): e01105. Google Scholar öffnen
- BASTARDI, A., E. L. UHLMANN and L. ROSS (2011): Wishful thinking: belief, desire, and the motivated evaluation of scientific evidence. In: Psychological science 22 (6): 731-732. Google Scholar öffnen
- BEKKERMAN, A. (2015): The role of simulations in econometrics pedagogy. In: Wiley Interdisciplinary Reviews: Computational Statistics 7 (2): 160-165. Google Scholar öffnen
- BENDTSEN, M. (2018): A Gentle Introduction to the Comparison Between Null Hypothesis Testing and Bayesian Analysis: Reanalysis of Two Randomized Controlled Trials. In: Journal of Medical Internet Research 20 (10): e10873. Google Scholar öffnen
- BENJAMINI, Y. (2016): It's not the p-values' fault. In: The American Statistician, Online Discussion 70: 1-2. Google Scholar öffnen
- BINGHAM, E., J.P. CHEN, M. JANKOWIAK, F. OBERMEYER, N. PRADHAN, T. KARALETSOS, R. SINGH, P. SZERLIP, P. HORSFALL and N.D. GOODMAN (2019): Pyro: Deep Universal Probabilistic Programming. In: Journal of Machine Learning Research 20 (1): 973-978. Google Scholar öffnen
- BLANCO-PEREZ, C. and A. BRODEUR (2020): Publication Bias and Editorial Statement on Negative Findings. In: The Economic Journal 130 (629): 1226-1247. Google Scholar öffnen
- BRODEUR, A., N. COOK and A. HEYES (2020): Methods Matter: p-Hacking and Publication Bias in Causal Analysis in Economics. In: American Economic Review 110 (11): 3634-3660. Google Scholar öffnen
- BRODEUR, A., M. LÉ, M. SANGNIER and Y. ZYLBERBERG (2016): Star Wars: The Empirics Strike Back. In: American Economic Journal: Applied Economics 8 (1): 1-32. Google Scholar öffnen
- BRUNS, S.B., I. ASANOV, R. BODE, M. DUNGER, C. FUNK, S.M. HASSAN, J. HAUSCHILDT, D. HEINISCH, K. KEMPA, J. KÖNIG, J. LIPS, M. VERBECK, E. WOLFSCHÜTZ and G. BUENSTORF (2019): Reporting errors and biases in published empirical findings: Evidence from innovation research. In: Research Policy 48 (9): 103796. Google Scholar öffnen
- BRUNS, S.B. and M. KALTHAUS (2020): Flexibility in the selection of patent counts: Implications for p-hacking and evidence-based policymaking. In: Research Policy 49 (1): 103877. Google Scholar öffnen
- BUCK, S. (2021): Beware performative reproducibility. In: Nature 595 (7866): 151. Google Scholar öffnen
- BUTTON, K.S., J.P.A. IOANNIDIS, C. MOKRYSZ, B.A. NOSEK, J. FLINT, E.S.J. ROBINSON and M.R. MUNAFÒ (2013): Power failure: why small sample size undermines the reliability of neuroscience. In: Nature Reviews Neuroscience 14 (5): 365-376. Google Scholar öffnen
- CAMERER, C.F., A. DREBER, E. FORSELL, T.-H. HO, J. HUBER, M. JOHANNESSON, M. KIRCHLER, J. ALMENBERG, A. ALTMEJD, T. CHAN, E. HEIKENSTEN, F. HOLZMEISTER, T. IMAI, S. ISAKSSON, G. NAVE, T. PFEIFFER, M. RAZEN and H. WU (2016): Evaluating replicability of laboratory experiments in economics. In: Science 351 (6280): 1433-1436. Google Scholar öffnen
- CHRISTENSEN, G., J. FREESE and E. MIGUEL (2019): Transparent and Reproducible Social Science Research. How to Do Open Science. University of California Press, Berkeley, California. Google Scholar öffnen
- CHRISTENSEN, G. and E. MIGUEL (2018): Transparency, Reproducibility, and the Credibility of Economics Research. In: Journal of Economic Literature 56 (3): 920-980. Google Scholar öffnen
- CLEMENS, M.A. (2017): The meaning of failed replications: A review and proposal. In: Journal of Economic Surveys 31 (1): 326-342. Google Scholar öffnen
- COLQUHOUN, D. (2014): An investigation of the false discovery rate and the misinterpretation of p-values. In: Royal Society Open Science 1 (3): 140216. Google Scholar öffnen
- DUMOUCHEL, W. and G.J. DUNCAN (1983): Sample Survey Weights in Multiple Regression Analyses of Stratified Samples. In: Journal of the American Statistical Association 78 (383): 535-543. Google Scholar öffnen
- ELLIOTT, M.R. and R. VALLIANT (2017): Inference for Nonprobability Samples. In: Statistical Science 32 (2): 249-264. Google Scholar öffnen
- FAUL, F., E. ERDFELDER, A.-G. LANG and A. BUCHNER (2007): G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. In: Behavior Research Methods 39 (2): 175-191. Google Scholar öffnen
- FERRARO, P. J. and P. SHUKLA (2020): Feature—Is a Replicability Crisis on the Horizon for Environmental and Resource Economics? In: Review of Environmental Economics and Policy 14 (2): 339-351. Google Scholar öffnen
- FERRARO, P.J. and P. SHUKLA (2022): Credibility crisis in agricultural economics. In: Applied Economic Perspectives and Policy. Google Scholar öffnen
- FISHER, R.A. (1925): Statistical methods for research workers. Oliver and Boyd, Edinburgh. Google Scholar öffnen
- FRICKER, R.D., K. BURKE, X. HAN and W.H. WOODALL (2019): Assessing the Statistical Analyses Used in Basic and Applied Social Psychology After Their p -Value Ban. In: The American Statistician 73 (sup1): 374-384. Google Scholar öffnen
- GELMAN, A. (2016): The Problems With P-Values are not Just With P-Values. In: The American Statistician, Online Discussion. Google Scholar öffnen
- GELMAN, A. and J. CARLIN (2017): Some Natural Solutions to the p -Value Communication Problem—and Why They Won’t Work. In: Journal of the American Statistical Association 112 (519): 899-901. Google Scholar öffnen
- GEWEKE, J., G. KOOP and H. VAN DIJK (2011): Introduction. In: : The Oxford Handbook of Bayesian Econometrics: 1-8. Google Scholar öffnen
- GIGERENZER, G. (2004): Mindless statistics. In: The Journal of Socio-Economics 33 (5): 587-606. Google Scholar öffnen
- GIGERENZER, G. (2018): Statistical Rituals: The Replication Delusion and How We Got There. In: Advances in Methods and Practices in Psychological Science 1 (2): 198-218. Google Scholar öffnen
- GIOFRÈ, D., G. CUMMING, L. FRESC, I. BOEDKER and P. TRESSOLDI (2017): The influence of journal submission guidelines on authors' reporting of statistics and use of open research practices. In: PLOS ONE 12 (4): e0175583. Google Scholar öffnen
- GOODMAN, S.N. (2001): Of P-Values and Bayes: A Modest Proposal. In: Epidemiology 12 (3): 295. Google Scholar öffnen
- GRANT, M.J. and A. BOOTH (2009): A typology of reviews: an analysis of 14 review types and associated methodologies. In: Health information and libraries journal 26 (2): 91-108. Google Scholar öffnen
- GREENLAND, S. (2019): Valid P -Values Behave Exactly as They Should: Some Misleading Criticisms of P -Values and Their Resolution With S -Values. In: The American Statistician 73 (sup1): 106-114. Google Scholar öffnen
- GREENLAND, S. (2020): The causal foundations of applied probability and statistics. https://arxiv.org/pdf/2011.02677. Google Scholar öffnen
- GREENLAND, S., S.J. SENN, K.J. ROTHMAN, J.B. CARLIN, C. POOLE, S.N. GOODMAN and D.G. ALTMAN (2016): Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. In: European Journal of Epidemiology 31 (4): 337-350. Google Scholar öffnen
- HARVEY, C. (2017): Presidential Address: The Scientific Outlook in Financial Economics. In: The Journal of Finance 72 (4): 1399-1440. Google Scholar öffnen
- HAVEN, T.L. and L. VAN GROOTEL (2019): Preregistering qualitative research. In: Accountability in Research 26 (3): 229-244. Google Scholar öffnen
- HECKELEI, T., S. HÜTTEL, M. ODENING and J. ROMMEL (2023): Replication Data for: The p-value debate and statistical (mal)practice - implications for the agricultural and food economics community. GRO.data. Google Scholar öffnen
- HIRSCHAUER, N. (2021): The debate on p-values and statistical inference: What are the consequences for our community? Problems and solutions in statistical practice. GEWISOLA 2021 Pre-Conference Workshop. Google Scholar öffnen
- HIRSCHAUER, N., S. GRÜNER, O. MUßHOFF and C. BECKER (2021): A Primer on p-Value Thresholds and α-Levels - Two Different Kettles of Fish. In: German Journal of Agricultural Economics 70 (2): 123-133. Google Scholar öffnen
- HIRSCHAUER, N., S. GRÜNER, O. MUßHOFF, C. BECKER and A. JANTSCH (2019): Can p-values be meaningfully interpreted without random sampling? In: Statistics Surveys 14: 71-91. Google Scholar öffnen
- HIRSCHAUER, N., G. SVEN, O. MUSSHOFF, F. ULRICH, T. INSA and W. PETER (2016): Die Interpretation des p-Wertes - Grundsätzliche Missverständnisse. In: Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik) 236 (5): 557-575. Google Scholar öffnen
- HUNTINGTON‐KLEIN, N., A. ARENAS, E. BEAM, M. BERTONI, J.R. BLOEM, P. BURLI, N. CHEN, P. GRIECO, G. EKPE, T. PUGATCH, M. SAAVEDRA and Y. STOPNITZKY (2021): The influence of hidden researcher decisions in applied microeconomics. In: Economic Inquiry 59 (3): 944-960. Google Scholar öffnen
- IMBENS, G.W. (2021): Statistical Significance, p -Values, and the Reporting of Uncertainty. In: Journal of Economic Perspectives 35 (3): 157-174. Google Scholar öffnen
- IOANNIDIS, J.P.A., T.D. STANLEY and H. DOUCOULIAGOS (2017): The Power of Bias in Economics Research. In: The Economic Journal 127 (605): F236-F265. Google Scholar öffnen
- IONIDES, E.L., A. GIESSING, Y. RITOV and S.E. PAGE (2017): Response to the ASA’s Statement on p -Values: Context, Process, and Purpose. In: The American Statistician 71 (1): 88-89. Google Scholar öffnen
- KANG, H. (2021): Sample size determination and power analysis using the G*Power software. In: Journal of Educational Evaluation for Health Professions 18. Google Scholar öffnen
- KRANZ, S. and P. PÜTZ (2022): Methods Matter: p-Hacking and Publication Bias in Causal Analysis in Economics: Comment. In: American Economic Review 112 (9): 3124-3136. Google Scholar öffnen
- KRUEGER, J.I. and P.R. HECK (2019): Putting the P -Value in its Place. In: The American Statistician 73 (sup1): 122-128. Google Scholar öffnen
- LEMKEN, D. (2021): The price penalty for red meat substitutes in popular dishes and the diversity in substitution. In: PLOS ONE 16 (6): e0252675. Google Scholar öffnen
- LOGG, J.M. and C.A. DORISON (2021): Pre-registration: Weighing costs and benefits for researchers. In: Organizational Behavior and Human Decision Processes 167: 18-27. Google Scholar öffnen
- LOKEN, E. and A. GELMAN (2017): Measurement error and the replication crisis. In: Science 355 (6325): 584-585. Google Scholar öffnen
- MARGARIAN, A. (2022): Beyond P-Value-Obsession: When are Statistical Hypothesis Tests Required and Appropriate? In: German Journal of Agricultural Economics 71 (4): 213-226. Google Scholar öffnen
- MCCLOSKEY, D.N. and S.T. ZILIAK (1996): The Standard Error of Regressions. In: Journal of Economic Literature 34 (1): 97-114. Google Scholar öffnen
- MERVIS, J. (2014): Research Transparency. Why null results rarely see the light of day. In: Science 345 (6200): 992. Google Scholar öffnen
- NEUENFELDT, S. and A. GOCHT (2014): Integrating Econometric and Mathematical Programming Models into an Amendable A Handbook on the use of FADN Database in Programming Models. Thünen Working Paper No. 35. https://literatur.thuenen.de/digbib_extern/dn054328.pdf. Google Scholar öffnen
- NEYMAN, J. and E.S. PEARSON (1933): On the problem of the most efficient tests of statistical hypotheses. In: Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 231 (694-706): 289-337. Google Scholar öffnen
- O’BOYLE, E.H., G.C. BANKS and E. GONZALEZ-MULÉ (2017): The Chrysalis Effect. In: Journal of Management 43 (2): 376-399. Google Scholar öffnen
- OAKS, M. (1986): Statistical inference: A commentary for the social and behavioral sciences. Wiley, New York. Google Scholar öffnen
- OLKEN, B.A. (2015): Promises and Perils of Pre-Analysis Plans. In: Journal of Economic Perspectives 29 (3): 61-80. Google Scholar öffnen
- PÜTZ, P. and S.B. BRUNS (2021): The (Non‐)Significance of Reporting Errors In Economics: Evidence from Three Top Journals. In: Journal of Economic Surveys 35 (1): 348-373. Google Scholar öffnen
- RAHWAN, Z., E. YOELI and B. FASOLO (2019): Heterogeneity in banker culture and its influence on dishonesty. In: Nature 575 (7782): 345-349. Google Scholar öffnen
- ROMANO, J.P., A.M. SHAIKH and M. WOLF (2010): Multiple Testing. In: The New Palgrave Dictionary of Economics 4. Google Scholar öffnen
- ROMMEL, J. and M. WELTIN (2021): Is There a Cult of Statistical Significance in Agricultural Economics? In: Applied Economic Perspectives and Policy 43 (3): 1176-1191. Google Scholar öffnen
- SCHOOLER, J.W. (2014): Metascience could rescue the 'replication crisis'. In: Nature 515 (7525): 9. Google Scholar öffnen
- SERRA-GARCIA, M. and U. GNEEZY (2021): Nonreplicable publications are cited more than replicable ones. In: Science Advances 7 (21). Google Scholar öffnen
- SMITH, T.M.F. (1983): On the Validity of Inferences from Non-random Sample. In: Journal of the Royal Statistical Society. Series A (General) 146 (4): 394. Google Scholar öffnen
- STEEGEN, S., F. TUERLINCKX, A. GELMAN and W. VANPAEMEL (2016): Increasing Transparency Through a Multiverse Analysis. In: Perspectives on psychological science : a journal of the Association for Psychological Science 11 (5): 702-712. Google Scholar öffnen
- VAN DE MEENT, J.-W., B. PAIGE, H. YANG and F. WOOD (2018): An Introduction to Probabilistic Programming. In: https://arxiv.org/pdf/1809.10756. Google Scholar öffnen
- VERHULST, B. (2016): In Defense of P Values. In: AANA journal 84 (5): 305-308. Google Scholar öffnen
- WASSERSTEIN, R.L. and N.A. LAZAR (2016): The ASA Statement on p -Values: Context, Process, and Purpose. In: The American Statistician 70 (2): 129-133. Google Scholar öffnen
- WASSERSTEIN, R.L., A.L. SCHIRM and N.A. LAZAR (2019): Moving to a World Beyond “ p < 0.05”. In: The American Statistician 73 (sup1): 1-19. Google Scholar öffnen
- WEHRDEN, H. von, J. SCHULTNER and D.J. ABSON (2015): A call for statistical editors in ecology. In: Trends in Ecology and Evolution 30 (6): 293-294. Google Scholar öffnen
- YOUNG, C. and K. HOLSTEEN (2017): Model Uncertainty and Robustness. In: Sociological Methods & Research 46 (1): 3-40. Google Scholar öffnen
- ZILIAK, S. and D. MCCLOSKEY (2008): The Cult of Statistical Significance. How the Standard Error Costs Us Jobs, Justice, and Lives. University of Michigan Press, Ann Arbor, MI. Google Scholar öffnen
- ZILIAK, S.T. and D.N. MCCLOSKEY (2004): Size matters: the standard error of regressions in the American Economic Review. In: The Journal of Socio-Economics 33 (5): 527-546. Google Scholar öffnen
Zitation
Kein Zugriff
Sie haben keinen Zugriff auf diesen Inhalt.