Automatisierte Baustelle – wie nah ist die Zukunft?/Automated construction site – how close is the future?

Inhaltsverzeichnis

Bibliographische Infos


Cover der Ausgabe: Bauingenieur Jahrgang 100 (2025), Heft 11
Kein Zugriff

Organ des VDI Fachbereichs Bautechnik

Jahrgang 100 (2025), Heft 11


Autor:innen:
, , , , , , , , , , , , , ,
Verlag
VDI fachmedien, Düsseldorf
Erscheinungsjahr
2025
ISSN-Online
0005-6650
ISSN-Print
0005-6650

Kapitelinformationen


Kein Zugriff

Jahrgang 100 (2025), Heft 11

Automatisierte Baustelle – wie nah ist die Zukunft?/Automated construction site – how close is the future?


Autor:innen:
, , ,
ISSN-Print
0005-6650
ISSN-Online
0005-6650


Kapitelvorschau:

Die Bauwirtschaft steht vor einem tiefgreifenden Wandel durch Digitalisierung und Automatisierung. Während Building Information Modeling (BIM) die Planung bereits revolutioniert hat, hinkt die Bauausführung noch hinterher. Schlüsseltechnologien wie 5G-Netze, Edge Computing, und Künstliche Intelligenz (KI) ermöglichen Echtzeit-Datenverarbeitung und vernetzte, digitale Baustellen. Darauf aufbauende automatisierte Logistiksysteme und Bauroboter versprechen hohe Effizienzgewinne. Doch dynamische Baustellenumgebungen, Insellösungen und fehlende Standards bremsen die Entwicklung. Integrative Plattformen zur Multi-Roboter-Orchestrierung mit angebundenem digitalem Zwilling könnten die Baustelle der Zukunft prägen. Trotz Herausforderungen wird die Automatisierung so zum entscheidenden Wettbewerbsfaktor in der Bauwirtschaft.

Literaturverzeichnis


  1. [1] Forschungsprojekt EConoM, www.econom.one/ [Zugriff am: 24.04.2025]. Google Scholar öffnen
  2. [2] Steinjan, J.; Braun, J.-D.; Kirner, L. et al.: „EConoM – Edge computing, AI and 5G campus networks in nomadic application for construction site management“. HOCHTIEF ViCon GmbH, Research & Development, Germany / Chair of Individualized Production, RWTH Aachen University, Germany, 2024. Google Scholar öffnen
  3. [3] Islam, M. M.; Prodhan, R. K.; Shohel, M. S. H. et al.: Robotics and Automation in Construction Management Review Focus: The application of robotics and automation technologies in construction. In: Journal of Next-Gen Engineering Systems, 2(01), 48-71 (2025). doi.org/10.70937/jnes.v2i01.63. Google Scholar öffnen
  4. [4] Schmailzl, M.; Saffert, A. S.; Karamara, M. et al: “Enhancing Decision-Making for Human-Centered Construction Robotics: A Methodological Framework”. In: Proceedings of the 41st International Symposium on Automation and Robotics in Construction, S. 637-644 (2024). doi.org/10.22260/ISARC2024/0083. Google Scholar öffnen
  5. [5] Kraus, M. A.; Drass, M.: “Künstliche Intelligenz im Bauingenieurwesen – Hintergründe, Status Quo und Potentiale”. In: Bauingenieur 10 (2020), S. 369-378. doi.org/10.37544/0005–6650–2020–10–39. Google Scholar öffnen
  6. [6] Bock, T.; Linner, T.: „Robot-Oriented Design: Design and Management Tools for the Deployment of Automation and Robotics in Construction“. In: Cambridge University Press, 2015. doi.org/10.1017/CBO978110715696. Google Scholar öffnen
  7. [7] Helm, V.: „In-situ-Fabrikation: Integrale computergestützte Fertigung von Architektur“. In: e-Publications@khm, 2014. e-publications.khm.de/files/3/141031_InsituFabrikation_Diss_Helm.pdf. Google Scholar öffnen
  8. [8] Seiß, S.; Lünig, J.; Melzner, J.: “Ontologie zur baubegleitenden Qualitätssicherung”. In: Bauingenieur 100 (2025), Heft 06 doi.org/10.37544/0005–6650–2025–06–39. Google Scholar öffnen
  9. [9] Xiao, B.; Chen, C.; Yin, X.: Recent Advancements of Robotics in Construction. In: Automation in Construction, Vol. 144 (2022), Iss. 104591. doi.org/10.1016/j.autcon.2022.104591. Google Scholar öffnen
  10. [10] Vega-Torres, M. A.; Braun, A.; Borrmann, A.: SLAM2REF: Advancing Long-Term Mapping with 3D LiDAR and Reference Map Integration for Precise 6-DoF Trajectory Estimation and Map Extension. In: Construction Robotics, Vol. 8 (2024), Iss. 2, pp. 13. doi.org/10.1007/s41693–024–00126-w. Google Scholar öffnen
  11. [11] Vega-Torres, M. A.; Ribic, A.; García de Soto, B. et al.: BIMCaP: BIM-based AI-supported LiDAR-Camera Pose Refinement. In: Proc. of the 31st International Conference on Intelligent Computing in Engineering (EG-ICE 2024), 2024. doi.org/10.48550/arXiv.2412.03434. Google Scholar öffnen
  12. [12] Zhu, A.: A Robotic Construction Simulation Platform for Light-weight Prefabricated Structures. (2023) [Phd Thesis 1 (Research TU/e / Graduation TU/e), Built Environment]. Eindhoven University of Technology. Google Scholar öffnen
  13. [13] Yang, C.-H.; Wu, T.-H.; Xiao, B. et al.: Design of a robotic software package for modular home builder. In: Proceedings of the 36th ISARC, Banff, Canada (2019), doi.org/10.22260/ISARC2019/0163. Google Scholar öffnen
  14. [14] Slepicka, M.; Borrmann, A.: Fabrication Information Modeling for Closed-Loop Design and Quality Improvement in Additive Manufacturing for Construction. In: Automation in Construction, Vol. 168 (2024), S. 10579. doi.org/10.1016/j.autcon.2024.105792. Google Scholar öffnen
  15. [15] bauma 2025 – Innovationen der Baumaschinentechnik, https://bauvolution.de/2025/04/10/bauma-2025-innovationen-in-der-baumaschinentechnik/ / [Zugriff am: 24.04.2025]. Google Scholar öffnen
  16. [16] Vega-Torres, M.A.; Pfitzner, F.: Investigating Robot Dogs for Construction Monitoring: A Comparative Analysis of Specifications and On-site Requirements. In: Proceedings of the 34th Forum Bauinformatik 2023, Sep. 2023. doi.org/10.13154/294–10094. Google Scholar öffnen
  17. [17] Kirner, L.; Zöcklein, M.; Oraskari, J.et al.: „Loosely coupled observation processing and data exchange system for complex teams of on-site construction robots“. In: Robotic Fabrication in Architecture, Art and Design (2024). Toronto, ON, Canada, May 2024. Google Scholar öffnen
  18. [18] Oraskari, J.; Kirner, L.; Zöcklein, M.et al.: „A Method to Unify Custom Properties in IFC to Linked Building Data Conversion“. In: LDAC – 12th Linked Data in Architecture and Construction Workshop: Proceedings. Bochum: RWTH Aachen University (2024), S. 170-179. doi.org/10.18154/RWTH-2024–10706. Google Scholar öffnen
  19. [19] Mendoza, J.; de-la-Bandera, I.; Álvarez-Merino, C.S. et al.: 5G for Construction: Use Cases and Solutions. In: Electronics 10 (2021), Heft 14. doi.org/10.3390/electronics10141713. Google Scholar öffnen

Zitation


Download RIS Download BibTex
Kein Zugriff
Sie haben keinen Zugriff auf diesen Inhalt.